统计基础知识重点

合集下载

统计学基础知识梳理

统计学基础知识梳理

一、基础知识及应用
(七)显著水平与单样本假设检验
• 怎么去算55这个值呢?使用如下的公式:
• 上面的公式,其实不是拿来求55的,而是求50或者59对应的z值;
• 然后我们自己定义了一个想要的概率,比如90%,那我们知道一个对应的
z值是-1.65;
• 然后拿50或者59对应的z和-1.65比,就行了;
还健在,也不知道会活多少岁,我们顶多是把过去几年死了的土豪
们拉出来看看各自活了多大;
• 假如我们找过去三年死了的土豪,一共找了200个人,这200个人就
构成了一个样本,我们就可以试着通过研究这200个人的样本特征,
去推断整个土豪群体的平均寿命是否超过了100岁(其实我们只能知
道它是否肯定超过了100岁)
面的公式了:
一、基础知识及应用
(六)总体均值估计与置信水平
• 总体均值估计就是在只有个
别样本的情况下,想知道一
个总体均值位置的一种实用
方法;
• 其原理就是通过一个样本,
可以求得一个样本均值,然
后我们发现当样本数量很大
的候,样本均值会离总体
均值越来越近,因为总体均
值就是样本均值的均值~;
• 把这个样本均值分布转换成
多少。
• 想把一个正态分布转换成标准正态分布,只需要用下面的公式就可
以了:
• 现在有计算机,其实任何正态分布都可以直接求概率,无需转换为z
分布了.
一、基础知识及应用
(五点一)样本均值的概率分布
• 所谓样本均值,就是一个总体,比如p3班所有同学的年龄,我们可
以求出一个年龄的均值来;
• 然后任意找两个同学,可以求出一个均值来,这个均值一般都不等
• 所谓超几何分布,就是每次结果之间互相干扰的一种方法,比如你

统计基础必学知识点

统计基础必学知识点

统计基础必学知识点1. 数据的分类:数据可以分为定性数据和定量数据。

定性数据是描述性的,如性别、颜色等;定量数据是可量化的,如年龄、身高等。

2. 数据的度量尺度:数据的度量尺度分为四种类型,分别是名义尺度、顺序尺度、间隔尺度和比例尺度。

名义尺度是无序的分类数据,顺序尺度是具有次序关系的数据,间隔尺度是具有固定间隔的数据,比例尺度是具有固定比例关系的数据。

3. 频数与频率:频数是指某个数值出现的次数,频率是指某个数值出现的次数与总数的比值。

4. 数据的中心趋势度量:数据的中心趋势度量包括平均数、中位数和众数。

平均数是一组数据的总和除以数据个数,中位数是将数据按照大小排列后的中间值,众数是一组数据中出现次数最多的数值。

5. 数据的离散程度度量:数据的离散程度度量包括范围、方差和标准差。

范围是一组数据的最大值与最小值之差,方差是数据与其均值之差的平方和的平均值,标准差是方差的平方根。

6. 直方图和箱线图:直方图是将数据按照一定的区间划分,并统计每个区间内数据的频数或频率,在坐标系上绘制柱状图。

箱线图是通过四分位数和异常值来描绘一组数据的分布情况。

7. 相关系数:相关系数是用来描述两组数据之间的相关性强度和方向的指标。

常用的相关系数有皮尔逊相关系数和斯皮尔曼相关系数。

8. 概率与统计分布:概率是事件发生的可能性,统计分布是对数据的概率分布进行描述的函数。

常见的统计分布包括正态分布、泊松分布、二项分布等。

9. 抽样与统计推断:抽样是从总体中选取一部分样本进行研究,统计推断是通过样本数据对总体进行推断。

常用的统计推断方法包括点估计和区间估计。

10. 假设检验:假设检验是对统计推断的一种方法,通过构建假设、选择显著性水平和计算检验统计量,判断样本数据是否能够拒绝原假设。

常见的假设检验方法有单样本t检验、双样本t检验、方差分析等。

统计学基础知识要点

统计学基础知识要点

第一章:导论1、什么是统计学?统计方法可以分为哪两大类?统计学是收集、分析、表述和解释数据的科学。

统计方法可分为描述统计方法和推断统计方法。

2、统计数据可分为哪几种类型?不同类型的数据各有什么特点?按照所采用的计量尺度不同,分为分类数据、顺序数据和数值型数据;按照统计数据的收集方法,分为观测的数据和实验的数据;按照被描述的对象与时间的关系,分为截面数据和时间序列数据。

按计量尺度分时:分数数据中各类别之间是平等的并列关系,各类别之间的顺序是可以任意改变的;顺序数据的类别之间是可以比较顺序的;数值型数据其结果表现为具体的数值。

按收集方法分时:观测数据是在没有对事物进行人为控制的条件下等到的;实验数据的在实验中控制实验对象而收集到的数据。

按被描述的对象与时间关系分时:截面数据所描述的是现象在某一时刻的变化情况;时间序列数据所描述的是现象随时间而变化的情况。

3、举例说明总体、样本、参数、统计量、变量这几个概念。

总体是包含研究的全部个体的集合。

比如要检验一批灯泡的使用寿命,这一批灯泡构成的集合就是总体。

样本是从总体中抽取的一部分元素的集合。

比如从一批灯泡中随机抽取100个,这100个灯泡就构成了一个样本。

参数是用来描述总体特征的概括性数字度量。

比如要调查一个地区所有人口的平均年龄,“平均年龄”即为一个参数。

统计量是用来描述样本特征的概括性数字度量。

比如要抽样调查一个地区所有人口的平均年龄,样本中的“平均年龄”即为一个统计量。

变量是说明现象某种特征的概念。

比如商品的销售额是不确定的,这销售额就是变量。

第二章:数据的收集1、调查方案包括哪几个方面的内容?调查目的,是调查所要达到的具体目标。

调查对象和调查单位,是根据调查目的确定的调查研究的总体或调查范围。

调查项目和调查表,要解决的是调查的内容。

2、数据的间接来源(二手数据)主要是公开出版或公开报道的数据;数据的直接来源一是调查或观察,二是实验。

3、统计调查方式:抽样调查、普查、统计报表等。

统计学基础知识

统计学基础知识

一、数据的特征值(一)数据的位置特征值1)平均值如果从总体中抽取一个样本,得到一批数据x 1,x 2,x 3….x n ,则样本的平均值x 为:n-数据个数;x i -第i 个数据数;∑-求和。

2)中位数有时,为减少计算,将数据x 1,x 2,x 3….x n 按大小次序排列,用位居于正中的那个数或中间两个数的平均值(当数据为偶数时)表示数据的总体平均水平。

3)中值M测定值中的最大值x max 与最小值x min 的平均值,用M 表示。

4)众数在用频数分布表示测定值时,频数最多的值即为众数。

若测定值按区间做频数分布时,频数最多的区间代表值(一般取区间中值)也称众数。

(二)数据的离散特征值1)极差R测定值中的最大值x max 与最小值x min 之差称为极差。

通常R 用于个数n 小于10的情况下,n 大于10时,一般采用标准偏差s 表示。

2)偏差平方和S 各测定值x i 与平均值之差称为偏差。

各测定值的偏差平方和称为偏差平方和,简称平方和,用S 表示。

无偏方差各个测定值的偏差平方和除以(n-1)后所得的值称为无偏方差(简称方差),用s 2表示:niixnx1_1~x2m inmaxx xM_x_xniix xnnS s12_2)(1112_2_22_1)(...)()(x xx xx xnniix x 12_)(S ==标准偏差s方差s 2的平方根为标准偏差(简称标准差),用s 表示:(三)变异系数以上反映数据离散程度的特征值,只反映产品质量的绝对波动大小。

在工程实践中,测量较大的产品,绝对误差一般较大,反之亦然。

因此要考虑相对波动的大小,在统计技术上用变异系数CV 来表达:上式中σ和μ为总体均值和总体标准差,当过程在受控状态下,且样本容差较大时,可用样本标准差s 和样本均值估计。

niix xnnS ss 12_2)(111_xsCV_xCa、Cp、Cpk的计算过程准确度指数(Ca值):表示过程特性中心位置的偏移程度,越小越好Ca=(样本平均值-规格中心值)/(规格公差/2)等级A:|Ca|≦12.5% 表示作业员遵守作业规范,并达规格要求等级 B :12.5%< |Ca|≦25% 表示必要时尽可能提升至A级等级C:25%< |Ca|≦50% 表示作业员可能看错或未按标准作业,或须修改规格及作业标准。

统计学基础知识考试重点

统计学基础知识考试重点

统计学基础知识考试重点第一章统计和数据第二章●统计是用来处理数据的,是关于数据的一门学问。

1、统计学:是用以收集数据、分析数据和由数据得出结论的一组概念、原则和方法。

2、统计分析数据的方法分为:(1)描述统计(2)推断统计3、描述统计:是研究数据搜集、处理和描述的统计学方法。

4、推断统计:是研究如何利用样本数据来推断总体特征的统计学方法。

5、推断统计包括:(1)参数估计(2)假设检验6、定性变量的特点:只反映现象的属性特点,不能说明具体量的大小和差异。

●定性变量包括分类变量和顺序变量。

●只反映现象分类特征的变量称分类变量。

分类变量没有数值特征,所以不能对其数据进行数学运算。

●如果类别具有一定的顺序,这样的变量称为顺序变量。

顺序变量不仅能用来区分客观现象的不同类别,而且还可以表明现象之间的大小、高低、优劣关系。

7、定量变量的特点:可以用数值表示其观察结果,而且这些数值具有明确的数值含义,不仅能分类而且能测量出来具体大小和差异。

●数值型数据(定量数据)作为统计研究的主要资料,其特征在于它们都是以数值的形式出现的,有些数值型数据只可以计算数据之间的绝对差,而有些数值型数据不仅可以计算数据之间的绝对差,还可以计算数据之间的相对差。

其计量精度远远高于定性数据。

在统计学研究中,数值型数据有着最广泛的用途。

8、数据按获取的方法不同分为:(1)观测数据(2)实验数据9、观测数据:是对客观现象进行实地观测所取得的数据,在数据取得的过程中一般没有人为的控制和条件约束。

10、实验数据:一般是在科学实验环境下取得的数据。

11、统计数据资料的来源:(1)通过直接的调查或实验获得的原始数据,这是统计数据的直接来源;(2)别人调查的间接数据,并将这些数据进行加工和汇总后公布的数据,这是数据的间接来源。

12、数据的直接来源:(1)统计调查(2)实验法●通过统计调查得到的数据,一般称为观测数据。

●运用实验法时,实验组和对照组的产生应当是随机的。

统计基础知识知识点总结

统计基础知识知识点总结

统计基础知识知识点总结一、数据的收集1. 数据的类型数据可以分为定量数据和定性数据两种类型。

定量数据是指所研究对象的数量特征,通常以数字形式进行表示,比如身高、体重、温度等;定性数据是指所研究对象的性质特征,通常以文字形式进行表示,比如性别、颜色、品牌等。

2. 数据的收集方法数据的收集方法包括实地调查、实验观察和文献调查等。

实地调查是指研究人员直接到研究对象所在的实际环境中进行数据收集;实验观察是指研究人员通过设计实验对研究对象进行观察和测量;文献调查是指研究人员通过查阅相关文献和资料进行数据收集。

3. 抽样方法在数据收集过程中,通常需要对研究对象进行抽样,以获取代表性的样本。

抽样方法包括简单随机抽样、分层抽样、整群抽样和系统抽样等。

简单随机抽样是指从总体中随机抽取样本;分层抽样是指根据总体的特征将总体分成若干层,然后从各层中分别抽取样本;整群抽样是指根据总体的特征将总体分成若干群,然后随机抽取若干群作为样本;系统抽样是指按照一定的规律从总体中选择样本。

二、描述统计1. 数据的整理和展示数据的整理和展示是统计学中的重要环节,它包括数据的分类整理、频数统计和数据的图表展示。

数据的分类整理是指对收集到的数据进行分类整理,以便后续的分析和研究;频数统计是指对各类数据的频数进行统计和汇总;数据的图表展示是指利用各种图表形式(如直方图、饼图、折线图等)将数据进行直观展示。

2. 数据的描述性统计描述性统计是指通过一些指标对数据进行描述和总结。

常用的描述性统计指标包括均值、中位数、众数、标准差、极差等。

均值是指所有数据的平均值;中位数是指将数据按大小顺序排列后,位于中间位置的数值;众数是指数据中出现次数最多的数值;标准差是指数据的离散程度;极差是指数据的取值范围。

三、推断统计1. 参数估计参数估计是指利用样本数据对总体参数进行估计。

估计的常用方法包括点估计和区间估计。

点估计是指通过样本数据得到总体参数的一个估计值;区间估计是指通过样本数据得到总体参数的一个区间估计。

统计学基础知识

统计学基础知识

1.1 统计学的定义统计学是一门涉及数理统计学、计算机统计学、统计计量学和统计应用研究等多个学科的综合学科。

它既是一门基础学科,又是一门应用学科。

统计学研究的基本目标是分析和描述实际情况,并从中推导出概率规律,以及对现实问题进行科学决策。

1.2 统计学研究的基本方法统计学研究的基本方法包括观察法、实验法、回归分析法、卡方检验等。

二、观察法观察法是统计学研究的常用方法,它的基本步骤是:收集数据、分析数据、绘制图形、推导概率结论。

观察法的终目标是掌握现实社会和自然果的发展规律,以及社会和自然果中某一现象的发生概率三、实验法实验法是统计学研究的重要方法,它的基本步骤是:确定实验目的、设定实验方案、选择实验样本、进行实验、数据分析、结论总结。

实验法的终目标是堂握现实社会和自然界中某一现象的发生概率,以及解决实际问题的可能性。

四、回归分析法回归分析是一种统计学研究方法,它的基本步骤是:观察数据、定义回归模型、拟合回归模型、识别回归模型、检验回归模型、推断回归模型。

回归分析法的终目标是探索影响实际现象发生的原因,以及实际现象的发展趋势。

五、卡方检验卡方检验是统计学研究的重要方法,它的基本步骤是:收集数据、构建假设模型、计算卡方值、比较卡方值、得出结论。

卡方检验的终目标是检验某种假设模型是否满足统计学的要求,以便可以用来推断实际现象。

1、统计学统计学是一门阐明如何去采集、整理、显示、描述、分析数据和由数据得出结论的一系列概念、原理、原则、方法和技术的科学,是一门独立的、实用性很强的通用方法论科学。

2、指标和标志标志是说明总体单位属性或特征的名称。

指标是说明总体综合数量特征和数量关系的数字资料3、总体、样本和单位统计总体是统计所要研究的对象的全体,它是由客观存在的、具有某种共同性质的许多个体所构成的整体。

简称总体。

构成总体的个体则称为总体单位,简称单位。

样本是从总体中抽取的一部分单位4、统计调查统计调查是根据统计研究的目的和要求、采用科学的方法,有组织有计划的搜集统计资料的工作过它是取得统计数据的重要手段程。

统计学理论基础知识(史上最全最完整)

统计学理论基础知识(史上最全最完整)

统计学理论基础知识(史上最全最完整)统计学是一门关于收集、分析、解释和展示数据的学科。

它在许多领域中都发挥着重要作用,包括自然科学、社会科学、商业和医学等。

基本概念- 数据:统计学的研究对象,可以是数值、文字或图像等。

- 总体与样本:总体是我们想要研究的所有个体或事物,而样本是从总体中选择的一部分。

- 参数与统计量:参数是总体的数值特征,统计量是样本的数值特征。

- 频数与频率:频数是某个数值出现的次数,频率是频数与样本大小之比。

描述统计学- 中心趋势:用于衡量数据集中的位置,常用的统计量有平均数、中位数和众数。

- 变异程度:用于衡量数据集中的离散程度,常用的统计量有标准差、方差和四分位数。

- 数据分布:用于描述数据集中每个值的频率分布情况,常用的图表有直方图和箱线图。

推断统计学- 参数估计:通过样本统计量对总体参数进行估计,包括点估计和区间估计。

- 假设检验:根据样本数据对总体参数的假设进行推断性统计分析,包括设置原假设和备择假设,并进行显著性检验。

相关分析- 相关系数:用于衡量两个变量之间的关联程度,常用的相关系数有Pearson相关系数和Spearman等级相关系数。

- 回归分析:用于建立变量之间的数学关系,常用的回归分析有线性回归和多元回归。

统计学软件- 常用统计软件:如SPSS、R、Excel等。

- 数据可视化工具:如Tableau、Power BI等。

这份文档提供了统计学的基础知识概述,包括基本概念、描述统计学、推断统计学、相关分析和统计学软件。

它将帮助读者理解统计学的核心概念和方法,为进一步探索统计学打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档