单招单考《数学》模拟试题卷

合集下载

2023年山东高职单招数学模拟题

2023年山东高职单招数学模拟题

山东高职单招数学模拟题(1)第1题:设集合M={-1,0,1},N={-1,1},则.)A.M..B.M⊂.C.M=.D.N⊂M第3题:函数y=sinx旳最大值是.)A.-.B..C..D.2第4题:设a>0,且|a|<b,则下列命题对旳旳是.)A.a+b<.B.b-a>.C.a-b>.D.|b|<a第5题:一种四面体有棱.)条A..B..C..D.12第6题:“|x-1|<2成立”是“x(x-3)<0成立”旳.)A.充足而不必要条.B.必要而不充足条件C.充足必要条.D.既不充足也不必要条件:第9题:在等差数列{an}中,已知a5+a7=18,则a3+a9.()A.1.B.1.C.1.D.20第10题:将5封信投入3个邮筒,不一样旳投法共有.)A.53.B.35.C.3.D.15种第11题:(1+2x)5旳展开式中x2旳系数是.)A.8.B.4.C.2.D.10第12题:甲乙两人进行一次射击,甲击中目旳旳概率为0.7,乙击中旳概率为0.2,那么甲乙两人都没击中旳概率为.)A.0.2.B.0.5..C.0.0..D.0.86第13题:函数y=x2在x=2处旳导数是.)A..B..C..D.4第15题:假如双曲线旳焦距为6,两条准线间旳距离为4,那么双曲线旳离心率为.)第16题:已知集合,M={2,3,4},N={2,4,6,8},则M∩N=.)。

A.{2.B..{2,4.C.{2,3,4,6,8.D.{3,6,8}第17题:设原命题“若p则.”真而逆命题假,则p是q旳(.)A.充足不必要条.B.必要不充足条.C.充要条.D.既不充足又不必要条件第18题:不等式x <x²旳解集为.)A.{x|x>1.B.{x|x<0.C.{x|0<x<1.D.{x|x<0或x>1}第19题:数列3,a,9为等差数列,则等差中项a等于.)A.-.B..C.-.D.6[第20题:函数y=3x+2旳导数是.)A.y=3.B.y=.C.y=.D.3[第21题:从数字1、2、3中任取两个数字构成无反复数字旳两位数旳个数是.)A.2.B.4.C.6.D.8个第24题:在同一直角坐标系中,函数y=x+.与函数y=ax旳图像也许是.)第25题:函数y=loga(3x−2)+2旳图像必过定点.)语..第1题:在过去旳四分之一世纪里,这种力量不仅增大到了令人不安旳程度,并且其性质亦发生了变化。

高职单招数学模拟题押题试卷附答案

高职单招数学模拟题押题试卷附答案

高职单招数学模拟题押题试卷附答案(一)一、单项选择题(本大题共10小题,每小题3分,共30分,在每小题给出的四个备选答案中,选出一个正确答案)1、A ≠ф是A∩B=ф的( )A.充分条件B.必要条件C.充要条件D.无法确定2、若f(x)=a2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.23、己知|x-3|<a的解集是{x|-3<x<9},则a=()A.-6B.6C.±6D.04、对于数列0,0,0,...,0,...,下列表述正确的是()A.是等比但不是等差数列B.既是等差又是等比数列C.既不是等差又不是等比数列D.是等差但不是等比数列5、若a0.6<a0.4,则a的取值范围为()A.a>1B.0C.a>0D.无法确定6、在△ABC中,“x2 =1”是“x =1”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件7、在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的大小是( )A.30°B.60°C.45°D.90°8、设函数f(x) = x2+1,则f(x)是( )A.奇函数B.偶函数C.非奇非偶函数D.既是奇函数又是偶函数9、己知向量a = (2,1),b =(-1,2),则a,b之间的位置关系为( )A.平行B.不平行也不垂直C.垂直D.以上都不对10、若函数f(x) = kx + b,在R上是增函数,则( )A.k>0B.k<0C.b<0D.b>1-5、ACBDB 6-10、BCBCA 11、2/12、2x+3y+1=0 13、6 14、2 15、x2+2 16、1417、20 18、919、22、23、24、。

单招模拟数学试题及答案

单招模拟数学试题及答案

单招模拟数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数f(x) = 2x - 3,求f(4)的值。

A. 5B. 2C. -1D. 33. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6C. 7D. 84. 以下哪个不等式是正确的?A. 2 > 3B. 3 < 2C. 3 ≤ 3D. 3 ≥ 45. 求下列哪个数的平方根是正数?A. -4B. 0C. 16D. 1二、填空题(每题2分,共10分)6. 一个数的绝对值是5,这个数可以是________。

7. 一个圆的半径为7,其面积为________。

8. 如果一个数的平方是25,那么这个数可以是________。

9. 已知等差数列的首项a1=3,公差d=2,求第5项a5的值。

10. 一个二次方程x^2 - 5x + 6 = 0的根是________。

三、解答题(每题5分,共20分)11. 求函数y = x^2 - 4x + 4在x=2时的导数值。

12. 解不等式2x - 5 < 3x + 1。

13. 证明:对于任意实数x,都有x^2 + 3x + 2 ≥ 2。

14. 已知等比数列的首项a1=2,公比q=3,求前5项的和S5。

四、综合题(每题10分,共20分)15. 一个工厂生产了x个产品,每个产品的成本是c元,销售价格是p 元。

如果工厂希望获得至少10000元的利润,求x的最小值。

16. 一个班级有40名学生,其中20名学生参加了数学竞赛,15名学生参加了物理竞赛,5名学生同时参加了数学和物理竞赛。

求没有参加任何竞赛的学生人数。

答案:一、选择题1. B2. A3. A4. C5. C二、填空题6. ±57. 49π8. ±59. 1110. 2, 3三、解答题11. 412. x > 613. 证明略14. 162四、综合题15. x ≥ 10000 / (p - c)16. 10。

高职单独招生考试数学卷(答案解析) (1)

高职单独招生考试数学卷(答案解析) (1)

2022年对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分)1.直线l :230x y +-=与圆C:22240x y x y ++-=的位置关系是()A.相交切不过圆心B.相切C.相离D.相交且过圆心2.双曲线22149x y -=的离心率e=()A.23B.32C.2D.33.已知角β终边上一点(4,3)P -,则cos β=()A.35-B.45C.34-D.544.已知两点(2,5),(4,1)M N --,则直线MN 的斜率k =()A.1B.1- C.12D.12-5.函数2sin cos 2y x x =+的最小值和最小正周期分别为()A.1和2πB.0和2πC.1和πD.0和π6.某单位有15名成员,其中男性10人,女性5人,现需要从中选出6名成员组成考察团外出参观学习,如果按性别分层,并在各层按比例随机抽样,则此考察团的组成方法种数是()A. B.C.D.7.抛物线上一点A 的纵坐标为4,则点A 与抛物线焦点的距离为()A.6B.3C.7D.58.若,且a为第四象限角,则的值等于()A. B. C. D.9、设集合M={O,1,2},N={O,1},则M∩N=()A.{2}B.{0,1}c.{0,2}D.{0,1,2}10、不等式|x-1|<2的解集是()A.x<3B.x>-1C.x<-1或x>3D.-1<x<311、函数y=-2x+1在定义域R内是()A.减函数B.增函数C.非增非减函数D.既增又减函数12、设则a,b,c的大小顺序为()A、a>b>cB、a>c>bC、b>a>cD、c>a>b13、已知a=(1,2),b=(x1),当a+2b与2a-b共线时,x值为()A.5B.3C、1/3D、0.514、已知{an}为等差数列,a2+a:=12,则as等于()A.1B.8C.6D.515、已知向量a=(2,1),b=(3,入),且a丄b,则入=()A.-6B.5C.1.5D、-1.516、点(0,5)到直线y=2x的距离为()A、2.5B.C.1.5D、17、将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.16种C.18种D.8种18、设集合M={x|0<x<1},集合N={x|-1<x<1},则()(A)M∩N=M(B)MUN=N(C)M∩N=N(D)M∩N=M∩N19、已知函数f(x)的图象与函数y=sinx的图象关于y轴对称,则f(x)=()(A)-cosx(B)cosx(C)-sinx(D)sinx20.圆的一般方程为x2+y2-8x+2y+13=0,则其圆心和半径分别为()A.(1,-1),4B.(4,-1),2C.(-4,1),4D.(-1,1),2二、填空题(共10小题,每小题3分;共计30分)1.记复数z=a+bi(i为虚数单位)的共轭复数为,已知z=2+i,则_____.2.已知集合U={1,3,5,9},A={1,3,9},B={1,9},则∁U(A∪B)=_____.3.某校共有师生1600人,其中教师有1000人,现用分层抽样的方法,从所有师生中抽取一个容量为80的样本,则抽取学生的人数为_____.4、已知51cos sin =+αα,则=⋅ααcos sin ______.5、在等比数列{}n a 中,若673=a a ,则=⋅⋅⋅8642a a a a ______.6、已知角α终边上一点)1,1(P ,则=+ααcos sin ______.7、函数2()13sin f x x =-的最小正周期为______.8、若“[0,],tan 4x x mπ∀∈≤”是真命题,则实数m 的最小值为______.9、已知角α终边上一点P (3,-4),则=+ααan t sin ______.10、过点P(-2,-3),倾斜角是45°的直线方程是______.三、大题:(满分30分)1、甲、乙两名篮球运动员,甲投篮的命中率为0.6,乙投篮的命中率为0.7,两人是否投中相互之间没有影响,求:(1)两人各投一次,只有一人命中的概率;(2)每人投篮两次,甲投中1球且乙投中2球的概率.2、已知数列{a n }满足a 1=1,a n+1{a n +1,n 为奇数a n +2,n 为偶数(1)记b n =a 2n ,写出b 1,b 2,并求数列{b n }的通项公式;(2)求{a n }的前20项和参考答案:一、选择题:1-5题答案:DCBBD 6-10题答案:ADDBD 11-15题答案:ABDCA 16-20题答案:BABCB 部分答案解析:1、答案.D 【解析】圆的方程化为标准方程:22(1)(2)5x y ++-=,圆心到直线的距离d ==,即直线与圆相交且过圆心.2、答案.C【解析】由双曲线的方程可知2,3,a b c ===,2c e a ==.3、答案.B【解析】由余弦函数的定义可知4cos 5β==.4、答案.B 【解析】5(1)124k --==---.5、答案.D 【解析】1cos 211cos 2cos 2222x y x x -=+=+,最小正周期T =π,最小值为0.二、填空题:1、3﹣4i ;2、{5};3、30;4、2512-;5、36;6、2;7、 ;8、1;9、1532-;10、x-y-1=0。

三校生对口高职单招数学模拟试卷15套1

三校生对口高职单招数学模拟试卷15套1

三校⽣对⼝⾼职单招数学模拟试卷15套1⾼职单招数学模拟试卷⼀姓名:__________ 考号:__________得分:__________⼀、选择题:(本⼤题共12⼩题,每⼩题7分,共84分)1.已知集合{1,3,4,5,7}A =,集合{1,2,5,9}B =,则A B =I ()A .{1,3,4,5,7}B .{1,2,5,9}C .{1,5}D .{1,2,4,5,7,9}2.10sin 3π= ()AB. C .12 D .12-3.6⼈排成⼀排,甲、⼄两⼈必须相邻的站法有多少种()A .720B .480C .240D .1204.已知2sin cos 3αα-=,则sin 2α= ()A .13B .23C .49D .595.函数()sin(2)36f x x π=-+的最⼤值和最⼩正周期为()A .4与2πC .1与πD .1与2π6.若⽅程222x ky +=表⽰焦点在y 轴上的椭圆,那么实数k 的取值范围是()A .(,1)-∞B .(0,2)C .(1,)+∞D .(0,1)7.倾斜⾓为2π,且过点(3,2)P -的直线⽅程是() A .50x y -+= B .20y -=C .30x +=D .230x y +=8.命题“260x x +-=”是命题“3x =-”的() A .充分条件 B .必要条件 C .充要条件 D .既不充分也不必要条件 9.不等式2 21x x +>+的解集是() A .(1,0)(0,1)-UB .(,1)(0,1)-∞-UC .(1,0)(1,)-+∞UD .(,1)(1,)-∞-+∞U10.10件产品中有3件次品,从中任取3件,⾄少有⼀件次品的抽取⽅法有() A .85种 B .84种 C .18个 D .24个11.在等差数列{}n a 中,已知1232,13a a a =+=,则456a a a ++= ()A .40B .42C .43D .4512.若⽅程2222220x y kx k k +-+-=表⽰⼀个圆,则k 的取值范围是()A .[0,2]B .(0,2)C .[0,2)D .(0,2] ⼆、填空题:(本⼤题共6⼩题,每⼩题7分,共42分)13.双曲线22x y -=上任意⼀点P 到此双曲线距离较远的⼀个焦点的距离是12,则点P 到另⼀焦点的距离是.14.在x 轴上有⼀定P ,它与A (1,4)-的距离等于5,则P 点的坐标是. 15.经过椭圆22143x y +=的⼀个焦点1F 的直线交椭圆与A 、B 两点,则2ABF ?的周长是.16.若⽅程2221211x y m m -=--表⽰双曲线,则m 的取值范围是.17.以直线1x =为准线的抛物线的标准⽅程是.18.已知直线l 的倾斜⾓是直线31y x =-的倾斜⾓的2倍,求直线l 的斜率.三、解答题:(本⼤题共6⼩题,共74分)19.计算(本⼩题满分12分)1232133sin tan 64P C ππ++-20.(本⼩题满分12分)直线2370x y-+=与x轴、y轴分别交于A、B两点.求:线段AB的垂直平分线的⽅程.21.(本⼩题满分12分)直线过(2,3)A-且与两轴围成的三⾓形⾯积为4.求:直线l的⽅程.22.(本⼩题满分12分)若p是圆224210x y x y+-++=上的动点.求:点p到直线:43240l x y-+=的最短距离.23.(本⼩题满分12分)椭圆两焦点12(4,0),(4,0)F F-,P在椭圆上,若12PF F的⾯积最⼤为12,求此椭圆⽅程.24.(本⼩题满分14分)已知直线l过(2,3)A且与圆22C x y+=相切.求:直线l的⽅程.。

单招数学模拟试题及答案

单招数学模拟试题及答案

单招数学模拟试题及答案一、选择题(本题共10小题,每小题3分,共30分)1. 下列哪个数是最小的正整数?A. 0B. 1C. 2D. 32. 若函数f(x) = x^2 - 4x + 3,求f(5)的值。

A. 8B. 18C. 28D. 383. 已知等差数列的首项a1=3,公差d=2,求第10项的值。

A. 23B. 25C. 27D. 294. 圆的半径为5,求圆的面积。

A. 25πB. 50πC. 75πD. 100π5. 已知三角形ABC,∠A=30°,∠B=45°,求∠C的度数。

A. 75°C. 105°D. 120°6. 一个长方体的长、宽、高分别为2米、3米和4米,求其体积。

A. 24立方米B. 26立方米C. 28立方米D. 30立方米7. 已知方程x^2 - 5x + 6 = 0,求x的值。

A. 2, 3B. 1, 6C. 3, 4D. 2, 48. 一个数的平方根是4,求这个数。

A. 16B. 8C. 12D. 209. 已知正弦函数sin(x) = 1/2,求x的值(x在第一象限)。

A. π/6B. π/4C. π/3D. 5π/610. 一个直角三角形的两条直角边分别为3和4,求斜边的长度。

A. 5B. 6D. 8二、填空题(本题共5小题,每小题4分,共20分)11. 若一个数的平方是25,那么这个数是________。

12. 一个圆的直径为10,那么这个圆的周长是________。

13. 已知三角形的面积是18平方米,高是6米,求底边的长度。

14. 一个等腰三角形的两个底角相等,如果其中一个底角是40°,那么顶角的度数是________。

15. 一个直角三角形的斜边长度是10,一个锐角是30°,求对边的长度。

三、解答题(本题共3小题,每小题10分,共30分)16. 解不等式:3x + 5 > 14 - 2x。

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷(答案解析)

河北省高职单招考试数学模拟卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1 B.[)0,+∞ C.(){}1,1 D.()0,+¥3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.944.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或 D.{}|03x x <<5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种B.36种C.24种D.18种7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()xf xg x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞ B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae -=+在定义域上是奇函数”的充分不必要条件11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.14.如图,在正方体''''ABCD A B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.15.在()()5122x x -+展开式中,4x 的系数为______.16.关于x 的方程ln 10xkx x--=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.河北省高职单招考试数学模拟卷答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足()22i z i i -=+,则z 在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】C 【解析】利用复数除法运算求得z ,从而求得z ,由此得到z 对应的坐标,进而求得z 在复平面内对应的点所在象限.【详解】因为()()()2(1)2221322255i i i i i i iz i i i -+++--+--+====--⨯+,所以3155z i =--,z 对应点为31,55⎛⎫-- ⎪⎝⎭,所以z 在复平面内对应的点位于第三象限.故选:C.【点睛】本小题主要考查复数的除法运算,共轭复数,考查复数对应点所在象限的判断,属于基础题目.2.已知集合{}|21A x y x ==-,集合{}2|B y y x ==,则集合A B = ()A.()1,1B.[)0,+∞C.(){}1,1 D.()0,+¥【答案】B 【解析】【分析】先求出集合,A B ,即可求出交集.【详解】{}|21A x y x R ==-= ,{}[)2|0,B y y x ===+∞,[)0,A B ∴=+∞ .故选:B.【点睛】本题考查函数定义域和值域的求法,考查集合交集运算,属于基础题.3.已知(),0,x y ∈+∞,4124yx -⎛⎫= ⎪⎝⎭,则xy 的最大值为()A.2B.98C.32D.94【答案】A【分析】根据4124yx -⎛⎫= ⎪⎝⎭可得24x y +=,之后利用基本不等式得到2112(2)(2222x y xy x y +=⋅≤=,从而求得结果.【详解】因为(),0,x y ∈+∞,且421224yx y --⎛⎫== ⎪⎝⎭,所以42x y -=-,即24x y+=,所以有2112(2)(2222x y xy x y +=⋅≤=,当且仅当22x y ==时取得最大值2,故选:A.【点睛】该题考查的是有关应用基本不等式求最值的问题,涉及到的知识点有利用基本不等式求积的最大值,属于简单题目.4.若不等式20ax bx c ++>的解集为{}|12x x -<<,则不等式()()2112a x b x c ax ++-+<的解集为()A.{}|21x x -<<B.{}|21x x x <->或C.{}0|3x x x <>或D.{}|03x x <<【答案】C 【解析】【分析】由题意得0a <,利用韦达定理找到,,a b c 之间的关系,代入所求不等式即可求得.【详解】不等式20ax bx c ++>的解集为{}|12x x -<<,则1x =与2x =是方程20ax bx c ++=的两根,且0a <,由韦达定理知121b a -=-+=,122ca=-⨯=-,即=-b a ,2c a =-,则不等式()()2112a x b x c ax ++-+<可化简为()()21122a x a x a ax +---<,整理得:230ax ax -<,即(3)0ax x -<,由0a <得0x <或3x >,故选:C.【点睛】本题主要考一元二次不等式,属于较易题.5.设()1sin f x x =,()()'21f x f x =,()()'32f x f x =,…,()()'1n n f x f x +=,n N ∈,则()2020f x =()A.sin xB.sin x- C.cos xD.cos x-【答案】D 【解析】【分析】根据三角函数的导函数和已知定义,依次对其求导,观察得出4()(),n n f x f x n N +=∈,可得解.【详解】1()sin f x x = ,()''1()sin cos f x x x ∴==,'12()()cos f x f x x ==,()23'()(cos )sin f x f x x x '===-,()34'()(sin )cos f x f x x x '==-=-,()45'()(cos )sin f x f x x x '==-=,由此可知:4()(),n n f x f x n N +=∈,24201()()cos f x f x x ∴==-.故选:D.【点晴】本题考查三角函数的导数,依次求三角函数的导数找到所具有的周期性是解决此问题的关键,属于中档题.6.某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有A.72种 B.36种 C.24种 D.18种【答案】B 【解析】【分析】根据条件2名内科医生,每个村一名,3名外科医生和3名护士,平均分成两组,则分1名外科,2名护士和2名外科医生和1名护士,根据排列组合进行计算即可.【详解】2名内科医生,每个村一名,有2种方法,3名外科医生和3名护士,平均分成两组,要求外科医生和护士都有,则分1名外科,2名护士和2名外科医生和1名护士,若甲村有1外科,2名护士,则有1233339C C =⨯=,其余的分到乙村,若甲村有2外科,1名护士,则有2133339C C =⨯=,其余的分到乙村,则总共的分配方案为2×(9+9)=2×18=36种,故选B.【点睛】本题主要考查了分组分配问题,解决这类问题的关键是先分组再分配,属于常考题型.7.若幂函数()f x 的图象过点1,22⎛⎫ ⎪ ⎪⎝⎭,则函数()()x f x g x e =的递增区间为()A.()0,2B.()(),02,-∞+∞C.()2,0-D.()(),20,-∞-+∞ 【答案】A 【解析】【分析】设()f x x α=,代入点求出α,再求出()g x 的导数()g x ',令()0g x '>,即可求出()g x 的递增区间.【详解】设()f x x α=,代入点122⎛⎫ ⎪ ⎪⎝⎭,则122α⎛⎫= ⎪ ⎪⎝⎭,解得2α=,()2x x g x e∴=,则()2222()x x xxx x xe x e g x e e --'==,令()0g x '>,解得02x <<,∴函数()g x 的递增区间为()0,2.故选:A.【点睛】本题考查待定系数法求幂函数解析式,考查利用导数求函数的单调区间,属于基础题.8.设函数()21f x mx mx =--,若对于[]1,3x ∈,()2f x m >-+恒成立,则实数m 的取值范围()A.()3,+∞B.3,7⎛⎫-∞ ⎪⎝⎭ C.(),3-∞ D.3,7⎛⎫+∞ ⎪⎝⎭【答案】A 【解析】【分析】由题意变量分离转为231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,求出最大值即可得到实数m 的取值范围.【详解】由题意,()2f x m >-+可得212mx mx m ->-+-,即()213m x x +>-,当[]1,3x ∈时,[]211,7x x -+∈,所以231m x x >-+在[]1,3x ∈上恒成立,只需2max31m x x ⎛⎫ ⎪+⎝⎭->,当1x =时21x x -+有最小值为1,则231x x -+有最大值为3,则3m >,实数m 的取值范围是()3,+∞,故选:A【点睛】本题考查不等式恒成立问题的解决方法,常用变量分离转为求函数的最值问题,属于基础题.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对得5分;部分选对的得3分;有选错的得0分.9.若复数21iz =+,其中i 为虚数单位,则下列结论正确的是()A.z 的虚部为1-B.||z =C.2z 为纯虚数D.z 的共轭复数为1i--【答案】ABC 【解析】【分析】首先利用复数代数形式的乘除运算化简z 后得:1z i =-,然后分别按照四个选项的要求逐一求解判断即可.【详解】因为()()()2122211i 1i 12i i z i i --====-++-,对于A:z 的虚部为1-,正确;对于B:模长z =,正确;对于C:因为22(1)2z i i =-=-,故2z 为纯虚数,正确;对于D:z 的共轭复数为1i +,错误.故选:ABC.【点睛】本题考查复数代数形式的乘除运算,考查复数的有关概念,考查逻辑思维能力和运算能力,侧重考查对基础知识的理解和掌握,属于常考题.10.下列命题正确的是()A.“1a >”是“11a<”的必要不充分条件B.命题“()00,x ∃∈+∞,00ln 1x x =-”的否定是“()0,x ∀∈+∞,ln 1x x ≠-”C.若,a b ∈R ,则2b a a b +≥=D.设a R ∈,“1a =”,是“函数()1xxa e f x ae-=+在定义域上是奇函数”的充分不必要条件【答案】BD 【解析】【分析】根据不等式的性质可判断A;根据含有量词的否定可判断B;根据基本不等式的适用条件可判断C;根据奇函数的性质可判断D.【详解】对于A,当1a >时,可得11a<,故“1a >”是“11a<”的充分条件,故A 错误;对于B,由特称命题的否定是存在改任意,否定结论可知B 选项正确;对于C,若0ab <时,2b a a b +≤-=-,故C 错误;对于D,当1a =时,1()1xx e f x e -=+,此时()()f x f x -=-,充分性成立,当()1xxa e f x ae -=+为奇函数时,由1()1x x xx a e ae f x ae e a-----==++,()()f x f x -=-可得1a =±,必要性不成立,故D 正确.故选:BD.【点睛】本题考查充分条件与必要条件,考查命题及其关系以及不等关系和不等式,属于基础题.11.关于11()a b -的说法,正确的是()A.展开式中的二项式系数之和为2048B.展开式中只有第6项的二项式系数最大C.展开式中第6项和第7项的二项式系数最大D.展开式中第6项的系数最小【答案】ACD【分析】根据二项式系数的性质即可判断选项A;由n 为奇数可知,展开式中二项式系数最大项为中间两项,据此即可判断选项BC;由展开式中第6项的系数为负数,且其绝对值最大即可判断选项D.【详解】对于选项A:由二项式系数的性质知,11()a b -的二项式系数之和为1122048=,故选项A 正确;因为11()a b -的展开式共有12项,中间两项的二项式系数最大,即第6项和第7项的二项式系数最大,故选项C 正确,选项B 错误;因为展开式中第6项的系数是负数,且绝对值最大,所以展开式中第6项的系数最小,故选项D 正确;故选:ACD【点睛】本题考查利用二项式定理求二项展开式的系数之和、系数最大项、系数最小项及二项式系数最大项;考查运算求解能力;区别二项式系数与系数是求解本题的关键;属于中档题、常考题型.12.如图直角梯形ABCD ,//AB CD ,AB BC ⊥,122BC CD AB ===,E 为AB 中点,以DE 为折痕把ADE 折起,使点A 到达点P 的位置,且PC =.则()A.平面PED ⊥平面EBCDB.PC ED ⊥C.二面角P DC B --的大小为4π D.PC 与平面PED 【答案】AC【解析】A 中利用折前折后不变可知PD AD =,根据222PD CD PC +=可证CD PD ⊥,可得线面垂直,进而证明面面垂直;B 选项中AED ∠不是直角可知,PD ED 不垂直,故PC ED ⊥错误;C 中二面角P DC B --的平面角为PDE ADE ∠=∠,故正确;D 中PC 与平面PED 所成角为CPD ∠,计算其正切值即可.【详解】A 中,PD AD ===,在三角形PDC 中,222PD CD PC +=,所以PD CD ⊥,又CD DE ⊥,可得CD ⊥平面PED ,CD ⊂平面EBCD ,所以平面PED ⊥平面EBCD ,A 选项正确;B 中,若PC ED ⊥,又ED CD ⊥,可得ED ⊥平面PDC ,则ED PD ⊥,而EDP EDA ∠=∠,显然矛盾,故B 选项错误;C 中,二面角P DC B --的平面角为PDE ∠,根据折前着后不变知=45PDE ADE ∠=∠︒,故C 选项正确;D 中,由上面分析可知,CPD ∠为直线PC 与平面PED 所成角,在t R PCD V 中,2tan 2CD CPD PD ∠==,故D 选项错误.故选:AC【点睛】本题主要考查了线面垂直的判定,二面角,线面角的求法,属于中档题.三、填空题:本题共4小题,每小题5分,共20分.13.从某班6名学生(其中男生4人,女生2人)中任选3人参加学校组织的社会实践活动,设所选三人中男生人数为ξ,则数学期望()E ξ=______.【答案】2【解析】【分析】ξ的可能值为1,2,3,计算概率得到分布列,再计算数学期望得到答案.【详解】ξ的可能值为1,2,3,则()124236115C C p C ξ===;()214236325C C p C ξ⋅===;()3436135C p C ξ===.故分布列为:ξ123p 153515故()1311232555E ξ=⨯+⨯+⨯=.故答案为:2.【点睛】本题考查了概率的计算,分布列,数学期望,意在考查学生的计算能力和应用能力.14.如图,在正方体''''ABCDA B C D -中,'BB 的中点为M ,CD 的中点为N ,异面直线AM 与'D N 所成的角是______.【答案】90︒【解析】【分析】取CC '中点E ,连接ME ,连接ED 交D N '于F ,可知即DFN ∠为异面直线AM 与'D N 所成的角,求出即可.【详解】取CC '中点E ,连接ME ,连接ED 交D N '于F ,在正方体中,可知ME BC AD ∥∥,∴四边形AMED 是平行四边形,AM ED ∴ ,即DFN ∠为异面直线AM 与'D N 所成的角,可知在Rt ECD △和Rt NDD ' 中,,,90EC ND CD DD ECD NDD ''==∠=∠= ,ECD NDD '∴≅ ,CED FND ∴∠=∠,90CED EDC ∠+∠= ,90FND FDN ∴∠+∠= ,90DFN ∴∠= ,即异面直线AM 与'D N 所成的角为90 .故答案为:90 .【点睛】本题考查异面直线所成角的求法,属于基础题.15.在()()5122x x -+展开式中,4x 的系数为______.【答案】80【解析】【分析】将原式化为()()5521212x x x -+-,根据二项式定理,求出()512x -展开式中3x ,4x 的系数,即可得出结果.【详解】()()()()55512221212x x x x x -+=-+-,二项式()512x -的展开式的第1r +项为()152rr r r T C x +=-,令3r =,则()333345280T C x x =-=-,令4r =,则()444455280T C x x =-=,则()()5122x x -+展开式中,4x 的系数为2808080⨯-=.故答案为:80.【点睛】本题主要考查求指定项的系数,熟记二项式定理即可,属于基础题型.16.关于x 的方程ln 10x kx x --=在(]0,e 上有两个不相等的实根,则实数k 的取值范围______.【答案】21,1e e +⎡⎫⎪⎢⎣⎭【解析】【分析】分离参数,构造函数2ln 1(),(0,]x f x x e x x =+∈,利用导数讨论()f x 的单调性,再结合关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,即可求出k 的取值范围.【详解】ln 10x kx x --= ,2ln 1x k x x ∴=+,设2ln 1(),(0,]x f x x e x x =+∈,312ln ()x x f x x --∴=',设()12ln ,(0,]g x x x x e =--∈,2()10g x x∴=--<',即()g x 在(]0,e 是减函数,又(1)0g =,∴当01x <<时,()0>g x ,即()0f x '>,当1x e <<时,()0<g x ,即()0f x '<,()f x ∴在()0,1为增函数,在()1,e 为减函数,当0x →时,()f x →-∞,21()(1)1,e e f f e =+=,关于x 的方程ln 10x kx x--=在(]0,e 上有两个不相等的实根等价于()y f x =与y k =有两个交点,由上可知211e k e +< ,∴实数k 的取值范围为21,1e e +⎡⎫⎪⎢⎣⎭.故答案为:21,1e e +⎡⎫⎪⎢⎣⎭.【点睛】本题考查利用导数解决方程根的问题,属于较难题.。

单招模拟试题数学及答案详解

单招模拟试题数学及答案详解

单招模拟试题数学及答案详解一、选择题(每题3分,共30分)1. 下列哪个选项是最小的正整数?A. 0B. 1C. 2D. -1答案:B解析:最小的正整数是1,因为正整数是大于0的整数。

2. 如果函数f(x) = 2x^2 + 3x + 5的图像关于直线x = -3/4对称,那么二次函数的对称轴是什么?A. x = -3/4B. x = 0C. f(x) = 0D. x = 3/4答案:A解析:二次函数的对称轴是x = -b/2a,其中a和b分别是二次项和一次项的系数。

在这个函数中,a = 2,b = 3,所以对称轴是x = -3/4。

3. 以下哪个数是无理数?A. 3B. πC. 1/2D. 0.5答案:B解析:π是一个无限不循环小数,因此是无理数。

其他选项都是有理数。

4. 解方程2x - 1 = 7,x的值是多少?A. 4B. 3C. 2D. 5答案:A解析:将方程2x - 1 = 7进行移项,得到2x = 8,然后除以2,得到x = 4。

5. 一个长方体的长、宽、高分别是8cm、6cm和5cm,其体积是多少立方厘米?A. 240B. 180C. 120D. 100答案:A解析:长方体的体积计算公式是V = 长× 宽× 高,所以体积是8cm × 6cm × 5cm = 240立方厘米。

6. 下列哪个选项是不等式2x + 3 > 9的解集?A. x > 3B. x > 1C. x > 6D. x < 3答案:B解析:首先将不等式2x + 3 > 9中的常数项移项,得到2x > 6,然后除以2,得到x > 3。

7. 一个数的75%是150,那么这个数是多少?A. 200B. 300C. 400D. 500答案:B解析:如果一个数的75%是150,那么这个数可以通过150除以75%来计算,即150 ÷ 0.75 = 200。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单招数学 试题卷1 .已知集合2{|350}A x x x =-+<,{||1|2}B x x =->,则u C A B =( ) A . ∅B . (1,3)-C . (,1)(3,)-∞-+∞D . R2. 命题甲“G =b G a ,,三个数成等比数列”成立的(▲) A .充分条件B . 必要条件C . 充要条件D . 既不充分也不必要3.已知直线过两点(1,3)A ,(3,7)B -,则该直线的倾斜角为(▲) A .56πB .4π C . 34πD .23π4. 函数0(2)y x =+-的定义域为(▲) A.}1|{≥x xB.}21|{≠≥x x x 且C.}1|{>x xD.}21|{≠>x x x 且5. 若平面α与平面β平行,直线a α⊂,b β⊂,则(▲)A . a 与b 异面或相交B . a 与b 相交或平行C . a 与b 平行或异面D . 以上答案均不对 6. 若42log 464x +=,则x =(▲)A .4-B .4C .16D .147.角α是第二象限角,将角α终边沿顺时针方向旋转180°,则旋转后所得角是(▲)A .第一象限角 B. 第二象限角 C. 第三象限角 D. 第四象限角8.已知点M (a,2)在抛物线24y x =上,F 为抛物线的焦点,则MF 的距离是(▲) A .2 B.3 C.4 D.5 9. 若向量a =(1,2),b =(-3,-6),则下述正确的是(▲)A. a 与b 共线B. 3a = bC.│a │=│b │D.a ⊥ b10.已知等差数列{}n a 的前n 项和为n S ,515S =,则3a =(▲) A .2 B.3 C.4D.511. 下列函数在R 上是减函数的是(▲)A.y=x1B.y= -2x+1C.y= 1-x 2D.y=e x12.已知双曲线方程为22916144x y -=,则双曲线的渐近线为(▲)A .34y x =± B. 43y x =± C. 169y x =± D. 916y x =±13.世界互联网大会乌镇峰会招募志愿者,现从某旅游职业学校6名优秀学生,2名老师中选3人作为志愿者,其中至少有一位老师的选法有(▲)种A .15 B. 30 C.56 D.36 14. ABC ∆中,角CB A 、、所对的边分别为c b a 、、,若A b a sin 2=,则角B =(▲)A.30°B.150°C.30°或150°D.60°15. 已知b a <则下列关系式正确的是(▲)A. 22a b <B.22a b >C. ln ln a b <D. 22a b <16.已知函数3sin 4sin()2y x x π=-+,则该函数的周期和最大值为(▲)A. 2,5πB.2,7πC. 2,1π D . ,5π17. 已知()3cos 05θθπ=-<<,则⎪⎭⎫ ⎝⎛+3sin πθ等于(▲) A .10334-- B .10334- C .10334+-D .10334+ 18.已知圆C : 2216x y += ,直线l:3x-4y+25=0,点P 是直线上任意一点,过点P 做圆C 的切线,则最短切线长为(▲)B. 1C.3D.51.已知集合{}0,1,2M =,{}1,4B =,那么集合A B 等于( )(A ){}1 (B ){}4 (C ){}2,3 (D ){}1,2,3,4 2.在等比数列{}n a 中,已知122,4a a ==,那么5a 等于(A)6 (B)8 (C)10 (D)16 3.已知向量(3,1),(2,5)==-a b ,那么2+a b 等于( )A.(-1,11)B. (4,7)C.(1,6) D (5,-4)4.函数2log (+1)y x =的定义域是( )(A) ()0,+∞ (B) (1,+)-∞ (C) 1,+∞() (D)[)1,-+∞5.如果直线30x y -=与直线10mx y +-=平行,那么m 的值为( )(A) 3- (B) 13- (C) 13(D) 36.函数=sin y x ω的图象可以看做是把函数=sin y x 的图象上所有点的纵坐标保持不变,横坐标缩短到原来的12倍而得到,那么ω的值为( ) (A) 4 (B) 2 (C) 12(D) 37.在函数3y x =,2x y =,2log y x =,y =中,奇函数的是( )(A) 3y x = (B) 2x y = (C) 2log y x = (D)y x =8.11sin6π的值为( ) (A) 22- (B) 12- (C) 12(D)229.不等式23+20x x -<的解集是( )A. {}2x x >B. {}>1x xC. {}12x x <<D.{}1,2x x x <>或10.实数lg 4+2lg5的值为( ) (A) 2 (B) 5 (C) 10 (D) 2011.某城市有大型、中型与小型超市共1500个,它们的个数之比为1:5:9.为调查超市每日的零售额情况,需通过分层抽样抽取30个超市进行调查,那么抽取的小型超市个数为( )(A) 5 (B) 9 (C) 18 (D) 20 12.已知平面α∥平面β,直线m ⊂平面α,那么直线m 与平面β 的关系是( )A.直线m 在平面β内B.直线m 与平面β相交但不垂直C.直线m 与平面β垂直D.直线m 与平面β平行13.在ABC ∆中,3a =,2b =,1c =,那么A 的值是( ) A .2π B .3π C .4π D .6π14.一个几何体的三视图如右图所示,该几何体的表面积是( )A .3πB .8πC . 12πD .14π15.当>0x 时,122x x +的最小值是( ) A . 1 B . 2 C.D . 416.从数字1,2,3,4,5中随机抽取两个数字(不允许重复),那么这两个数字的和是奇数的概率为( )A . 45B .35C . 25D .15 17.当,x y 满足条件10260y x y x y ≥⎧⎪-≤⎨⎪+-≤⎩时,目标函数z x y =+的最小值是( )(A) 2 (B) 2.5 (C) 3.5 (D)418.已知函数2,0,(),0.x x f x x x ⎧=⎨-<⎩≥如果0()2f x =,那么实数0x 的值为( )(A) 4 (B) 0 (C) 1或1或-219.为改善环境,某城市对污水处理系统进行改造。

三年后,城市污水排放量由原来每年排放125万吨降到27万吨,那么污水排放量平均每年降低的百分率是( )20%20.在△ABC 中,)BC BA AC AC +⋅=2||(,那么△ABC 的形状一定是( )A. 等边三角形B. 等腰三角形C. 直角三角形D. 等腰直角三角形 1.已知集合{1,1,2}M =-,2{1,3}N a a =++若{2}M N ⋂=,则实数a =( ) A 、0 B 、1 C 、2 D 、32.设复数z 满足1iz i =-,则z 的模等于( )A 、1B、C 、2D3.函数()sin(2)4f x x π=-在区间[0,]2π上的最小值是( )A、 B 、12- C 、12D4.有3名女生和5名男生,排成一排,其中3名女生排在一起的所有排法是( )A 、2880B 、3600C 、4320D 、7205.若1sin()2αβ+=,1sin()3αβ-=则tan tan βα= ( ) A 、32 B 、23C 、35D 、156.已知函数1()1(01)x f x a a a -=+>≠且的图象恒过定点P ,且P 在直线240mx ny +-=上,则m n +的值等于( )A 、1-B 、2C 、1D 、37.若正方体的棱长为2,则它的外接球的半径为( ) A、2 B、CD8.函数2log (01)()1()(1)2x x x f x x <≤⎧⎪=⎨>⎪⎩的值域是( )A 、1(,)2-∞B 、1(,)2+∞C 、1(0,)2 D 、(,0)-∞9.已知过点P (2,2)的直线与圆22(1)5x y -+=相切,且与直线10ax y -+=垂直,则a 的值是( ) A 、12-B 、2-C 、12D 、2-10.已知函数()lg f x x =,若0a b <<且()()f a f b =,则2a b +的最小值是( )A B 、C 、D 、。

相关文档
最新文档