《物理化学》课后习题第一章答案
物理化学第一章课后答案

物理化学核心教程(第二版)参考答案第一章气体一、思考题1. 如何使一个尚未破裂而被打瘪的乒乓球恢复原状采用了什么原理答:将打瘪的乒乓球浸泡在热水中,使球壁变软,球中空气受热膨胀,可使其恢复球状。
采用的是气体热胀冷缩的原理。
2. 在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。
试问,这两容器中气体的温度是否相等答:不一定相等。
根据理想气体状态方程,若物质的量相同,则温度才会相等。
3. 两个容积相同的玻璃球内充满氮气,两球中间用一玻管相通,管中间有一汞滴将两边的气体分开。
当左球的温度为273 K,右球的温度为293 K时,汞滴处在中间达成平衡。
试问:(1)若将左球温度升高10 K,中间汞滴向哪边移动(2)若两球温度同时都升高10 K, 中间汞滴向哪边移动答:(1)左球温度升高,气体体积膨胀,推动汞滴向右边移动。
(2)两球温度同时都升高10 K,汞滴仍向右边移动。
因为左边起始温度低,升高10 K所占比例比右边大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边比右边大。
4. 在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。
请估计会发生什么现象答:软木塞会崩出。
这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。
如果软木塞盖得太紧,甚至会使保温瓶爆炸。
防止的方法是灌开水时不要太快,且要将保温瓶灌满。
5. 当某个纯物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化答:升高平衡温度,纯物的饱和蒸汽压也升高。
但由于液体的可压缩性较小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。
而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。
随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。
物理化学第四版上册课后答案天津大学第一章气体PVT关系

第一章习题解答1.1物质的体膨胀系数αV与等温压缩率κT的定义如下:试导出理想气体的、与压力、温度的关系解:对于理想气体:PV=nRT , V= nRT/P求偏导:1.2 气柜储存有121.6kPa,27℃的氯乙烯(C2H3Cl)气体300m3,若以每小时90kg的流量输往使用车间,试问储存的气体能用多少小时?解:将氯乙烯(M w=62.5g/mol)看成理想气体:PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6molm=14618.662.5/1000(kg)=913.66 kgt=972.138/90(hr)=10.15hr1.3 0℃,101.325kPa的条件常称为气体的标准状况,试求甲烷在标准状况下的密度?解:将甲烷(M w=16g/mol)看成理想气体:PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PM w/RT=101.32516/8.314273.15(kg/m3)=0.714 kg/m31.4 一抽成真空的球形容器,质量为25.0000g。
充以4℃水之后,总质量为125.0000g。
若改充以25℃,13.33kPa的某碳氢化合物气体,则总质量为25.0163g。
试估算该气体的摩尔质量。
水的密度按1 g.cm-3计算。
解:球形容器的体积为V=(125-25)g/1 g.cm-3=100 cm3将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M wM w= mRT/ PV=(25.0163-25.0000)8.314300.15/(13330100 10-6)M w =30.51(g/mol)1.5 两个容器均为V的玻璃球之间用细管连接,泡内密封着标准状况下的空气。
若将其中一个球加热到100℃,另一个球则维持0℃,忽略连接细管中的气体体积,试求该容器内空气的压力。
解:因加热前后气体的摩尔数不变:加热前:n=2 P1V/RT1加热后:n=P1V/RT1PV/RT2列方程:2 P1V/RT1=P1V/RT1PV/RT2P=2 T2P1/( T1T2)=2373.15100.325/(373.15 273.15)kPa=115.47kPa1.6 0℃时氯甲烷(CH3Cl)气体的密度ρ随压力的变化如下。
(完整版)物理化学课后答案

第一章气体的pVT 关系1-1物质的体膨胀系数V α与等温压缩系数T κ的定义如下:1 1TT p V p V V T V V ⎪⎪⎭⎫⎝⎛∂∂-=⎪⎭⎫ ⎝⎛∂∂=κα 试导出理想气体的V α、T κ与压力、温度的关系?解:对于理想气体,pV=nRT111 )/(11-=⋅=⋅=⎪⎭⎫⎝⎛∂∂=⎪⎭⎫ ⎝⎛∂∂=T TVV p nR V T p nRT V T V V p p V α 1211 )/(11-=⋅=⋅=⎪⎪⎭⎫ ⎝⎛∂∂-=⎪⎪⎭⎫ ⎝⎛∂∂-=p p V V pnRT V p p nRT V p V V T T T κ 1-2 气柜内有121.6kPa 、27℃的氯乙烯(C 2H 3Cl )气体300m 3,若以每小时90kg 的流量输往使用车间,试问贮存的气体能用多少小时?解:设氯乙烯为理想气体,气柜内氯乙烯的物质的量为mol RT pV n 623.1461815.300314.8300106.1213=⨯⨯⨯==每小时90kg 的流量折合p 摩尔数为 133153.144145.621090109032-⋅=⨯=⨯=h mol M v Cl H Cn/v=(14618.623÷1441.153)=10.144小时1-3 0℃、101.325kPa 的条件常称为气体的标准状况。
试求甲烷在标准状况下的密度。
解:33714.015.273314.81016101325444--⋅=⨯⨯⨯=⋅=⋅=m kg M RT p M V n CH CH CHρ 1-4 一抽成真空的球形容器,质量为25.0000g 。
充以4℃水之后,总质量为125.0000g 。
若改用充以25℃、13.33kPa 的某碳氢化合物气体,则总质量为25.0163g 。
试估算该气体的摩尔质量。
解:先求容器的容积33)(0000.10010000.100000.250000.1252cm cm Vl O H ==-=ρ n=m/M=pV/RTmol g pV RTm M ⋅=⨯-⨯⨯==-31.301013330)0000.250163.25(15.298314.841-5 两个体积均为V 的玻璃球泡之间用细管连接,泡内密封着标准状况条件下的空气。
物理化学第一章课后习题解答

1.12 CO2 气体在 40℃时的摩尔体积为 0.381dm3 .mol-1 。设 CO2 为范德华气体,试 求其压力,并比较与实验值 5066.3kPa 的相对误差。
解: ,Vm =0.381× 10-3 m3 .mol-1 ,T=313.15K CO2 的范德华常数 a=364× 10-3 /Pa.m3 .mol-2 , b =42.67× 10-6 m3 .mol-1 代入方程得: P=5187.674KPa 相对误差=(5187.674-5066.3)/ 5066.3=2.4% 1.13 今有 0℃, 40530kPa 的 N2 气体,分别用理想气体状态方程及范德华方程计算 其摩尔体积.实验值为 70.3cm.mol-1 。 解:T=273.15K ,p=40530kPa N2 的范德华常数 a=140.8× 10-3 /Pa.m3 .mol-2 , b =39.13× 10-6 m3 .mol-1 =0.05603 m3 .mol-1
第一章
习题解答
1.1 物质的体膨胀系数α V 与等温压缩率κ T 的定义如下:
试导出理想气体的
、
与压力、温度的关系
解:对于理想气体: PV=nRT , V= nRT/P
求偏导:
1.2 气柜储存有 121.6kPa, 27℃的氯乙烯 (C2 H3 Cl) 气体 300m3 , 若以每小时 90kg 的流量输往使用车间,试问储存的气体能用多少小时? 解:将氯乙烯(Mw=62.5g/mol)看成理想气体: PV=nRT , n= PV/RT n=121600300/8.314300.13 (mol)=14618.6mol m=14618.662.5/1000(kg)=913.66 kg t=972.138/90(hr)=10.15hr 1.3 0℃,101.325kPa 的条件常称为气体的标准状况,试求甲烷在标准状况下的密 度? 解:将甲烷(Mw=16g/mol)看成理想气体: PV=nRT , PV =mRT/ M w 甲烷在标准状况下的密度为=m/V= PMw/RT =101.32516/8.314273.15(kg/m3 ) =0.714 kg/m3 1.4 一抽成真空的球形容器,质量为 25.0000g。充以 4 ℃水之后,总质量为 125.0000g。 若改充以 25℃, 13.33kPa 的某碳氢化合物气体, 则总质量为 25.0163g。 -3 试估算该气体的摩尔质量。水的密度按 1 g.cm 计算。 解:球形容器的体积为 V=(125-25)g/1 g.cm-3 =100 cm3 将某碳氢化合物看成理想气体:PV=nRT , PV =mRT/ M w Mw= mRT/ PV=(25.0163-25.0000)8.314300.15/(1333010010-6 ) Mw =30.51(g的空气。为进行实验时确保安全,采用同样温度 的纯氮进行置换,步骤如下:向釜内通氮直到 4 倍于空气的压力,尔后将釜内混 合气体排出直至恢复常压,重复三次。求釜内最后排气至恢复常压时其中气体含 氧的摩尔分数。设空气中氧、氮摩尔分数之比为 1:4。 解: 根据题意未通氮之前 : ,操作 n 次后, , 操作 1 次后, ,重复三次, ,V,T 一定, 故
物理化学课后习题第一章答案

1.2 气柜内贮有121.6 kPa,27℃的氯乙烯(C2H3Cl)气体300 m3,若以每小时90 kg的流量输往使用车间,试问贮存的气体能用多少小时?
解:假设气柜内所贮存的气体可全部送往使用车间。
1.5 两个容积均为V的玻璃球泡之间用细管连结,泡内密封着标准状态下的空气。
若将其中的一个球加热到 100℃,另一个球则维持 0℃,忽略连接细管中气体体积,试求该容器内空气的压力。
解:由题给条件知,(1)系统物质总量恒定;(2)两球中压力维持相同。
标准状态:
因此,
1.12 CO2气体在40℃时的摩尔体积为0.381 dm3·mol-1。
设CO2为范德华气体,试求其压力,并比较与实验值5066.3 kPa的相对误差。
1.18 把25℃的氧气充入40dm3的氧气钢瓶中,压力达 202 7×102kPa。
试用普遍化压缩因子图求钢瓶中氧气的质量。
氧气的T C=-118.57℃,P C=5.043MPa
氧气的T r=298.15/(273.15-118.57)=1.93, P r=20.27/5.043=4.02
Z=0.95
PV=ZnRT
n=PV/ZRT=202.7×105×40×10-3/(8.314×298.15)/0.95=344.3(mol)
氧气的质量m=344.3×32/1000=11(kg)。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
《物理化学》课后习题第一章答案

习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T T Q =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR - =-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
物理化学 答案 第一章_习题解答

-
知此气体的 Cp,m=29.10 J·K 1,求过程的ΔU、ΔH、Q 和 W 。 解: (1)等容
ΔU = n ⋅ Cv ,m (T2 − T1 ) = 1 × (29.1 − 8.314) × 75 = 1559 J ΔH = n ⋅ C p ,m (T2 − T1 ) = 1 × 29.1 × 75 = 2183 J
η = −Wr / Q1 = (T1 − T2 ) / T1 = (500 − 300) / 600 = 40%
第二个卡诺热机效率
η ′ = −Wr / Q1′ = (T1 − T2′) / T1 = (500 − 250) / 600 = 50%
∵
η =η′
∴两个热机的效率不相同
(2)第一个热机吸收的热量: Q1 =
γ =1.4,试求 Cv,m。若该气体的摩尔热容近似为常数,试求在等容条件下加热该气体至 t2=
80℃所需的热。 解:∵ γ =
C p,m Cv , m
=
Cv , m + R Cv , m
= 1.4
∴ Cv, m =
R
γ
=
8.314 = 20.79 J ⋅ K -1 ⋅ mol-1 0.4
Qv = n ⋅ Cv ,m ⋅ ΔT = =
4
3 3 ⎧ ⎧ ⎪V1 = 5dm ⎪V2 = 6dm Q (可 ) = 0 ⎯⎯⎯⎯ → ⎨ ⎨ ⎪T1 = 298.15 K ⎪T2 = 278.15 K ⎩ ⎩
由理想气体绝热可逆过程方程式可知
T2 / T1 = (V1 / V2 ) Cv ,m =
R / Cv , m
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题解答第一章1. 1mol 理想气体依次经过下列过程:(1)恒容下从25℃升温至100℃,(2)绝热自由膨胀至二倍体积,(3)恒压下冷却至25℃。
试计算整个过程的Q 、W 、U ∆及H ∆。
解:将三个过程中Q 、U ∆及W 的变化值列表如下:过程 QU ∆ W(1) )(11,初末T T C m V - )(11,初末T T C m V -0 (2)(3) )(33,初末T T C m p - )(33,初末T T C m v - )(33初末V V p -则对整个过程:K 15.29831=末初T T = K 15.37331==初末T TQ =)(11,初末-T T nC m v +0+)(33,初末-T T nC m p=)初末33(T T nR -=[1×8.314×(-75)]J =-623.55JU ∆=)(11,初末-T T nC m v +0+)(33,初末-T T nC m v =0W =-)(33初末V V p -=-)初末33(T T nR -=-[1×8.314×(-75)]J =623.55J因为体系的温度没有改变,所以H ∆=02. 0.1mol 单原子理想气体,始态为400K 、101.325kPa ,经下列两途径到达相同的终态:(1) 恒温可逆膨胀到10dm 3,再恒容升温至610K ; (2) 绝热自由膨胀到6.56dm 3,再恒压加热至610K 。
分别求两途径的Q 、W 、U ∆及H ∆。
若只知始态和终态,能否求出两途径的U ∆及H ∆?解:(1)始态体积1V =11/p nRT =(0.1×8.314×400/101325)dm 3=32.8dm 3 W =恒容恒温W W +=0ln12+V V nRT=(0.1×8.314×400×8.3210ln +0)J =370.7JU ∆=)(12,T T nC m V -=[)400610(314.8231.0-⨯⨯⨯]J =261.9J Q =U ∆+W =632.6J H ∆=)(12,T T nC m p -=[)400610(314.8251.0-⨯⨯⨯]=436.4J (2) Q =恒压绝热Q Q +=0+)(12,T T nC m p -=463.4J U ∆=恒压绝热U U ∆+∆=0+)(12,T T nC m V -=261.9J H ∆=恒压绝热H H ∆+∆=0+绝热Q =463.4J W =U ∆-Q =174.5J若只知始态和终态也可以求出两途径的U ∆及H ∆,因为H U 和是状态函数,其值只与体系的始终态有关,与变化途径无关。
3. 已知100℃,101.325kPa 下水的θm vap H ∆=40.67kJ •mol -1,水蒸气与水的摩尔体积分别为)(g V m =30.19dm 3•mol -1,)(l V m =18.00×10-3 dm 3•mol -1,试计算下列两过程的Q 、W 、U ∆及H ∆。
(1) 1mol 水于100℃,101.325kPa 下可逆蒸发为水蒸气;(2) 1mol 水在100℃恒温下于真空容器中全部蒸发为蒸气,而且蒸气的压力恰好为101.325kPa 。
解:(1)恒压下的可逆变化 Q =H ∆=θm vap H n ∆=40.67kJ W =-V p ∆外=-)(液气外V V p -=-[101325(30.19-18.00×10-3)×10-3]J=-3.06kJU ∆=Q +W =(40.67-3.061)kJ =37.61kJ (2) 向真空中蒸发,所以W =0由于两过程的始终态相同故H ∆和U ∆与(1)相同 Q =U ∆-W =37.61kJ4. 1mol 乙醇在其沸点时蒸发为蒸气,已知乙醇的蒸发热为858J •g -1,1g 蒸气的体积为607cm 3,忽略液体的体积,试求过程的Q 、W 、U ∆及H ∆。
解: 因为是恒压蒸发p Q =(46×858) J =17.16kJW =)12V V p -(外⨯-=(-1.013×105×670×10-6×46) J =-3.122kJ U ∆=Q +W =14.04kJ 恒压过程 H ∆=p Q =14.04kJ5. 在101.325kPa 下,把一块极小冰粒投入100g 、-5℃的过冷水中,结果有一定数量的水凝结为冰,体系的温度则变为0℃。
过程可看作是绝热的。
已知冰的熔化热为333.5J •g -1,在-5~0℃之间水的比热容为4.230J •K -1•g -1。
投入极小冰粒的质量可以忽略不计。
(1) 确定体系的初、终状态,并求过程的H ∆。
(2) 求析出冰的量。
解:(1)体系初态:100g 、-5℃、过冷水 终态: 0℃、冰水混合物因为是一个恒压绝热过程,所以H ∆=Q =0(2)可以把这个过程理解为一部分水凝结成冰放出的热量用以体系升温至0℃。
设析出冰的数量为m ,则: t C m p ∆水=H m fus ∆ 100×4.230×5=m ×333.5 得 m =6.34g6. 0.500g 正庚烷放在氧弹量热计中,燃烧后温度升高3.26℃,燃烧前后的平均温度为25℃。
已知量热计的热容量为8176J •K -1,计算25℃时正庚烷的恒压摩尔燃烧热。
解:反应方程式 C 7H 16(l )+11O 2(g) → 7CO 2(g)+8H 2O(l) 反应前后气体化学计量数之差n ∆=-4 V Q =t C ∆量热计=(8176×2.94)J =24.037kJ m r U ∆=243070500100v Q ..n=kJ =5150.88kJ m r H ∆=m r U ∆+nRT ∆=(5150.88-4×8.314×298.15×10-3)kJ =5141 kJ7. B 2H 6(g)的燃烧反应为:B 2H 6(g)+3O 2(g) → B 2O 3(s)+3H 2O(g)。
在298.15K 标准状态下每燃烧1mol B 2H 6(g)放热2020kJ ,同样条件下2mol 元素硼燃烧生成1mol B 2O 3(s)时放热1264kJ 。
求298.15K 下B 2H 6(g)的标准摩尔生成焓。
已知25℃时θm f H ∆(H 2O ,l)=-285.83kJ • mol -1,水的m vap H ∆=44.01kJ •mol -1。
解:2mol 元素硼燃烧生成1mol B 2O 3(s)时放热1264kJ , 2B(s)+1.5 O 2 B 2O 3(s)θmr H ∆=-1264kJ ,此反应是B 2O 3(s)的生成反应,则θm f H ∆(B 2O 3)=-1264kJ 由反应方程式可得:θm r H ∆=θm f H ∆(B 2O 3,s)+3[θm f H ∆(H 2O,l)+m vap H ∆]-θm f H ∆(B 2H 6,g)θmf H ∆( B 2H 6,g)=θm f H ∆(B 2O 3)+3(θm f H ∆(H 2O ,l )+m vap H ∆)-θm r H ∆ θm f H ∆(B 2O 3)=-1264kJ, θm r H ∆=-2020kJ可求得θm f H ∆( B 2H 6,g)=30.54kJ •mol -18. 试求反应CH 3COOH(g) → CH 4(g )+CO 2(g)在727℃的反应焓。
已知该反应在25℃时的反应焓为-36.12kJ •mol -1。
CH 3COOH(g)、CH 4(g )与CO 2(g)的平均恒压摩尔热容分别为52.3、37.7与31.4J •mol -1•K -1。
解:反应的p r C ∆=37.7+31.4-52.3=16.8 J •mol -1•K -1由基尔霍夫方程可得:)K 1000(m r H ∆=)K 298(m r H ∆+t C p ∆∆=(-36.12+16.8×702×10-3)kJ •mol -1=-24.3kJ •mol -19. 反应H 2(g)+2O 21(g)=H 2O(l),在298K 时,反应热为-285.84kJ •mol -1。
试计算反应在800K的热效应θm r H ∆(800K)。
已知:H 2O(l)在373K 、θp 时的蒸发热为40.65kJ •mol -1;m p C ,(H 2)=29.07-0.84×10-3T/K m p C ,(O 2)=36.16+0.85×10-3T/K m p C ,(H 2O,l)=75.26m p C ,( H 2O,g)=30.0+10.71×10-3T/Km p C ,单位均为J •K •mol -1,等式左边均除以该量纲。
解:设计如下的过程: 298K H 2(g) + 2O 21(g) = H 2O(l) (1)3H ∆H 2O(l) 373.15K 1H ∆ 2H ∆ H v a p ∆H 2O(g) 373.15K4H ∆800K H 2(g) +2O 21(g) = H 2O(g) (2) 由此可得:θm r H ∆(800K).=θm r H ∆(298K)+3H ∆+H vap ∆+4H ∆-1H ∆-2H ∆=[-285.84+75.26×(373.15-298)×10-3+40.65+t t d )1071.100.30(380015.373-⨯+⎰-t t d 1084.007.29(8002983)⎰-⨯+-t t d )1085.016.36(218002983⎰-⨯+]J/mol =-247.4kJ •mol -110. 1mol 、20℃、101.325kPa 的空气,分别经恒温可逆和绝热可逆压缩到终态压力506.625kPa ,求这两过程的功。
空气的m p C ,=29.1J •K •mol -1。
空气可假设为理想气体。
解:恒温可逆过程W =)/ln(21p p nRT=[8.314×293.15×ln(101325/506625)]J •mol -1=3.922kJ •mol -1绝热可逆过程,设终态温度为2T则 rrp pT T -=12112)( 其中4.1314.81.291.29,,=-==mV m p C C r可以求得2T =464.3K则W =U ∆=)(12,T T nC m V -=[1×(29.1-8.314)×(464.3-293.15)]J=3.56kJ11. 在一带理想活塞的绝热气缸中,放有2mol 、298.15K 、1519.00kPa 的理想气体,分别经(1)绝热可逆膨胀到最终体积为7.59dm 3;(2)将环境压力突降至506.625kPa 时,气体作快速膨胀到终态体积为7.59dm 3。