通信仿真实验报告(高频)

合集下载

高频调制实验报告

高频调制实验报告

一、实验目的1. 理解高频调制的基本原理和过程。

2. 掌握振幅调制(AM)和解调(AM-D)的基本方法。

3. 学习使用实验仪器进行高频信号的调制和解调。

4. 分析调制信号的频谱特性,验证调制和解调效果。

二、实验原理高频调制是将低频信号(信息信号)与高频载波信号进行混合,使信息信号以某种方式影响载波信号的幅度、频率或相位,从而实现信号的传输。

本实验主要研究振幅调制(AM)。

1. 振幅调制(AM)振幅调制是指载波信号的振幅随信息信号的变化而变化。

AM信号可以表示为:\[ s(t) = c(t) \cdot [1 + m \cdot x(t)] \]其中,\( c(t) \) 是载波信号,\( x(t) \) 是信息信号,\( m \) 是调制指数。

2. 振幅解调(AM-D)振幅解调是指从调幅信号中恢复出原始信息信号。

常见的解调方法有包络检波法和同步检波法。

三、实验仪器1. 双踪示波器2. 高频信号发生器3. 低频信号发生器4. 调制器5. 解调器6. 万用表四、实验步骤1. 调制过程(1)设置高频信号发生器,产生一个频率为 \( f_c \) 的正弦波作为载波信号。

(2)设置低频信号发生器,产生一个频率为 \( f_m \) 的正弦波作为信息信号。

(3)将载波信号和信息信号输入调制器,进行振幅调制。

(4)观察调制器的输出波形,验证调制效果。

2. 解调过程(1)将调制信号输入解调器,进行振幅解调。

(2)观察解调器的输出波形,验证解调效果。

3. 频谱分析(1)使用频谱分析仪对调制信号进行频谱分析。

(2)观察调制信号的频谱特性,验证调制效果。

4. 性能测试(1)测试调制信号的调制指数 \( m \)。

(2)测试解调信号的解调指数 \( D \)。

五、实验结果与分析1. 调制过程通过实验,成功实现了振幅调制。

调制信号的波形如图1所示。

图1 振幅调制信号波形2. 解调过程通过实验,成功实现了振幅解调。

解调信号的波形如图2所示。

通信系统仿真实验报告

通信系统仿真实验报告

通信系统仿真实验报告摘要:本篇文章主要介绍了针对通信系统的仿真实验,通过建立系统模型和仿真场景,对系统性能进行分析和评估,得出了一些有意义的结果并进行了详细讨论。

一、引言通信系统是指用于信息传输的各种系统,例如电话、电报、电视、互联网等。

通信系统的性能和可靠性是非常重要的,为了测试和评估系统的性能,需进行一系列的试验和仿真。

本实验主要针对某通信系统的部分功能进行了仿真和性能评估。

二、实验设计本实验中,我们以MATLAB软件为基础,使用Simulink工具箱建立了一个通信系统模型。

该模型包含了一个信源(source)、调制器(modulator)、信道、解调器(demodulator)和接收器(receiver)。

在模型中,信号流经无线信道,受到了衰落等影响。

在实验过程中,我们不断调整系统模型的参数,例如信道的衰落因子以及接收机的灵敏度等。

同时,我们还模拟了不同的噪声干扰场景和信道状况,以测试系统的鲁棒性和容错性。

三、实验结果通过实验以及仿真,我们得出了一些有意义的成果。

首先,我们发现在噪声干扰场景中,系统性能并没有明显下降,这说明了系统具有很好的鲁棒性。

其次,我们还测试了系统在不同的信道条件下的性能,例如信道的衰落和干扰情况。

测试结果表明,系统的性能明显下降,而信道干扰和衰落程度越大,系统则表现得越不稳定。

最后,我们还评估了系统的传输速率和误码率等性能指标。

通过对多组测试数据的分析和对比,我们得出了一些有价值的结论,并进行了讨论。

四、总结通过本次实验,我们充分理解了通信系统的相关知识,并掌握了MATLAB软件和Simulink工具箱的使用方法,可以进行多种仿真。

同时,我们还得出了一些有意义的结论和数据,并对其进行了分析和讨论。

这对于提高通信系统性能以及设计更加鲁棒的系统具有一定的参考价值。

通信系统仿真实验报告

通信系统仿真实验报告

《通信系统仿真技术》实验报告姓名:李傲班级:14050Z01学号: 1405024239实验一:Systemview操作环境的认识与操作1、实验目的:熟悉systemview软件的基本环境,为后续实验打下基础,熟悉基本操作,并使用其做出第一个自己的project,并截图2、实验内容:1>按照实验指导书的1.7进行练习2>正弦信号(频率为学号*10,幅度为(1+学号*0.1)V)、及其平方谱分析;并讨论定时窗口的设计对仿真结果的影响。

3、实验仿真:图1系统连结图(实验图中标注参数,并对参数设置、仿真结果进行分析)4、实验结论输出信号底部有微弱的失真,调节输入的频率的以及平方器的参数,可以改变输入信号的波形失真,对于频域而言,sin信号平方之后,其频率变为原来的二倍,这一点可有三角函数的化简公式证明实验二:滤波器使用及参数设计1、实验目的:1、学习使用SYSTEMVIEW 中的线性系统图符。

2、掌握典型FIR 滤波器参数和模拟滤波器参数的设置过程。

3、按滤波要求对典型滤波器进行参数设计。

实验原理:2、实验内容:参考实验指导书,设计出一个低通滤波器,并对仿真结果进行截图,要求在所截取的图片上用便笺的形式标注自己的姓名、学号、班级。

学号统一使用序号3、实验仿真:系统框架图输入输出信号的波形图输入输出信号的频谱图4、实验结论对于试验中低通滤波器的参数设置不太容易确定,在输入完通带宽度、截止频率和截止点的衰落系数等滤波器参数后,如果选择让SystemView 自动估计抽头,则可以选择“Elanix Auto Optimizer”项中的“Enabled”按钮,再单击“Finish”按钮退出即可。

此时,系统会自动计算出最合适的抽头数通常抽头数设置得越大,滤波器的精度就越实验三、模拟线性调制系统仿真(AM)(1学时)1、实验目的:1、学习使用SYSTEMVIEW 构建简单的仿真系统。

3、掌握模拟幅度调制的基本原理。

通信电子电路高频谐振功率放大器实验报告

通信电子电路高频谐振功率放大器实验报告

实验室时间段座位号实验报告实验课程实验名称班级姓名学号指导老师高频谐振功率放大器预习报告实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。

2.掌握输入激励电压,集电极电源电压及负载变化对放大器工作状态的影响。

3.通过实验进一步了解调幅的工作原理。

实验内容1.实验准备在实验箱主板上装上幅度调制与无线发射模块,接通电源即可开始实验。

2.测试前置放大级输入、输出波形高频信号源频率设置为6.3MHZ,幅度峰-峰值300mV左右,用铆孔线连接到1P05,用示波器测试1P05和1TP07的波形的幅度,并计算其放大倍数。

由于该级集电极负载是电阻,没有选频作用。

3. 激励电压、电源电压及负载变化对丙类功放工作状态的影响U对放大器工作状态的影响(1)激励电压bE=5V左右(用万用表测1TP08直流电压, 1W05 1K03置“右侧”。

保持集电极电源电压cR=10KΩ左右(1K04置“右侧”,用万用表测1TP11电阻, 1W6逆时针调到底),负载电阻L顺时针调到底,然后1K04置“左侧”)不变。

高频信号源频率1.9MHZ左右,幅度200mv(峰—峰值),连接至功放模块输入端(1P05)。

示波器CH1接1P08,CH2接1TP09。

调整高频信号源频率,使功放谐振即输出幅度(1TP08)U,观察1TP09电压波形。

信号源幅度变化最大。

改变信号源幅度,即改变激励信号电压b时,应观察到欠压、临界、过压脉冲波形。

其波形如图7-7所示(如果波形不对称,应微调高频信号源频率,如果高频信号源是DDS信号源,注意选择合适的频率步长档位)。

实验报告1.认真整理实验数据,对实验参数和波形进行分析,说明输入激励电压、集电极电源电压,负载电阻对工作状态的影响。

2.用实测参数分析丙类功率放大器的特点。

3.总结由本实验所获得的体会。

c实验报告一.实验目的1.通过实验,加深对丙类功率放大器基本工作原理的理解,掌握丙类功率放大器的调谐特性。

高频仿真实验报告

高频仿真实验报告

实验报告实验课程:通信电子线路实验(软件部分)学生姓名:周倩文学号:6301712010专业班级:通信121班指导教师:雷向东老师、卢金平老师目录实验一仪器的操作使用实验二高频小信号调谐放大器实验三非线性丙类功率放大器实验实验四三点式正弦波振荡器实验五晶体振荡器设计实验六模拟乘法混频实验七二极管的双平衡混频器设计实验八集电极调幅实验实验九基极调幅电路设计实验十模拟乘法器调幅南昌大学实验报告学生姓名:周倩文学号:6301712010 专业班级:通信121班实验类型:□验证□综合□设计□创新实验日期: 2014-10-24 实验成绩:、实验三非线性丙类功放仿真设计(软件)一、实验目的1.了解丙类功率放大器的基本工作原理.掌握丙类放大器的调谐特性以及负载改变时的动态特性。

2.了解高频功率放大器丙类工作的物理过程以及当激励信号变化对功率放大器工作状态的影响。

3. 掌握丙类放大器的计算与设计方法。

二、实验内容1. 观察高频功率放大器丙类工作状态的现象.并分析其特点2. 测试丙类功放的调谐特性3. 测试丙类功放的负载特性4. 观察激励信号变化、负载变化对工作状态的影响三、实验基本原理放大器按照电流导通角θ的范围可分为甲类、乙类、丙类及丁类等不同类型。

功率放大器电流导通角越小.放大器的效率越高。

非线性丙类功率放大器的电流导通角小于90°.效率可达到80%.通常作为发射机末级功放以获得较大的输出功率和较高的效率。

特点:非线性丙类功率放大器通常用来放大窄带高频信号(信号的通带宽度只有其中心频率的1%或更小).基极偏置为负值.电流导通角小于90°.为了不失真地放大信号.它的负载必须是LC谐振回路。

在丙类谐振功放中.若将输入谐振回路调谐在输出信号频率n次谐波上.则可近似的认为.输出信号回路上仅有ic中的n次谐波分量产生的高频电压.而它的分量产生的电压均可忽略。

因而.在负载RL上得到了频率为输入信号频率n倍的输出信号功率。

通信电子电路高频实验报告

通信电子电路高频实验报告

实验一高频小信号谐振放大器一、实验目的1.高频小信号谐振放大器的工作原理及电路构成和电路元器件的作用。

2.了解高频小信号的质量指标和谐振放大器的性能。

3.掌握L,C参数对谐振频率的影响。

4.分析单调谐回路放大器的质量指标,测量电压增益,测量功率增益;测量放大器的频率。

二、预习要求1.复习高频小信号放大器的功用。

答:高频小信号放大器主要用于放大高频小信号, 属于窄带放大器。

由于采用谐振回路作负载,解决了放大倍数、通频带宽、阻抗匹配等问题,高频小信号放大器又称为小信号放谐振放大器。

就放大过程而言,电路中的晶体管工作在小信号放大区域中,非线性失真很小。

一方面可以对窄带信号实现不失真放大,另一方面又对带外信号滤除, 有选频作用。

2.高频小信号放大器,按有源器件分可分为:_以分立元件为主的集中选频放大器__,_以集成元件为主的集中选频放大器_;按频带宽度可分为:_窄带放大器_,宽带放大器。

三、实验内容1.参照电路原理图1-1连线。

,计算回路电容和回路2.图1-1为一单调谐回路中频放大器,已知工作频率f电感。

图1-1 小信号谐振放大器1.在选用三极管时要查晶体管手册,使参数合理。

2.观察瞬态分析的波形输出及频谱分析是否合理。

3.在pspice中设定:参数,AC=100mV、V OFF =0V,Vampl=300mV,freq=10MegHz。

V2参数CD=12V。

V1在AC Sweep中设定参数:①在AC Sweep Type中选 Decade。

②在Sweep Parameters 中选pts/Decade为20、Stort Fred为10k、End Fred为500MEG。

、Lntervat为10。

③AC Sweep Type中选 Output Voltoge为V(A)、1/V为V1四、实验报告1.根据输入信号的幅度和频率,测出输出信号的幅度和频率,完成表1-12.画出输入信号和输出信号的波形;(根据图形输出)仿真图如下:3.分析单调谐回路谐振放大器的质量指标:(1)测量电压增益;=60Au=UoUi(2)测量放大器的通频带;谐振回路的通频带:BW=fH-fL =0.02MHz实验二三点式振荡器一、实验目的1.熟悉三点式振荡器的工作原理及电路构成。

高频实验报告

高频实验报告
(5)记下此时AM波时对应的Ummax=和Ummin=,由公式m=(Um max --Um min) \ (Um max+Um min)求得调幅波m=。并画出条幅信号波形。
(6)调节调制信号的大小,观察m=100%和m>100%两种调幅波在过零点处的波形情况,比较他们的区别。
3.普通调幅波解调
(1)将示波器CH2接幅度调制模块中调幅波输出端J23(TF.OUT)。根据实验步骤调节红色旋钮VR5将输出信号设置为峰峰值为Vp-p=150mv左右的调幅信号,并调整调制信号大小使调幅度m<30%。
实验报告
课程名称:高频电子线路实验
实验项目:正弦波振荡器、振幅调制与解波
实验仪器:
系别:光电信息与通信工程
专业:通信工程
班级/学号:
学生姓名:
实验日期
成绩
实验一正弦波振荡器
一、实验目的:
1、掌握三端式振荡电路的基本原理,起震条件,振荡电路设计及电路参数计算。
2、通过实验掌握晶体管静态工作点、反馈系数大小、负载变化对起振和振荡幅度的影响。
CAP可变为C7、C14、C23、C19其中一个。为了满足起振条件的要求F的值不能太大也不能太小,通常取为1/3-1/8。其中Cj为变容二极管2CC1B,根据所加的静态电压对去静态电容,CT3为5-20PF的半可变电容。该高频等效电路未考虑负载电阻。西勒电路是在克拉波电路的基础上在电感两端并联了一个小电容,且满足CAP远大于(CT1+CT17),故其回路等效电容C≈CT1+CT17+Cj。故振荡频率f0=1/2л 。西勒电路在分立元件系统或集成高频电路系统中均获得广泛的应用。
用MC1496集成电路构成的条幅电路如下图所示,图中VR8用调节引出脚1、4之间平衡,R39与R46与电位器VR8组成平衡调节电路,改变VR8可以调节输出载波信号的大小,以使乘法器实现抑制载波的振幅调制或有载的振幅调制,脚1和脚4分别接电阻R43和R49可以较好的抑制载波漏信号和改变温度性能,器件采用双电源供电方式

高频脉冲实验报告

高频脉冲实验报告

一、实验目的1. 理解高频脉冲的基本概念和特性。

2. 掌握高频脉冲信号的产生、传输和检测方法。

3. 学习使用相关仪器设备进行高频脉冲实验。

4. 分析高频脉冲信号的波形和参数,验证理论公式。

二、实验原理高频脉冲信号是一种周期性变化的电信号,其频率远高于普通交流信号。

在高频脉冲实验中,我们主要关注以下方面:1. 脉冲产生:通过晶体管、集成电路等电子元件产生高频脉冲信号。

2. 脉冲传输:研究高频脉冲信号在传输线上的传播特性,包括衰减、色散和反射等。

3. 脉冲检测:使用示波器等仪器设备检测和分析高频脉冲信号的波形和参数。

三、实验仪器与设备1. 晶体管或集成电路2. 高频信号发生器3. 高频示波器4. 传输线5. 测试线夹6. 万用表7. 调制解调器(可选)四、实验内容1. 脉冲产生:(1)搭建晶体管或集成电路产生高频脉冲信号的电路。

(2)调整电路参数,观察并记录脉冲信号的波形和参数。

(3)分析脉冲信号的波形和参数,验证理论公式。

2. 脉冲传输:(1)搭建传输线实验电路,将脉冲信号从产生端传输到检测端。

(2)观察并记录传输线上的脉冲信号波形,分析脉冲信号的衰减、色散和反射等特性。

(3)计算传输线上的特性阻抗,验证理论公式。

3. 脉冲检测:(1)使用示波器检测和分析脉冲信号的波形和参数。

(2)调整示波器参数,观察脉冲信号的上升时间、下降时间、占空比等特性。

(3)分析脉冲信号的波形和参数,验证理论公式。

五、实验结果与分析1. 脉冲产生:实验结果表明,晶体管或集成电路可以产生高频脉冲信号。

通过调整电路参数,可以改变脉冲信号的波形和参数。

2. 脉冲传输:实验结果表明,传输线对高频脉冲信号有衰减、色散和反射等特性。

通过计算传输线上的特性阻抗,可以验证理论公式。

3. 脉冲检测:实验结果表明,示波器可以有效地检测和分析高频脉冲信号的波形和参数。

通过调整示波器参数,可以观察到脉冲信号的上升时间、下降时间、占空比等特性。

六、实验结论1. 高频脉冲信号是一种重要的电子信号,在通信、雷达、医疗等领域有着广泛的应用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验一 高频小信号放大器的MULTISIM 仿真实验目的:1、了解MULTISIM 的基本功能、窗口界面、元器件库及工具栏等;2、掌握MULTISIM 的基本仿真分析方法、常用仿真测试仪表等;3、掌握高频小信号放大器MULTISIM 仿真的建模过程。

实验内容及步骤:(一)单频正弦波小信号放大器的MULTISIM 仿真。

1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。

要求输入信号的幅度在2mV---1V 之间、频率在1MHz---20MHz 之间;2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。

打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。

根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 1、实验原理图C3100nFC1100nFC230pFC4100uFQ12N1711C51nFR25.1kΩR3470ΩT1TS_AUDIO_10_TO_1R4100Ω12VVCCV12mVpk 10MHz 0°50%100kΩKey=AR1ABTG XSC1R540kΩTIN XSA12、由示波器观测到的输出波形:3、此时的输出信号的频谱分析通过改变输入信号的频率观察到电路谐振频率保持不变.4、改变输入信号的幅度,用示波器观察输出电压波形,测量出输出波形不失真情况下输入信号幅度的变化范围为1mV到21mV。

5、改变输入信号的频率,用示波器观察输出电压幅度的变化情况输入信号Vi(mv) 7.50.9 1 2 3 4 5 6 7 8 9输入信号fs(MHz)输出信号Vo (v ) 86 125 252 40500570780 816820825输入信号Vi (mv ) 7.5 输入信号fs (MHz )10 11 12 13 14 15 16 20 30 40输出信号Vo (v ) 822 814 800 794 786 660 560 500 120 190 通频带B 为22MHz 矩形系数K 0.1为3.556、改变R5(负载)的值,用示波器观察输出电压波形和峰峰值的变化情况 R5/k1510152050100500 800 输出V/mv 20 100 200 300 450 1000 2000 40004000(二)多频正弦波合成小信号放大器的MULTISIM 仿真。

1)根据图一所示高频小信号放大器电路,创建仿真电路原理图。

要求输入为幅度在2mV---1V 之间(各不相同)、频率在1MHz---20MHz 之间(各不相同)三个以上的正弦波合成小信号;2)根据实际情况设置好电路图选项,接入虚拟仪器并设置合适的参数。

打开仿真开关,运行所设计好的电路,给出输入输出信号的波形图和频谱图。

根据初步仿真结果改变电路元器件的型号和参数,使输出信号波形无失真、幅度放大10倍以上; 1、实验原理图C 3100nFC 1100nFC 230pFC 4100uFQ12N 1711C 51nFR 25.1kΩR 3470ΩT1TS_AU D I O_10_TO_1R 4100Ω12VVC CV11m Vpk 5M H z 050%100kΩKey=AR 1ABTG XSC 1R 540kΩV25m Vpk 11M H z 0V38m Vpk 20M H z 02、由示波器观测到的输出波形3、此时的输出信号的频谱分析(三)结论分析1)滑动变阻器R1的阻值:在其他的条件都不变的情况下,当R1的阻值增加时,阻值越大,输出电压的放大倍数越大,只是当R1增加到一定程度的时候,输出电压的增加基本不变,继续增大则输出波形失真。

(2)负载R5:保持条件不变,当负载电阻增加时,输出电压增益变大,在一定的范围内增加负载的阻值可增加电路的品质因数,使得频帯集中,利于电路功能的实现。

负载过大会导致输出波形产生截止失真。

(四)心得体会通过这次实验我认识到在做实验前,一定要将课本上的知识吃透,因为这是做实验的基础,否则,在老师讲解时就会听不懂,这将使你在做实验时的难度加大,浪费做实验的宝贵时间.比如做应变片的实验,你要清楚电桥的各种接法,如果你不清楚,在做实验时才去摸索,这将使你极大地浪费时间,使你事倍功半。

接下来我会认真准备下一次试验的。

实验二振幅调制与解调制电路的MATLAB仿真实验目的:1、深入理解各种振幅调制与解调制电路的工作原理;2、掌握振幅调制与解调制电路的MATLAB仿真方法。

实验原理:进行AM调幅当调制信号为,载波信号为则AM信号为其中;定义一个am函数带有可表示载波和调制信号参数的形参function y=am(Ac,Fc,ma,Aw,Fw);定义抽样率要满足抽样定理要大于载波频率的两倍以上。

画图范围,为了显示包络波形需取调制信号周期的倍数。

T=0:1/(10*Fc):3/Fw;进行DSB调幅当调制信号为,载波信号为则DSB信号为。

DSB调幅步骤同单一频率的AM 调幅类似只是在生成DSB波时不加入直流分量实验内容及步骤:1、编写matlab程序实现AM振幅调制与解调制的设计与仿真;1)设计AM振幅调制与解调制仿真电路,要求调制信号的幅度A和频率F可变;载波信号的幅度A和频率F可变,调制度ma可变;2)绘制调制信号u11、载波信号uc1和已调波信号uam1的时域波形图和频谱图(要求谱线清晰);3)要求调制信号为三个以上正弦波信号的合成,幅度和频率均可变,绘制调制信号u12、载波信号uc1和已调波信号uam2的时域波形图和频谱图(要求谱线清晰);4)用同步检波对已调波信号uam1进行解调制,在同一幅图中绘制原调制信号u11和解调后的信号y11,并绘制这两个信号的频谱图;5)用同步检波对已调波信号uam2进行解调制,在同一幅图中绘制原调制信号u12和解调后的信号y12,并绘制这两个信号的频谱图。

1.单调制信号的AM波function [u11,uc1,uam1] =dantiaozhixinhaoAMbo (a1,a2,f1,f2,ma)%a1 调制信号的幅度;%f1 调制信号的频率;%a2 载波信号的幅度;%f2 载波信号的频率;%ma 调制度fs=20*max(f1,f2);t=0:1/fs:2/min(f1,f2);u11=a1*cos(2*pi*f1*t); %设调制信号频率uc1=a2*cos(2*pi*f2*t); %设载波频率uam1=(1+ma*u11).*uc1; %AM振幅调制X=fftshift(fft(u11));Y=fftshift(fft(uc1));Z=fftshift(fft(uam1));F=linspace(-fs/2,fs/2,length(t));subplot(3,1,1);plot(t,u11);grid onsubplot(3,1,2);plot(t,uc1);grid onsubplot(3,1,3);plot(t,uam1);grid onfigure;subplot(3,1,1);plot(F,abs(X));grid onsubplot(3,1,2);plot(F,abs(Y));grid onsubplot(3,1,3);plot(F,abs(Z));grid ons=uam1.*uc1;Rp=3;%信号衰减幅度Rs=60;%信号衰减幅度Wp=40/500;%通带截止频率Ws=150/500;%阻带截止频率[n,Wn]=ellipord(Wp,Ws,Rp,Rs);%阶数n[b,a]=ellip(n,Rp,Rs,Wn);%传递函数分子分母b,ay11=50*filter(b,a,s);A=fftshift(fft(u11));B=fftshift(fft(y11));F=linspace(-fs/2,fs/2,length(t));figure;subplot(4,1,1);plot(t,u11);grid onsubplot(4,1,2);plot(t,y11);grid onsubplot(4,1,3);plot(F(1800:2250),abs(A(1800:2250)));grid on subplot(4,1,4);plot(F(1800:2250),abs(B(1800:2250)));grid on 在命令窗口出入[u11,uc1,uam1] =dantiaozhixinhaoAMbo(1,3,1000,100000,0.3)得到:单个调制信号的调制波形频谱图检波波形2.三个输入的AM波Function [u11,uc1,uam1]=duogeshurudeAMbo(a11,a12,a13,a2,f11,f12,f13,f2,ma) %a11 调制信号1的幅度;%a12 调制信号2的幅度;%a13 调制信号3的幅度;%f11 调制信号1的频率;%f12 调制信号2的频率;%f13 调制信号3的频率;%a2 载波信号的幅度;%f2 载波信号的频率;%ma 调制度fs=20*f2;t=0:1/fs:2/f11;u11=a11*cos(2*pi*f11*t)+ a12*cos(2*pi*f12*t)+a13*cos(2*pi*f13*t); %设调制信号频率uc1=a2*cos(2*pi*f2*t); %设载波频率uam1=(1+ma*u11).*uc1; %AM振幅调制X=fftshift(fft(u11));Y=fftshift(fft(uc1));Z=fftshift(fft(uam1));F=linspace(-fs/2,fs/2,length(t));subplot(3,1,1);plot(t,u11);grid onsubplot(3,1,2);plot(t,uc1);grid onsubplot(3,1,3);plot(t,uam1);grid onfigure;subplot(3,1,1);plot(F,abs(X));grid onsubplot(3,1,2);plot(F,abs(Y));grid onsubplot(3,1,3);plot(F,abs(Z));grid ons=uam1.*uc1;Rp=3;%信号衰减幅度Rs=60;%信号衰减幅度Wp=40/500;%通带截止频率Ws=150/500;%阻带截止频率[n,Wn]=ellipord(Wp,Ws,Rp,Rs);%阶数n[b,a]=ellip(n,Rp,Rs,Wn);%传递函数分子分母b,ay11=5*filter(b,a,s);A=fftshift(fft(u11));B=fftshift(fft(y11));F=linspace(-fs/2,fs/2,length(t));figure;subplot(4,1,1);plot(t,u11);grid onsubplot(4,1,2);plot(t,y11);grid onsubplot(4,1,3);plot(F,abs(A));grid onsubplot(4,1,4);plot(F,abs(B));grid on在命令窗口出入:[u11,uc1,uam1] =duogeshurudeAMbo(1, 2, 3,1,300,500,1000,10000,0.3)得到:三个调制信号的调制波形频谱图检波波形2、编写matlab程序实现DSB振幅调制与解调制的设计与仿真;1)设计DSB振幅调制与解调制仿真电路,要求调制信号的幅度A和频率F可变;载波信号的幅度A和频率F可变;2)绘制调制信号u21、载波信号uc2和已调波信号udsb1的时域波形图和频谱图(要求谱线清晰);3)要求调制信号为三个以上正弦波信号的合成,幅度和频率均可变,绘制调制信号u22、载波信号uc2和已调波信号udsb2的时域波形图和频谱图(要求谱线清晰);观察相位突变点处的波形;4)用同步检波对已调波信号udsb1进行解调制,在同一幅图中绘制原调制信号u21和解调后的信号y21,并绘制这两个信号的频谱图;5)用同步检波对已调波信号udsb2进行解调制,在同一幅图中绘制原调制信号u22和解调后的信号y22,并绘制这两个信号的频谱图。

相关文档
最新文档