微积分常用公式及运算法则(上册)
微积分基本公式与计算

微积分基本公式与计算微积分是数学的一个分支,主要研究函数的极限、导数、积分等基本概念和基本运算法则。
本文将介绍微积分的基本公式和计算方法。
1.极限:极限是微积分的基本概念之一,用来描述函数在特定点处的趋势。
极限的计算有以下几个基本公式:-基本极限公式:- $\lim_{x\to c} x = c$:常数函数的极限是其本身。
- $\lim_{x\to c} k f(x) = k \lim_{x\to c} f(x)$:常数倍法则。
- $\lim_{x\to c} (f(x) + g(x)) = \lim_{x\to c} f(x) +\lim_{x\to c} g(x)$:和法则。
- $\lim_{x\to c} (f(x) \cdot g(x)) = \lim_{x\to c} f(x)\cdot \lim_{x\to c} g(x)$:积法则。
- $\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{\lim_{x\to c}f(x)}{\lim_{x\to c} g(x)}$(假设$\lim_{x\to c} g(x) \neq 0$):商法则。
-重要极限:- $\lim_{x\to \infty} \frac{1}{x} = 0$:无穷小的定义。
- $\lim_{x\to 0} \frac{\sin x}{x} = 1$:著名的夹逼定理的应用。
- $\lim_{n\to \infty} (1+\frac{1}{n})^n = e$:自然对数的底数。
2.导数与微分:导数是函数在其中一点处的变化率,表示函数的斜率。
导数的计算有以下几个基本公式:-基本导数公式:- $\frac{d}{dx} (k f(x)) = k \frac{d}{dx} f(x)$:常数倍法则。
- $\frac{d}{dx} (f(x) + g(x)) = \frac{d}{dx} f(x) +\frac{d}{dx} g(x)$:和法则。
高等数学一(微积分)常用公式表

高等数学一(微积分)常用公式表-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN1、乘法公式(1)(a+b )²=a 2+2ab+b 2 (2)(a-b)²=a ²-2ab+b ²(3)(a+b)(a-b)=a ²-b ² (4)a ³+b ³=(a+b)(a ²-ab+b ²) (5)a ³-b ³=(a-b)(a ²+ab+b ²)2、指数公式:(1)a 0=1 (a ≠0)(2)a P -=P a 1(a ≠0)(3)amn=mna(4)a m a n =a n m +(5)a m ÷a n=n m aa =a nm -(6)(am)n =amn(7)(ab )n =a n b n(8)(b a)n =n n ba (9)(a )2=a (10)2a =|a|3、指数与对数关系: (1)若a b=N ,则N b a log = (2)若10b=N ,则b=lgN (3)若be =N ,则b=㏑N4、对数公式: (1)b a b a =log , ㏑eb=b (2)N aaN=log ,eNln =N(3)aN N a ln ln log =(4)a b be aln = (5)N M MN ln ln ln +=(6)N M NMln ln ln -= (7)Mn M n ln ln =(8)㏑nM =M nln 15、三角恒等式:(1)(Sin α)²+(Cos α)²=1 (2)1+(tan α)²=(sec α)²(3)1+(cot α)²=(csc α)²(4)αααtan cos sin =(5)αααcot sin cos =(6)ααtan 1cot =(7)ααcos 1csc =(8)ααcos 1sec =7.倍角公式: (1)αααcos sin 22sin = (2)ααα2tan 1tan 22tan -=(3)ααααα2222sin 211cos 2sin cos 2cos -=-=-=8.半角公式(降幂公式):(1)(2sin α)2=2cos 1a - (2)(2cosα)2=2cos 1a + (3)2tan α=a a sin cos 1+=a acos 1sin +常用公式表(二)1、求导法则:(1)(u+v )/=u /+v / (2)(u-v )/=u /-v /(3)(cu )/=cu / (4)(uv )/=uv /+u/v (5)2v v u v u v u '-'='⎪⎭⎫ ⎝⎛ 5、定积分公式:(1)⎰⎰=babadtt f dx x f )()( (2)⎰=aadx x f 0)((3)()()dx x f dx x f abba⎰⎰-= (4)⎰⎰⎰+=bac ab cdxx f dx x f dx x f )()()((5)若f (x )是[-a,a]的连续奇函数,则⎰-=aadx x f 0)((6)若f (x )是[-a,a]的连续偶函数,则6、积分定理:(1)()()x f dt t f xa ='⎥⎦⎤⎢⎣⎡⎰ ()()()()()[]()()[]()x a x a f x b x b f dt t f x b x a '-'='⎥⎦⎤⎢⎣⎡⎰2(3)若F (x )是f (x )的一个原函数,则)()()()(a F b F x F dx x f ba b a -==⎰7.积分表()C x x xdx ++=⎰tan sec ln sec 1 ()C x x xdx +-=⎰cot csc ln csc 2()C a xa dx x a +=+⎰arctan 11322 ()C a x dx x a +=-⎰arcsin 1422()C a x ax a dx ax ++-=-⎰ln 211522 8.积分方法()()bax x f +=1;设:t b ax =+()()222x a x f -=;设:t a x sin = ()22a x x f -=;设:t a x sec =()22x a x f +=;设:t a x tan =()3分部积分法:⎰⎰-=vdu uv udv。
微积分上册期中公式定理汇总

a,记作 lim
n→∞
xn
或xn→a(n→+∞)
。
2、 定义 2:设 a∈ R,∀U(a,ε),∃N∈ Z+,当 n>N 时,总有xn ∈U(a,ε),则称数 列(xn)n∞=1收敛于 a。
3、 推论:数列(xn)n∞=1收敛于 a 的充分必要条件是,对 a 的任一ε邻域 U(a,ε), 只有有限多项xn不属于 U(a,ε)
(2) lim g(x)= lim h(x)=A,则 lim f(x)存在且等于 A。
x→x0(x→∞)
x→x0(x→∞)
x→x0(x→∞)
2、关于数列的夹逼准则:设数列(xn)n∞=1,(yn)n∞=1,(zn)n∞=1满足: (1) yn ≤ xn ≤ zn(n=1,2,…);
(2)
lim
n→∞
3、定理 1:(1)有限个无穷小之和是无穷小。 (2)有界函数与无穷小之积是无穷小。
4、推论:(1)常数与无穷小之积是无穷小。 (2)有限个无穷小之积是无穷小。
5、定义:如果对任意给定的正数 M(不论它多么大),总存在正数δ(或正数 X),
使得当定义域中的 x 满足不等式 0<|x-x0|<δ(或|x|>X)时,对应的函数值 f(x) 满足不等式|f(X)|>M,就称函数 f(X)是当 x→x0(x→∞)时的无穷大,并记为
4、 定理 3(收敛函数的有界性):如果数列(xn)n∞=1收敛,那么数列(xn)n∞=1必定 有界。
5、
定理
4(收敛函数的保号性):如果 lim
n→∞
xn=a,且
a>0(或
a<0),那么存在
正整数 N,当 n>N 时,都有xn>0(或xn<0)。
微积分公式大全

微积分公式大全1.极限与连续1.1 极限的定义:对于函数$f(x)$,当$x$趋向于$a$时,如果对于任意给定的$\epsilon > 0$,总存在与$a$不相等的$x$使得当$0 < ,x-a,< \delta$时,$,f(x) - L, < \epsilon$,我们就说函数$f(x)$在$x=a$处的极限为$L$,记作$\lim_{x \to a}f(x)=L$。
1.2基本极限公式:a) $\lim_{x \to a}c = c$,其中$c$为常数;b) $\lim_{x \to a}x = a$;c) $\lim_{x \to a}x^n = a^n$,其中$n$为正整数;d) $\lim_{x \to a} \sin x = \sin a$;e) $\lim_{x \to a} \cos x = \cos a$;f) $\lim_{x \to a} \tan x = \tan a$,其中$a \neq\frac{\pi}{2} + \pi k$,$k$为整数;g) $\lim_{x \to a} \ln x = \ln a$,其中$a > 0$。
1.3极限的运算法则:a) $\lim_{x \to a}[f(x) \pm g(x)] = \lim_{x \to a}f(x) \pm \lim_{x \to a}g(x)$;b) $\lim_{x \to a} kf(x) = k \lim_{x \to a}f(x)$,其中$k$为常数;c) $\lim_{x \to a} f(x)g(x) = \lim_{x \to a}f(x) \cdot\lim_{x \to a}g(x)$;d) $\lim_{x \to a} \frac{f(x)}{g(x)} = \frac{\lim_{x \to a}f(x)}{\lim_{x \to a}g(x)}$,其中$\lim_{x \to a}g(x) \neq 0$;e) $\lim_{x \to a} [f(x)]^n = [\lim_{x \to a}f(x)]^n$,其中$n$为正整数。
微积分基础公式

微积分基础公式
微积分是数学中的一个重要分支,也是物理学、工程学、经济学等领域中必不可少的工具。
下面是微积分基础公式的介绍:
1.导数公式
导数是微积分中的重要概念,表示函数在某一点处的变化率。
如果函数f(x)在点x处可导,那么它的导数为:
f'(x) = lim (Δx→0) [f(x+Δx) - f(x)]/Δx
2.求导法则
求导法则是求导的基本规则,包括常数法则、幂函数法则、指数函数法则、对数函数法则、三角函数法则等。
3.微分公式
微分是导数的另一种表达形式,表示函数在某一点处的变化量。
如果函数f(x)在点x处可微,那么它的微分为:
df = f'(x) dx
4.积分公式
积分是微积分中的另一个重要概念,表示函数在某一区间上的面积。
如果函数f(x)在区间[a,b]上连续,那么它的积分为:∫a^bf(x)dx
5.基本积分法
基本积分法是求解积分的基本方法,包括换元积分法、分部积分法、三角换元积分法等。
以上是微积分基础公式的介绍,对于学习微积分的同学们来说,
掌握这些公式是非常重要的。
微积分(上)复习资料——公式

1 cos2
x
dx
sec2
xdx
tan
x
c
9、
1 s in 2
x
dx
csc2
xdx
cot
x
c
10、 sec x tan xdx sec x c
11、 cscx cot xdx cscx c
12、
1 dx arcsin x c 1 x2
13、
1 1 x2
dx
arctanx
c
14、 tan xdx ln cosx c
cot(A B) cot A cot B 1 cot B cot A
sin 2A 2sin Acos A
tan
2
A
1
2
tan tan
A 2A
3.半角公式
cos 2A cos2 A sin2 A 1 2sin2 A 2cos2 A 1
sin A 1 cos A
2
2
cos A 1 cos A
(1) a2 x2 x asin t (2) a2 x2 x a tant (3) x2 a2 x asect
log a x
1 dx x ln a
⒀ d arcsin x 1 dx
1 x2
⒁ d arccos x 1 dx
1 x2
微分运算法则 ⑴ d u v du dv
⑶ d uv vdu udv
⒂
d
arctan
x
1 1 x2
dx
⒃
d
arc cot
x
1
1 x2
dx
⑵ d cu cdu
lim n a (a o) 1
n
高数微积分公式大全3篇

高数微积分公式大全第一篇:高数微积分公式大全(上)微积分是数学中的重要分支,也是物理、工程、经济等领域中不可或缺的工具。
下面将介绍一些高等数学中常用的微积分公式,包括极限、导数、微分等,供读者参考。
1. 极限极限是微积分中的基本概念,它描述的是函数在某一点附近的取值趋近于某个常数的情况。
极限公式如下:(1)左极限$$\lim_{x\to x_{0}^{-}}f(x)=A$$(2)右极限$$\lim_{x\to x_{0}^{+}}f(x)=A$$(3)无穷远处的极限$$\lim_{x\to \infty}f(x)=A$$(4)无穷小量$$\lim_{x\to x_{0}}\frac{f(x)}{g(x)}=0$$2. 导数导数是微积分中的重要概念,它描述的是函数在某一点处的变化率。
导数公式如下:(1)切线的斜率$$k=\lim_{x\to x_{0}}\frac{f(x)-f(x_{0})}{x-x_{0}} $$(2)函数的导数$$f'(x)=\lim_{\Delta x\to 0}\frac{f(x+\Delta x)-f(x)}{\Delta x}$$3. 微分微分是微积分中的基本运算,它可以帮助我们研究函数的变化趋势。
微分公式如下:$$df=f'(x)dx$$其中,$dx$表示自变量$x$的微小变化量,$df$表示因变量$y$的微小变化量。
4. 泰勒公式泰勒公式是微积分中的重要定理,它可以帮助我们将一个函数表示为一系列多项式的和,从而简化函数的计算。
泰勒公式如下:$$f(x)=\sum_{n=0}^{\infty}\frac{f^{(n)}(a)}{n!}(x-a)^{n} $$其中,$f^{(n)}(x)$表示函数$f(x)$的$n$阶导数。
5. 柯西-黎曼方程柯西-黎曼方程是复分析中的重要定理,它描述了复函数的导数和复共轭函数的关系。
柯西-黎曼方程如下:$$\frac{\partial u}{\partial x}=\frac{\partialv}{\partial y},\frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}$$其中,$u(x,y)$和$v(x,y)$分别表示复函数$f(z)=u(x,y)+iv(x,y)$的实部和虚部。
16个微积分公式

16个微积分公式微积分是一门研究函数的变化率与积分的数学学科。
在学习微积分时,我们会使用一些重要的公式来计算和推导出函数的性质。
下面是16个常用的微积分公式:1.导数的定义:设函数f(x)在x点有定义,则f(x)在x点可导,当且仅当下式极限存在:f'(x) = lim(h->0) (f(x+h) - f(x)) / h其中f'(x)表示f(x)的导数。
2.基本导数公式:a.(k)'=0,其中k是常数。
b. (x^n)' = nx^(n-1),其中n是实数。
c. (sin x)' = cos x。
d. (cos x)' = -sin x。
e.(e^x)'=e^x。
f. (ln x)' = 1/x。
3.导数的四则运算法则:如果f(x)和g(x)都是可导函数,则有:a.(f(x)+g(x))'=f'(x)+g'(x)。
b.(f(x)-g(x))'=f'(x)-g'(x)。
c.(k*f(x))'=k*f'(x),其中k是常数。
d.(f(x)*g(x))'=f'(x)*g(x)+f(x)*g'(x)。
e.(f(x)/g(x))'=(f'(x)*g(x)-f(x)*g'(x))/g^2(x),其中g(x)≠0。
4.链式法则:如果有复合函数F(g(x)),其中F(u)和g(x)都是可导函数,则有:(F(g(x)))'=F'(g(x))*g'(x)。
5.反函数的导数:如果函数f(x)和g(x)满足f(g(x))=x,并且g(x)在一些点可导且不为0,则有:(f^-1(x))'=1/g'(f^-1(x))。
6.高阶导数:函数f(x)的n阶导数,记作f^(n)(x),可通过对其一阶导数进行n次求导得到。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
0,
π 2
1
lim nn = 1
n→∞
1
lim x x = 1
x→+∞
lim
x→∞
1
+
1 x x
=
e,
lim
x→∞
1
−
1 x x
=
1 , lim (1+
e x→0
1
x)x
=e
等价无穷小: 当x → 0时, x ∼ sin x ∼ tan x ∼ arcsin x ∼ arctan x ∼ ln(1+ x) ∼ ex −1; 1− cos x ∼ x2 ;(1+ x)a −1 ∼ ax(a ≠ 0);
2!
n!
sin x = x − 1 x3 + 1 x5 −⋯ 3! 5!
柯西中值定理: 若f , g ∈C[a,b],并且f , g ∈ D(a,b),在(a,b)内 g(x) ≠ 0, 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ ) g(b) − g(a) g′(ξ )
泰勒中值定理:
如果函数f (x)在含x0的某个开区间(a, b) 内具有(n +1)阶导数,即f ∈ Dn+1(a,b),
u v
′
=
u′v − uv′ v2
设x = ϕ ( y),它的反函数是y = f (x),则有
f
′( x)
=
1 ϕ′( y)
链式求导法则:d y = d y id u dx du dx
对数求导法则:
求幂指函数y = [u(x)]v(x)的导数时,
可先取对数,得 ln y = v(x) ln u(x),
2
2
2 1 + cosα
α tan
=
sin α
= 1− cosα ;
2 1+ cosα sinα
sin
2α
=
2 tanα 1+ tan2 α
;
cos 2α
=
1− 1+
tan2 α tan2 α
;
tan 2α = 2 tanα ; sin2 α + cos2 α = 1 1− tan2 α
结合律 (A ∪ B) ∪ C = A ∪ (B ∪ C), (A ∩ B) ∩ C = A ∩ (B ∩ C);
a2
(n)
=
(−1)n n! 2a (x
1 − a)n+1
−
(x
1 + a)n+1
∑n
(uv)(n) = Cnku(n−k )v(k )
k =0
3
微分定义:
d y = f ′(x)∆x = f ′(x) d x
微分求近似值(线性逼近或一次近似):
∆y ≈ d yx = x0 + ∆x f (x0 + ∆x) ≈ f (x0 ) + f ′(x0 )∆x 令x = x0 + ∆x得, f (x) ≈ f (x0 ) + f ′(x0 )(x − x0 )
=
(−1)n n! x n +1
(ex )(n) = ex
(sin
x)(n)
=
sin
x
+
nπ 2
(cos)(n)
=
cos
x
+
nπ 2
[ln(1 +
x)](n)
=
(−1)(n−1)
(n −1)! (1+ x)n
当x
>
−1
(αu + β v)(n) = αu(n) + β v(n)
x2
1 −
然后两端对x求导,得
y′ = v′(x) ln u(x) + v(x)u′(x)
y
u(x)
参数方程求导:
若对参数方程
x y
= =
ϕ φ
(t) (t)
求导,则有
dy
dy dx
=
d yidt dt dx
=
dt dx
=
φ ′(t ) ϕ ′(t )
dt
高阶导数:
(xn )(n) = n!
1 x
(n)
1+ tan2 α = sec2 α 1+ cot2 α = csc2 α
y = cosh x = ex + e−x ( y > 1) , 2
积化和差:
sin α
⋅
cos
β
=
1 2
sin
(α
+
β
)
+
sin
(α
−
β
)
Байду номын сангаас
cosα
⋅ sin
β
=
1 2
sin
(α
+
β
)
−
sin (α
−
β
)
sin α
⋅ sin
β
(xµ )′ = µ xµ −1,
(ax )′ = ax ln a
(ex )′ = ex
(ln x)′ = 1 x
(loga
x)′
=
1 x ln a
(sin x)′ = cos x
(cos x)′ = − sin x
(tan x)′ = sec2 x
(cot x)′ = − csc2 x
(sec x)′ = sec xitan x
那么对于x ∈ (a,b),有
f
(x)
=
f
(x0 ) +
f ′(x0 )(x −
x0 ) +
1 2!
f
′′(x0 )(x −
x0 )2
+⋯+
1 n!
f
(n) (x0 )(x
−
x0 )n
+
Rn (x)
其中
Rn (x) =
f (n+1) (ξ ) (n +1)!
(
x
−
x0
)n+1,
Rn (x)称为拉格朗日余项, 这里ξ是x0与x之间的某个值
=
0ab⋯00 ⋯⋯当当mm=<nn ∞⋯⋯当m > n
设 lim u →u0
f
(u)
=
A,
lim
x → x0
u
(
x
)
=
u0
,
且u
(
x)
≠ u0
则 lim f [u(x)] = lim f (u) = A
x → x0
u →u0
重要极限:
lim
x→0
sin x
x
= 1 sin
x
<
x
<
tan
x
x
∈
2
2
sinh(x + y) = sinh x • cosh y + cosh x • sinh y, cosh(x + y) = cosh x • cosh y + sinh x • sinh y, sinh(x − y) = sinh x • cosh y − cosh x • sinh y, cosh(x − y) = cosh x • cosh y − sinh x • sinh y
分配律 A ∩ (B ∪ C) = ( A ∩ B) ∪ (A ∩ C), A ∪ (B ∩ C) = ( A ∪ B) ∩ (A ∪ C); ( A ∪ B)c = Ac ∩ Bc ,
对偶律
( A ∩ B)c = Ac ∪ Bc ;
初等函数:
双曲正弦、余弦、正切及运算
y = sinh x = ex − e−x (−∞ < y < +∞) , 2
f (x) =
f
(x0 ) +
f ′(x0 )(x − x0 ) +
1 2!
f ′′(x0 )(x − x0 )2
+⋯+
1 n!
f
(n)
(x0 )(x
−
x0 )n
+
o((x
−
x0 )n ).
常见的基本初等函数的带有佩亚诺余项的麦 克劳林公式:
ex = 1+ x + 1 x2 +⋯+ 1 xn + o(xn )
常用一次近似式: ex ≈ x +1; sin x ≈ x; tan x ≈ x; (1+ x)a ≈ 1+ ax; ln(1+ x) ≈ x;
拉格朗日定理: 若f (x) ∈ C[a, b],并且f ∈ D(a,b), 那么至少存在一点ξ ∈ (a,b),使 f (b) − f (a) = f ′(ξ )(b − a)
微积分常用公式及运算法则
常用三角公式: sin 2α = 2sinα cosα ;
cos 2α = cos2 α − sin2 α = 2 cos2 −1 = 1− 2sin2 α
tan 2α
=
2 tanα 1− tan2 a
; sin 2
α 2
=
1− cosα 2
;
cos2 α = 1 + cosα ; tan 2 α = 1 − cosα ;
sinh 2x = 2sinh x • cosh x, cosh 2x = cosh2 x + sinh2 x, cosh2 x − sinh2 x = 1.
集合的并、交、余运算律: 交换律 A ∪ B = B ∪ A, A ∩ B = B ∩ A;