第12章-波动光学1
波动光学(二)答案

(A) a+b=6 a.
注:当此比值为整数时,该整数即为第一个缺级.
[ C ]4. 在如图所示的单缝夫琅禾费衍射装置中,将单缝宽度a稍梢
变宽,同时使单缝沿y轴正方向作微小平移(透镜屏幕位置不动),则屏
幕C上的中央衍射条纹将
(A) 变窄,同时向上移;
(B) 变窄,同时向下移;
(C) 变窄,不移动;
(D) 变宽,同时向上移;
750 nm (1 nm=10-9 m)的光谱线.在光栅光谱中,这两种波长的谱线有
重叠现象,重叠处l2的谱线的级数将是
(A) 2 ,3 ,4 ,5 ......
(B) 2 ,5 ,8 ,11......
(C) 2 ,4 ,6 ,8 ......
(D) 3 ,6 ,9 ,12......
注:同一角度对应同一种光栅找最小公倍数即可.
(E) 变宽,不移.
注:
[ D ]5. 根据惠更斯-菲涅耳原理,若已知光在某时刻的波阵面
为S,则S的前方某点P的光强度决定于波阵面S上所有面积元发出的子波
各自传到P点的
(A) 振动振幅之和.
(B) 光强之和.
(C) 振动振幅之和的平方. 6. 某元素的特征光谱中含有波长分别为l1=450 nm和l2=
4.钠黄光中包含两个相近的波长μ1=589.0 nm和μ2=589.6 nm.用 平行的钠黄光垂直入射在每毫米有 600条缝的光栅上,会聚透镜的焦距 f=1.00 m.求在屏幕上形成的第2级光谱中上述两波长μ1和μ2的光谱之 间的间隔Δl.(1 nm =10−9 m)
解:
5.将一束波长μ = 589 nm (1 nm = 10-9 m)的平行钠光垂直入射在1 厘米内有5000条刻痕的平面衍射光栅上,光栅的透光缝宽度a与其间距b 相等,求:
12-1双缝干涉、光程、光程差

双缝干涉
例1 以单色光照射到相距为 0.2mm的双缝上,缝距屏 为 1m 。( 1 )从第一级明纹到同侧第四级的明纹为 7.5mm 时 , 求 入 射 光 波 长 ; ( 2 ) 若 入 射 光 波 长 为 6000Å,求相邻明纹间距离。 3 D 解(1) x4 x1 3x d x4 x1 7.5 103 d 0.2 103 5 107 m 500nm 3 3D
4000Å 紫
7600Å 红
2)基本关系
第十二章 光学
光在介质中波长
c 介质折射率 n u
n n
在光波中,引起视觉效应的是
x o
y
E
E,称光矢量
H
k z
§12-2 光源 单色光 相干光
一. 光源
光源的最基本发光单元是分子、原子 E2 E1 能级跃迁辐射 波列
第十二章 光学
第十二章 光学
第十二章 波动光学
一. 教学内容: 干涉: 光程差、双缝干涉、薄膜干涉; 衍射: 单缝衍射、光栅衍射; 偏振: 马吕斯定律、布儒斯特定律、晶体的双折射. 二. 教学要求: 理解光的干涉、衍射、偏振现象; 清楚光路图, 熟练写出光程差; 掌握双缝干涉、等厚干涉、单缝衍射、光栅衍射; 理解马吕斯定律、布儒斯特定律; 了解晶体的双折射. 三. 重点波带法分析单缝衍射、产生双折射的原因.
2 2 E0 E10 E20 2E10 E20 cos 2 其 中: 20 10
E2
E
20
0
E1 10
相干光
第十二章 光学
平均光强为:
I I1 I 2 2 I1I 2 cos
I = I 1 + I 2 —非相干叠加
12-3 杨氏双缝干涉实验 劳埃德镜

白光照射时,出现彩色条纹
k 3 k 1 k 2
k 1
k2
k 3
第 十二章 光学
4
12-3 杨氏双缝干涉实验 劳埃德镜
(1)
d 、 一定时,若 变化, 则 x 将怎样变化? D
第 十二章 光学
5
12-3 杨氏双缝干涉实验 劳埃德镜
(2)、D 一定时,条纹间距 d 与 x 的关系如何?
第 十二章 光学
12-3 杨氏双缝干涉实验 劳埃德镜
一
实 验 装 置
杨氏双缝干涉实验
P
r 1
s1
x
O1
s
r2
O
d
s2
r
D
sin tan x / D x 波程差 r r2 r1 d sin d D
第 十二章 光学
2
12-3 杨氏双缝干涉实验 劳埃德镜
S
P
S1
O
由于波长存在一定范围 ,干涉条 纹之间发生相对位移 k级条纹中心位置 D xk 2a
第 十二章 光学
S2
15
12-3 杨氏双缝干涉实验 劳埃德镜 亮纹宽度 当 x
D
2a
所以 k c
2 kc级亮纹光程差 c k c ( )
D x k 2a D D 即 kc 2a 2a
解:⑴由式 x
D
d d x 0.45103 1.2103 0.54106 D m 1.0 m 9 7 54010 5.410
得
第 十二章 光学
7
12-3 杨氏双缝干涉实验 劳埃德镜 ⑵ S2遮盖时,中央亮纹在x = 0处,遮后光程差为
d x = (nh+r2h)r1 = h(n1)+(r2r1 ) = h(n1)+ D
第12章 几何光学

望远镜的光路
内窥镜
水柱引导光线的行进
11
12.2 光程 费马原理
一、光程
光在均匀介质走过的几何路程 r 与
介质折射率 n 之乘积。用 L表示。
即: L= nr
光程的物理意义:光程就是光在介质中通过的 几何路程按波数相等折合到真空中的路程。
r nr
'
介质中:
折合到真
r
连续变化的介质:
空中:
nr
n
2
◆ 光的波粒二象性
• 牛顿:光的直线转播说明光是粒子流。 • 惠更斯、托马斯 · 杨、菲涅耳:光具有干涉和衍
射现象,所以光是一种波。 • 麦克斯韦:根据我的理论,光是一种电磁波,而
且是横波,转播速度为每秒30万公里。 • 迈克尔逊:我为什么测不到“以太风”。 • 爱因斯坦:用普朗克的“能量子”解释了光电效应。
y P iO
n1
γC
n2
Q
y A
p
q
m y n1q y n2 p
22
一、透镜
12.4 薄透镜成像
透镜——将玻璃、水晶等磨成两面为球面(或一面为平面) 的透明物体。
薄透镜:透镜厚度远小于两球面的曲率半径。
或 两个侧面的中心靠得很近的透镜。
凸透镜: 中间厚边缘薄 的透镜。
①
②
③
凹透镜:中间薄边缘厚
率),其定义为:
n c v
光在真空中的传播速度 光在介质中的传播速度
两种介质相比较,折射率大的介质,光在其中的
传播速度小,称为光密介质;折射率小的介质,光在
其中的传播速度大,称为光疏介质。
n21
v1 v2
n2 n1
折射定律也可表示为:
大学物理第十二章波动光学

[](A)(B)2第12章波动光学、选择题1.如T12-1-1图所示,折射率为n 2、厚度为e 的透明介质薄膜的上方和下方的透明介质的折射率分别为 片和n 3,已知n 1 n 2 n 3 .若波长为 入的单色平行光垂直入射到该薄膜上,则从薄膜上、下 两表面反射的光束①与②的光程差是: [](A) 2n ?e (B) 2n ?e 1 2 (C) 2n 2(D) 2n ?e -2n 2径S 1P 垂直穿过一块厚度为t 1 ,折射率为n 1的一种介质; 路径S 2P 垂直穿过一块厚度为t 2的另一介质;其余部分3.在相同的时间内,一束波长为的单色光在空气和在玻璃中[ ](A)传播的路程相等,走过的光程相等 (B) 传播的路程相等,走过的光程不相等 (C) 传播的路程不相等,走过的光程相等2.女口 T12-1-2图所示, S 1、S 2是两个相干光源, 他们到P 点的距离分别为 r 1和r 2 .路可看作真空. 这两条光路的光程差等于: [](A) (「2 匕上)(「nd 1) (B) [r 2 (n 2 1)t 2][「1 (n 2 1)h](C) (「2匕上2)(A n 缶)(D) n 2t 2S 2T12-1-2 图[](A)(B)2(D) 传播的路程不相等,走过的光程不相等4.频率为f的单色光在折射率为n的媒质中的波速为其光振动的相位改变了2 n f ](A)vv,则在此媒质中传播距离为I2 n vf(B) T (C)2 n nlf vlf(D)厂5.波长为的单色光在折射率为n的媒质中由到b点的几何路程为:a点传到b点相位改变了,则光从a点(C) (D) n6.真空中波长为的单色光,在折射率为n的均匀透明媒质中从a点沿某一路径传到b 点.若将此路径的长度记为I, a、b两点的相位差记为,则[](A) 2则合光照在该表面的强度为8. 相干光是指 [](A)振动方向相同、频率相同、相位差恒定的两束光 (B) 振动方向相互垂直、频率相同、相位差不变的两束光 (C) 同一发光体上不同部份发出的光 (D) 两个一般的独立光源发出的光9.两个独立的白炽光源发出的两条光线 ,各以强度I 照射某一表面•如果这两条光线同时照射此表面,则合光照在该表面的强度为10. 相干光波的条件是振动频率相同、相位相同或相位差恒定以及 [](A)传播方向相同 (B)振幅相同 (C)振动方向相同(D)位置相同n i 和n 2 (n i v n 2)的两片透明介质分别盖住杨氏双缝实验13. 在杨氏双缝实验中,若用白光作光源3 [](A) l , 3 n 2 3 (C) l ,3 n2n33n n (B) l2n , (D) l 3—n , 3n n27. 两束平面平行相干光,每一束都以强度 I 照射某一表面,彼此同相地并合在一起[ ](A) I(B) 21 (C) 41 (D) 2I [](A) I (B) 2I(C) 4I(D) 8I11.用厚度为d 、折射率分别为 中的上下两缝,若入射光的波长为 此时屏上原来的中央明纹 处被第三级明纹所占据 则该媒质的厚度为[](A) 3(B)3 n 2 n 1(C) 22 (D)n 2 n 112. 一束波长为的光线垂直投射到一双缝上,在屏上形成明、暗相间的干涉条纹则下列光程差中对应于最低级次暗纹的是 (B)2(C) (D)T12-1-11 图T12-1-21 图[ ](A)中央明纹是白色的 (C)紫光条纹间距较大干涉条纹的情况为(B)红光条纹较密 (D)干涉条纹为白色T12-1-21 图[](A)缝屏间距离,则条纹间距不变 (C) 入射光强度,则条纹间距不变(B)双缝间距离,则条纹间距变小 (D)入射光波长,则条纹间距不变 20. 在保持入射光波长和缝屏距离不变的情况下 [](A)干涉条纹宽度将变大 (C)干涉条纹宽度将保持不变,将杨氏双缝的缝距减小,则 (B)干涉条纹宽度将变小(D)给定区域内干涉条纹数目将增加21. 有两个几何形状完全相同的劈形膜:一个由空气中的玻 璃形成玻璃劈形膜;一个由玻璃中的空气形成空劈形膜•当用相 同的单色光分别垂直照射它们时,从入射光方向观察到干涉条纹 间距较大的是14. 在双缝干涉实验中,屏幕 E 上的P 点处是明条纹•若将缝S 2盖住,并在S ,S 2连线的垂直平面出放一反射镜 M ,如图所示,则此时[](A)P 点处仍为明条纹(B) P 点处为暗条纹(C) 不能确定P 点处是明条纹还是暗条纹 (D) 无干涉条纹T12-1-14图15.在双缝干涉实验中, 入射光的波长为 ,用玻璃纸遮住双缝中的一个缝, 若玻璃纸中光程比相同厚度的空气的光程大 2.5,则屏上原来的明纹处 [](A)仍为明条纹(C)既非明条纹也非暗条纹(B)变为暗条纹(D)无法确定是明纹还是暗纹16.把双缝干涉实验装置放在折射率为 D (D d ),所用单色光在真空中的波长为是: D n D [](A) (B)nddn 的水中,两缝间距离为d,双缝到屏的距离为 ,则屏上干涉条纹中相邻的明纹之间的距离(C)d nD(D)D 2nd17.如T12-1-17图所示,在杨氏双缝实验中,若用一片厚度为 装置中的上面一个缝挡住;再用一片厚度为d 2的透光云母片将 下面一个缝挡住,两云母片的折射率均为 n, d 1>d 2,干涉条纹的变化情况是 [](A)条纹间距减小(B)条纹间距增大 (18. 在杨氏双缝实验中,若用一片能透光的云母片将双缝装 置中的上面一个缝盖住,干涉条纹的变化情况是 [ ](A)条纹间距增大 (B) 整个干涉条纹将向上移动 (C)条纹间距减小(D)整个干涉条纹将向下移动T12-1-18 图19.当单色光垂直照射杨氏双缝时 ,屏上可观察到明暗交替的干涉条纹•若减小d 1的透光云母片将双缝T12-1-17 图[](A) d 1 d o ,d 2 d o 3(B) d 1 d o , d 2 d o 3(C) d 1do2,d2 do(D) d1 do孑d2 do(B) 明纹间距逐渐变小,并向劈棱移动 (C) 明纹间距逐渐变大,并向劈棱移动 (D) 明纹间距逐渐变大,并背向劈棱移动 24. 两块平玻璃板构成空气劈尖,左边为棱边,用单色平行光垂直入射•若上面的平 玻璃以棱边为轴,沿逆时针方向作微小转动,则干涉条纹的 [](A)间隔变小,并向棱边方向平移 (B)间隔变大,并向远离棱边方向平移 (C)间隔不变,向棱边方向平移 (D)间隔变小,并向远离棱边方向平移25.检验滚珠大小的干涉试装置示意如 T12-1-25(a)图.S 为光源,L 为汇聚透镜,M为半透半反镜.在平晶T i 、T 2之间放置A 、B 、C 三个滚珠,其中A 为标准,直径为d o •用 波长为 的单色光垂直照射平晶,在 M 上方观察时观察到等厚条纹如 T12-1-25(b)图所示,轻压C 端,条纹间距变大,则B 珠的直径d 1、C 珠的直径d 2与d 0的关系分别为:[ ](A)玻璃劈形膜(C)两劈形膜干涉条纹间距相同(B)空气劈形膜(D)已知条件不够,难以判定22. 用波长可以连续改变的单色光垂直照射一劈形膜 的变化情况为,如果波长逐渐变小,干涉条纹](A)明纹间距逐渐减小 并背离劈棱移动23. 在单色光垂直入射的劈形膜干涉实验中 方向可以察到干涉条纹的变化情况为 若慢慢地减小劈形膜夹角,则从入射光[](A)条纹间距减小(B) 给定区域内条纹数目增加 (C) 条纹间距增大(D) 观察不到干涉条纹有什么变化T12-1-23 图aaaaaaET12-1-25(a)图T12-1-25(b)图26•如T12-1-26(a)图所示,一光学平板玻璃 A 与待测工件B 之间形成空气劈尖, 用波长=500nm(1 nm = 10-9m)的单色光垂直照射.看到的反射光的干涉条纹如 T12-1-26(b)图所示.有些条纹弯曲部分的顶点恰好与其右边条纹的直线部27.设牛顿环干涉装置的平凸透镜可以在垂直于平玻璃的方向上下移动 ,当透镜向上平移(即离开玻璃板)时,从入射光方向可观察到干涉条纹的变化情况是 [](A)环纹向边缘扩散,环纹数目不变 (B)环纹向边缘扩散,环纹数目增加 (C)环纹向中心靠拢,环纹数目不变(D)环纹向中心靠拢,环纹数目减少28.牛顿环实验中,透射光的干涉情况是[](A) 中心暗斑, 条纹为内密外疏的同心圆环(B) 中心暗斑, 条纹为内疏外密的同心圆环(C) 中心亮斑,条纹为内密外疏的同心圆环(D) 中心亮斑, 条纹为内疏外密的同心圆环(平凸透镜的平面始终保29.在牛顿环装置中 ,若对平凸透镜的平面垂直向下施加压力持与玻璃片平行),则牛顿环[](A) 向中心收缩 ,中心时为暗斑,时为明斑,明暗交替变化H 1 H 1(B) 向中心收缩 ,中心处始终为暗斑(C) 向外扩张,中心处始终为暗斑(D)向中心收缩 ,中心处始终为明斑 T12-1-29 图30. 关于光的干涉,下面说法中唯一正确的是[](A)在杨氏双缝干涉图样中,相邻的明条纹与暗条纹间对应的光程差为 一2(B) 在劈形膜的等厚干涉图样中,相邻的明条纹与暗条纹间对应的厚度差为一2(C) 当空气劈形膜的下表面往下平移时,劈形膜上下表面两束反射光的光程差2将增加一2(D) 牛顿干涉圆环属于分波振面法干涉31.根据第k 级牛顿环的半径r k 、第k 级牛顿环所对应的空气膜厚d k 和凸透镜之凸面[](A) 不平处为凸起纹,最大高度为 500nm(B)不平处为凸起纹, 最大高度为 250nm(C) 不平处为凹槽,最大深度为 500nm 分的切线相切.则工件的上表面缺陷是 (D)不平处为凹槽,最大深度为250nmT12-1-26(a)图T12-1-26(b)图半径R 的关系式d k 工可知,离开环心越远的条纹2R[ ](A)对应的光程差越大,故环越密 (B)对应的光程差越小,故环越密 (C)对应的光程差增加越快,故环越密(D)对应的光程差增加越慢,故环越密32. 如果用半圆柱形聚光透镜代替牛顿环实验中的平凸透镜 放在平玻璃上,则干涉条纹的形状 [ ](A)为内疏外密的圆环(B)为等间距圆环形条纹 (C)为等间距平行直条纹(D) 为以接触线为中心,两侧对称分布,明暗相间,内疏外密的一组平行直条纹33. 劈尖膜干涉条纹是等间距的,而牛顿环干涉条纹的间距是不相等的•这是因为: [](A)牛顿环的条纹是环形的(B)劈尖条纹是直线形的 (C)平凸透镜曲面上各点的斜率不等(D)各级条纹对应膜的厚度不等34•如T12-1-34图所示,一束平行单色光垂直照射到薄膜上,经上、下两表面反射的 光束发生干涉.若薄膜的厚度为e ,且n i < n 2 > n 3,为入射光在折射率为 n i 的媒质中的波35.用白光垂直照射厚度 折射率为n 1,薄膜下面的媒质折射率为 n 3 •则反射光中可看到的加强光的波长为:37. 欲使液体(n > 1)劈形膜的干涉条纹间距增大,可采取的措施是: ](A)增大劈形膜夹角 (B) (C)换用波长较短的入射光(D)38. 若用波长为的单色光照射迈克尔逊干涉仪,并在迈克尔逊干涉仪的一条光路中放长,则两束反射光在相遇点的相位差为: 4 n2 n n 2 [](A)e(B)e n4 n r>24 n(C) e n(D)-ee = 350nm 的薄膜,若膜的折射率 n 2 = 1.4 ,薄膜上面的媒质n 3, 且 n 1 < n 2 <](A) 450nm (C) 690nm(B) 490nm (D) 553.3nmT12-2-35 图n i36. 已知牛顿环两两相邻条纹间的距离不等. 不可行的是如果要使其相等 ,以下所采取的措施中](A)将透镜磨成半圆柱形(C)将透镜磨成三棱柱形(B)将透镜磨成圆锥形 (D)将透镜磨成棱柱形增大棱边长度换用折射率较小的液体入厚度为I 、折射率为n 的透明薄片•放入后,干涉仪两条光路之间的光程差改变量为 [](A) ( n-1) I(B) nl(C) 2 nl(D) 2( n-1)139. 若用波长为 的单色光照射迈克尔逊干涉仪 ,并在迈克尔逊干涉仪的一条光路中放入一厚度为I 、折射率为n 的透明薄片,则可观察到某处的干涉条纹移动的条数为 [ ](A) 4(n 1)-(B)(C)2(n 1)- (D) (n 1)丄40.如图所示,用波长为的单色光照射双缝干涉实验装置,若将一折射率为 n 、劈角为 的透明劈尖b 插入光线2中,则当劈尖b 缓慢向 上移动时(只遮住S 2),屏C 上的干涉条纹 [](A)间隔变大,向下移动 (B) 间隔变小,向上移动 (C) 间隔不变,向下移动(D) 间隔不变,向上移动41.根据惠更斯--菲涅耳原理,若已知光在某时刻的波阵面为S,则S 的前方某点P 的光强度取决于波阵面 S 上所有面积元发出的子波各自传到 P 点的[](A)振动振幅之和 (C)光强之和(B)振动振幅之和的平方 (D)振动的相干叠加42.无线电波能绕过建筑物,而可见光波不能绕过建筑物.这是因为 [](A)无线电波是电磁波 (B)光是直线传播的(C)无线电波是球面波(D)光波的波长比无线电波的波长小得多43.光波的衍射现象没有显著,这是由于[](A)光波是电磁波,声波是机械波 (B)光波传播速度比声波大(C)光是有颜色的(D)光的波长比声波小得多a 的单缝上,缝后紧靠着焦距为f 的薄凸透镜, 屏置于透镜的焦平面上,若整个实验装置浸入折射率为 n 体中,则在屏上出现的中央明纹宽度为的液 ](A)na2f (C)na(B) (D)na 2nf亠L L J口 I -IT12-1-44 图T12-1-40 图44.波长为的单色光垂直入射在缝宽为45. 在单缝衍射中,若屏上的P 点满足a sin ](A)第二级暗纹 (B) (C)第二级明纹 (D) 46.在夫琅和费单缝衍射实验中,欲使中央亮纹宽度增加,可采取的方法是 [](A)换用长焦距的透镜 (B)换用波长较短的入射光=5/2则该点为第五级暗纹 第五级明纹(C)增大单缝宽度 (D)将实验装置浸入水中47. 夫琅和费单缝衍射图样的特点是 [ ](A)各级亮条纹亮度相同 (B) 各级暗条纹间距不等 (C) 中央亮条纹宽度两倍于其它亮条纹宽度(D) 当用白光照射时,中央亮纹两侧为由红到紫的彩色条纹 48. 在夫琅和费衍射实验中,对给定的入射单色光,当缝宽变小时,除中央亮纹的中 心位置不变,各衍射条纹 [ ](A)对应的衍射角变小 (B)对应的衍射角变大 (C)对应的衍射角不变 (D)光强也不变 49. 一束波长为 的平行单色光垂直入射到一单缝 在屏幕E 上形成衍射图样.如果P 是中央亮纹一侧第- AB 上,装置如 T12-1-49图所示, 个暗纹所在的位置,则 BC 的长度为 [ ](A) (B)- 23 c (C) (D) 2 250.在单缝夫琅和费衍射实验中,若增大缝宽,其它条件不变,则中央明纹 [ ](A)宽度变小 (B)宽度变大 (C)宽度不变,且中心强度也不变 (D)宽度不变,但中心强度增大 51.在如T12-1-51图所示的在单缝夫琅和费衍射装置中,设中央明纹的衍射角范围很 小.若单缝a 变为原来的 3 -,同时使入射的单色光的波长 2 3变为原来的 -,则屏幕E 上的单缝衍射条纹中央明纹的 4宽度△x 将变为原来的T12-1-51 图[](A) 44 倍 4 2 9 1 (B)-倍 (C) 9 倍 (D)-倍 3 8 2 52. 一单缝夫琅和费衍射实验装置如 T12-1-52图所 示,L 为透镜,E 为屏幕;当把单缝向右稍微移动一点时, 衍射图样将 [ ](A)向上平移 (B)向下平移 (C)不动(D)消失T12-1-52 图55.在T12-1-55图所示的单缝夫琅和费衍射实验中,将单缝宽度a 稍稍变窄,同时使会聚透镜L 2沿x 轴正方向作微小移动,则屏幕 央衍射条纹将 [](A)变宽,同时上移 (B) 变宽,同时下移 (C) 变宽,不移动 (D) 变窄,同时上移56. 一衍射光栅由宽 300 nm 、中心间距为 直照射时,屏幕上最多能观察到的亮条纹数为: [](A) 2 条(B) 3 条57. 白光垂直照射到每厘米有5000条刻痕的光栅上,若在衍射角 =30。
第12章-2波动光学

对纵波而言, 对纵波而言,由于振动方向和波的传播方 向一致,如果过波的传播方向做很多平面, 向一致,如果过波的传播方向做很多平面, 振动方向总包含在此平面内。 振动方向总包含在此平面内。因此没有振 动的取向问题,即纵波没有偏振性的问题。 动的取向问题,即纵波没有偏振性的问题。 要区别横波还是纵波, 要区别横波还是纵波,主要就是讨论这种 波动是否具有偏振性。 波动是否具有偏振性。
§12-5 光的偏振 1212-5-1 自然光与偏振光
E
H
光是一种电磁波(横波)。电矢量 光是一种电磁波(横波)。电矢量 E与磁矢量 H相 )。 互垂直,它们分别又与电磁波的传播方向垂直。 互垂直,它们分别又与电磁波的传播方向垂直。
光振动: 振动。 光振动:电磁波的 E振动。 光矢量: 矢量。 光矢量:电磁波的 E矢量。
E
v
自然光: 自然光:在垂直于光传播方向上的所有可能方向 上,E 振动的振幅都相等。 振动的振幅都相等。
v
Ey
v
Ex
线偏振光:某一光束只含有一个方向的光振动。 线偏振光:某一光束只含有一个方向的光振动。 振动面:光振动方向与传播方向所确定的那平面。 振动面:光振动方向与传播方向所确定的那平面。
部分偏振光: 部分偏振光:某一方向的光振动比与之相垂直的另 一方向的光振动占优势。 一方向的光振动占优势。
12-5-2 偏振片 马吕斯定律
偏振片:能吸收某一方向的光振动, 偏振片:能吸收某一方向的光振动,而只让与之垂 直方向上的光振动通过的一种透明薄片。 直方向上的光振动通过的一种透明薄片。 偏振化方向: 偏振化方向: 允许通过的光振 动方向。 动方向。
偏振片的用途: 起偏” 偏振片的用途:“起偏”和“检偏” 检偏”
大学物理第12章复习提纲

第12章 波动光学(1) 掌握双缝干涉的形成机理及k 级明、暗条纹对应的位置公式、以及相邻明、暗纹间距公式。
掌握光程的概念。
(2) 掌握等倾干涉(即薄膜干涉)形成的机理及明、暗条纹对应的光程差公式。
掌握增透膜和增反膜的厚度计算。
(3) 掌握等厚干涉(即劈尖干涉)形成的的机理及明、暗条纹对应的光程差公式。
(4) 掌握利用劈尖条纹特点进行的的一系列计算(如直径计算,工件凹,凸程度计算),牛顿环明、暗条纹对应的半径计算。
(5) 掌握单缝衍射半波带分析方法和明暗纹计算公式(6) 掌握光栅方程,会利用光栅方程计算条纹的位置,最大级次。
(7) 掌握利用偏振片进行光的起偏、捡偏、以及马吕斯定理,会用马吕斯定理计算光强。
(8) 掌握反射光和折射光的偏振方法,布儒斯特定律。
2.在真空中波长为λ的单色光,在折射率为n 的透明介质中从A 沿某路径传播到B ,若A 、B 两点相位差为3π ,则此路径AB 的光程为4.(本题3分)如图所示为杨氏双缝干涉实验光路图。
当1r 和2r 质中时,中央明条纹位于O 点位置,当在1r 光路中放置一块折射率为1.5,厚度为1mm 的玻璃片时,则中央明纹位置:(A) 在o 点不变;(B) 向ox 正方向移动; (C) 向ox 负正方向移动;(D) 无法确定. []6.如图,在双缝干涉实验中,若把一厚度为e 、折射率为n 的薄云母片覆盖在S 1缝上,中央明条纹将向__________移动;覆盖云母片后,两束相干光至原中央明纹O 处的光程差为__________________.8. 在空气中有一劈形透明膜,其劈尖角θ=1.0×10-4rad ,在波长λ=700 nm 的单色光垂直照射下,测得两相邻干涉明条纹间距l =0.25 cm ,由此可知此透明材 料的折射率n =______________________.(1 nm=10-9m)10. 用劈尖干涉法可检测工件表面缺陷,当波长为λ的单色平行光垂直入射时,若观察到的干涉条纹如图所示,每一条纹弯曲部分的顶点恰好与其左边条纹的直线部分的连线相切,则工件表面与条纹弯曲处对应的部分12.波长为 600 nm 的单色平行光,垂直入射到缝宽为a =0.60 mm 的单缝上,缝后有一焦距cm f 60'=的透镜,在透镜焦平面上观察衍射图样.则:中央明纹的宽度为__________,两个第三级暗纹之间的距离为____________.(1 nm =10﹣9m)14.一束波长为λ的平行单色光垂直入射到一单缝AB 上,装置如图.在屏幕D 上形成衍射图样,如果P 是中央亮纹一侧第一个暗纹所在的位置,则BC 的长度为 (A) λ / 2.(B) λ.(C) 3λ / 2 . (D) 2λ .[ ]16. 一束具有两种波长λ1和λ2的平行光垂直照射到一衍射光栅上,测得波长λ1的第三级主极大衍射角和λ2的第四级主极大衍射角均为30°.已知λ1=560 nm (1 nm= 10-9m),试求: (1) 光栅常数a +b (2) 波长λ218.将三个偏振片叠放在一起,第二个与第三个的偏振化方向分别与第一个的偏振化方向成45°和90°角. (1) 强度为I 0的自然光垂直入射到这一堆偏振片上,试求经每一偏振片后的光强和偏振状态. (2) 如果将第二个偏振片抽走,情况又如何?20. 一束自然光入射到两种媒质交界平面上产生反射光和折射光.如果反射光是线偏振光光;则折射光是________光;这时的入射角b i 称为____________角.22. 有一双缝相距0.3mm ,要使波长为600nm 的红光通过并在光屏上呈现干涉条纹,每条明纹或暗纹的宽度为1mm ,问光屏应放在距双缝多远的地方? 24. 在杨氏双缝实验中,双缝相距0.3mm ,以波长为600nm 的红光照射狭缝,求在离双缝50cm 远的屏幕上,从中央向一侧数第二条与第五条暗纹之间的距离。
第12章-波动光学(二)概论

bsin 2k 1 k 1,2,3, 明纹
2
• 缝宽 b 越小,衍射角 越大,衍射越显著; • 缝宽 b 越大,衍射角 越小,衍射越不明显;
• 当 b >>λ时,不发生衍射现象。
12
结论:几何光学是波动光学在 b 0 时的极
限情况。 2 1
0
b sin (2k 1) 明纹
2
bsin k
解: bsin
sin
b
L 2x 2D tg
2D 2 D
D
b
2 5.460107 0.40 1.0103 m
0.437 103
19
12-4-4 单缝衍射的光强分布
将狭缝分为N个小波 带。
各光振动矢量: E1 , E2 , , En
设 E1 E2 En E0
相邻两光振动的相位差:
sin 2 u u2
sin 23 2 3 22
0.045
I2 I0
sin 2 u u2
sin 25 2 5 22
0.016
24
12-4-5 圆孔衍射 光学仪器的分辨本领
25
爱里斑:圆孔衍射的中央亮斑,其上集中了全部 衍射光能的84%。
E
E0
sin bsin sin bsin
N
因为N 很大,所以有 sin bsin N bsin N
sin bsin
E NE0 b sin
I E2 令: u bsin
I0 NE0 2
22
P点处的光强:
I
I0
sin 2 u2
u
当 u bsin k I 0
孔或狭缝以及屏幕P距小孔或狭缝 都在无限远处。
P
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
向上移动光源时,则: P
s s1
r1
r2
x
O
s2 D
第十二章 波动光学
条纹下移
d sin d sin
P.44/89
杨氏双缝干涉的讨论:
• 上下移动光源时,观察条纹的移动。
向下移动光源时,则: P
s1
r1
x
s
r2
O
s2 D
第十二章 波动光学
条纹上移
d sin d sin
P.45/89
薄玻璃片盖住下缝时:则 P
s1
r1
x
s d
r2
O
s2 D
条纹下移
(r2 e ne) r1
P.42/89
杨氏双缝干涉的讨论:
• 上下移动光源时,观察条纹的移动。
第十二章 波动光学
P
s1
r1
x
s
r2
d
O
s2 D
d sin
P.43/89
杨氏双缝干涉的讨论:
• 上下移动光源时,观察条纹的移动。
P.38/89
杨氏双缝干涉的讨论:
• 影响条纹宽度的因素:
(1)双缝间距
第十二章 波动光学
x D
d
x 1 d
(2)光波的波长
x D
d
x
(3)屏与缝间距 x D
d
x D
P.39/89
第十二章 波动光学
杨氏双缝干涉的讨论:
• 在缝后加一薄玻璃片,观察条纹的移动。
P
s1
r1
x
s
r2
解
c
3108 m s1 1.5106 s1
200 m
sin k k 200 k
d 400
2
取 k = 0,1,2
得 0, 30, 90
S1 30
400m
30
S2
P.29/89
非涅耳双棱镜
第十二章 波动光学
P.30/89
第十二章 波动光学
P.31/89
第十二章 波动光学
P.48/89
第十二章 波动光学
入射光到达薄膜表面被分解为反射 光和折射光。折射光经下表面反射和上 表面的折射,回到上表面上方的空间, 与上表面的反射光交叠而发生干涉。
因反射光和折射光都只携带了入射 光的一部分能量,而能量与振幅的平方 成正比,所以利用界面将入射光分解而 获得相干光束的方法属于分振幅法。
P.27/89
第十二章 波动光学
例1. 杨氏双缝的间距为0.2 mm,距离屏幕为1m。
1. 若第一到第四明纹距离为7.5mm,求入射光波长。
2. 若入射光的波长为600 nm,求相邻两明纹的间距。
解
x D k k 0,1,2,
d
x1,4
x4
x1
D d
k4
k1
d x1,4 0.2103 7.5103 5107 m 500nm
第十二章 波动光学
0
L
称波列长度L为相干长度。
L
P.26/89
第十二章 波动光学
因为波列长度 L c t ,所以相干长度 L也
可以用t 来描述,称它为相干时间,由它决
定的相干性为时间相干性。 显然,时间相干性由光源的性质决定。 氦氖激光的时间相干性远比普通光源好。
钠Na光,波长589.6nm,相干长度 3.4×10-2m 氦氖激光 ,波长632.8nm,相干长度 40 ×102m
第十二章 波动光学
L ct
P.10/89
第十二章 波动光学
随机性:每次发光是随机的,所发出各波列的振动 方向和振动初相位都不相同。
干涉条件:
频率相同,振动方向相同,有恒定的位相差。
两个独立光源发出的光不可能产生干涉
相干光:能够满足干涉条件的光。 相干光源:能产生相干光的光源。
P.11/89
第十二章 波动光学
2d 其中 k 称为条纹的级数
屏幕中央(k = 0)为中央明纹
相邻两明纹或暗纹的间距:
x
xk 1
xk
D
d
第十二章 波动光学
5 4 3 2 1 0 -1 -2 -3 -4 -5
P.21/89
杨氏双缝实验的模拟动画
第十二章 波动光学
P.22/89
说明:
第十二章 波动光学
• 条纹位置和波长有关,不同波长的同一级亮条 纹位置不同。因此,如果用白光照射,则屏上 中央出现白色条纹,而两侧则出现彩色条纹。
S1
O
d
S2 d sin
D d , 角很小 sin tg x
D
光干涉条件: d x k k 0,1,2,
加强
D
d x 2k 1 k 1,2,3, 减弱
D
2
P.20/89
干涉条纹在屏幕上的分布:
明纹: x k D k 0,1,2,
d
暗纹: x 2k 1 D (k 1,2,)
d
O
s2 D
r2 r1
P.40/89
第十二章 波动光学
杨氏双缝干涉的讨论:
• 在缝后加一薄玻璃片,观察条纹的移动。
薄玻璃片盖住上缝时:则 P
s1
r1
x
s d
r2
O
s2 D
条纹上移
r2 (r1 e ne)
P.41/89
第十二章 波动光学
杨氏双缝干涉的讨论:
• 在缝后加一薄玻璃片,观察条纹的移动。
(3) 分振动面法 利用某些晶体的双折射性质,可将一束光分
解为振动面垂直的两束光。
P.13/89
12-2-2 杨氏双缝实验
英国医生兼物理学 家 托 马 斯 ·杨 ( T.Yang) 于 1801 年 首 先 成 功 地 进 行了光干涉实验,并看 到了干涉条纹,使光的 波动学说得到了证实。
第十二章 波动光学
第十二章 波动光学
例3. 用薄云母片(n = 1.58)覆盖在杨氏双缝的其 中一条缝上,这时屏上的零级明纹移到原来的第七 级明纹处。如果入射光波长为550 nm,问云母片 的厚度为多少?
解: P 点为七级明纹位置
r2 r1 7
插入云母后,P点为零级明纹
r2 r1 d nd 0
d r1
4
A02
1
cos 2
4 A02 cos2
2
I A2
I P max 4I I P min 0
2k (k 0, 1, 2) (2k 1) (k 0, 1, 2)
P.24/89
相干长度
第十二章 波动光学
P.25/89
时间相干性
来自于原子辐射发光 的时间有限,所以波 列有一定的长度L。
第十二章 波动光学
光是一种波动。
P.3/89
12-1-2 光的电磁本性
第十二章 波动光学
1801年,英国物理学家托马斯·杨 (T. Young,1773-1829)首先利用 双缝实验观察到了光的干涉条纹, 从实验上证实了光的波动性。
1865年,英国物理学家麦克斯韦从 他的电磁场理论预言了电磁波的存 在,并认为光就是一种电磁波。
P.37/89
第十二章 波动光学
平行于透镜副光轴的平行光 会聚于后焦面上F ' ,从波 面B上各点到F 的光线 B1F ' 、 B2F ' 、B3F ' ,是等光程的。
点光源S发出球面波经透镜 后成为聚向像点S'的球面 波,S的波面C上的各点到 像点S' 的光线C1 S' 、C2 S' 、 C3 S' ,是等光程的。
s1
r2
s2
P 0
7 dn 1
d 7 7 550109 6.6106 m
n 1 1.58 1
P.46/89
解二:
dn 1 7
d 7
n 1 7 550 109
1.58 1 6.6 106 m
第十二章 波动光学
d r1
P
s1
r2
0
s2
P.47/89
第十二章 波动光学
§12-3 薄膜干涉
P.36/89
透镜不引起额外的光程差
从物点发出的不同光
线,经不同路径通过薄透镜 后会聚成为一个明亮的实
S
像 ,说明从物点到像点,
各光线具有相等的光程。
第十二章 波动光学
S’
平行于透镜主光轴的平行光 会聚在焦点F,从波面A上各 点 到 焦 点 F的 光 线 , A1F、 A2F、A3F,是等光程的。
第十二章 波动光学
P.33/89
12-2-3 光程
第十二章 波动光学
设光在折射率为 n 的介质中传播的几何路程为 r 。
包含的完整波个数: r n n n
真空中的几何路程: r nr n
光程:光在介质中传播的几何路程 r 与该介质折 射率 n 的乘积 nr 。
P.34/89
第十二章 波动光学
• 条纹间距与波长成正比,因此紫光的条纹间距 要小于红光的条纹间距。
4
3
2
1
是否正确,应该怎样?
P.23/89
第十二章 波动光学
明暗干涉条纹无明显的分界线(光强变化) 明暗干涉条纹位置对应光强的极大和极小的位置(中心)
IP
4I
cos 2
2
I为原光强、 为二相干光的位相差。
A2 A12 A22 2 A1A2 cos 2 A02 2 A02 cos
激光光源是相干光源
从普通光源获得相干光的三种方法: (1) 分波前法
当从同一个点光源或线 光源发出的光波到达某平面 时,由该平面(即波前)上分 离出两部分。杨氏双缝干涉 就是采用了这种方法。