汽机除氧给水系统讲解

合集下载

汽轮机 给水系统概述

汽轮机 给水系统概述

汽轮机给水系统概述1、给水系统的作用给水系统是指从除氧器出口到锅炉省煤器入口的全部设备及其管道系统。

给水系统的主要功能是将除氧器水箱中的凝结水通过给水泵提高压力,经过高压加热器进一步加热后达到锅炉给水的要求,输送到锅炉省煤器入口,作为锅炉的给水。

此外,给水系统还向锅炉过热器的一、二级减温器、再热器的减温器以及汽机高压旁路装置的减温器提供高压减温水,用于调节上述设备的出口蒸汽温度。

2、给水系统的组成我公司的机组给水系统主要包括两台50%容量的汽动给水泵及其前置泵,驱动小汽轮机及其前置泵驱动电机,35%容量的电动给水泵、液力偶合器、前置泵及其驱动电机,1号、2号、3号高压加热器、阀门、滤网等设备以及相应管道。

给水泵是汽轮机的重要辅助设备,它将旋转机械能转变为给水的压力能和动能,向锅炉提供所要求压力下的给水。

随着机组向大容量、高参数方向发展,对给水泵的工作性能和调节提出愈来愈高的要求。

为适应机组滑压运行、提高机组运行的经济性,大型机组的给水调节采用变速方式,避免调节阀产生的节流损失。

同时给水泵的驱动功率也随着机组容量的增大而增大,若采用电动机驱动,其变速机构必将更庞大,耗费的电能也将全部由发电机和厂高变提供,为保证机组对系统的电力输出,发电机的容量将不得不作相应的增加,厂高变的容量也需增大,因此大型机组的给水泵多采用转速可变的小汽轮机来驱动。

通常配置两台汽动给水泵(简称汽泵),作为正常运行时供给锅炉给水的动力设备,另配一台电动给水泵(简称电泵),作为机组启动泵和正常运行备用泵。

为提高除氧器在滑压运行时的经济性,同时又确保给水泵的运行安全,通常在给水泵前加设一台低速前置泵,与给水泵串联运行。

由于前置泵的工作转速较低,所需的泵进口倒灌高度(即汽蚀裕量)较小,从而降低了除氧器的安装高度,节省了主场房的建设费用;并且给水经前置泵升压后,其出水压头高于给水泵所需的有限汽蚀裕量和在小流量下的附加汽化压头,有效地防止给水泵的汽蚀。

汽轮机介绍之除氧器系统

汽轮机介绍之除氧器系统

汽轮机介绍之除氧器系统汽轮机是一种利用高温高压蒸汽驱动轴以产生机械能的装置。

在汽轮机运行过程中,除氧器系统起着关键的作用。

本文将介绍除氧器系统在汽轮机中的功能、结构和工作原理。

除氧器系统的功能是去除锅炉给水中的氧气,以防止氧腐蚀和水垢的产生。

因为氧气是导致金属腐蚀的主要原因之一,而水垢的产生会影响锅炉的热传递效率,增加能源的消耗。

除氧器系统通常由除氧器、热再生器和补水泵组成。

除氧器是除氧器系统的核心设备,其结构通常包括气柱、注氧管、汽水分离器和排气管等部分。

热再生器用于回收烟气热量,使之加热给水,提高系统的热效率。

补水泵则用于将补充给水送入除氧器系统。

除氧器系统的工作原理是通过热水与除氧器中的气柱进行接触,使水中的溶解气体(主要是氧气)被除去。

在汽轮机运行过程中,锅炉给水首先经过补水泵进入除氧器,除氧器中的热水会与给水进行接触,并利用热量将溶解在水中的氧气排出。

经过除氧器处理后的水进入锅炉进行加热,最终转化为高温高压蒸汽驱动汽轮机的运转。

除氧器系统的工作过程可以分为三个阶段:吸附阶段、再生阶段和排气阶段。

在吸附阶段,除氧器中的热水与给水接触,水中的氧气被吸附到热水中。

在再生阶段,热水通过烟气再热器,被烟气加热并达到饱和,水中的氧气被释放出来。

在排气阶段,通过排气管将除氧器中的气体排出。

除氧器系统的性能和效果取决于除氧器的结构和操作参数。

除氧器的结构设计应合理,以保证水与热水充分接触,提高除氧效果。

操作参数如热水温度、水流量等也会影响除氧效果。

因此,为了获得良好的除氧效果,需要对除氧器系统进行严密的控制和管理。

总之,除氧器系统在汽轮机中起着重要的作用,能够有效去除锅炉给水中的氧气,防止氧腐蚀和水垢的产生。

除氧器系统的结构和工作原理需要合理设计和操作,以确保良好的除氧效果。

这有助于提高汽轮机的运行效率和使用寿命。

汽机汽水系统简介

汽机汽水系统简介

汽机汽水系统简介发电部:刘勇第一部分:循环水系统、开式冷却水系统我厂循环水系统采用海水直流供水系统。

所谓直流供水系统就是冷却水直接从水源,进入凝汽器与汽轮机排汽换热,温度升高了的冷却水排至水源。

冷却水系统的作用:(1)对排汽进行冷却形成真空(2)向开式冷却水系统提供水源。

每台机组配置两台单级立式导叶斜流泵,由长沙水泵厂生产,水泵型号:88LKXA-2,设计流量10.5 m3/s;设计扬程:23.5 mHO。

循环水泵出口门采用蓄能罐式液控2缓闭止回蝶阀,每台机组两台循环泵出口门后汇至一根DN3000外径的循环水母管,至汽机房前分为两根DN2200外径的循环水管,先进入低背压凝汽器,再经高背压凝汽器后汇流至排水虹吸井经钢筋混凝土排水沟进入排水工作井排出。

二台机组的循环水系统通过循泵出口压力钢管上的两个联络电动蝶阀组成扩大单元制方式运行,冬季采用一泵一机运行,春秋季采用三泵二机运行,夏季采用二泵一机运行。

循环水系统主要流程如下:取水口→自流进水隧道→循环水泵(循泵房设施)→进水压力钢管→凝汽器→排水钢管→钢筋混凝土排水沟→排水虹吸井→钢筋混凝土排水→排水工作井→自流排水隧道→排水口。

每台机组凝汽器循环水管分别在低压凝汽器水侧进口和高压凝汽器水侧出口的循环水管道上设有电动蝶阀,以便隔离凝汽器,共配置2进2出4个电动蝶阀。

每台机组冷凝器的A、B侧各配置一套胶球清洗系统。

循环水泵房进水前池和排水工作井进口处安装有钢闸门,当循环水系统需要排空进行检修时,可用以隔离切断海区海水水源。

每台循泵进水流道上各设置1块直立式拦污栅,用以清除水源中粗大污物、集中污物和其它飘浮物。

每块拦污栅尺寸为6mx21m、栅条净距50mm,采用耐海水不锈钢材质。

正常工作时,泵房无人值班,定期巡视检查.循环泵房所有拦污栅共用一台直耙式清污机,清污机进行移动式工作,清污时沿2.3 m宽的轻轨将清污机开至需清污的取水井上方,先下降,上升时将污物刮出。

汽轮机 给水系统概述

汽轮机 给水系统概述

汽轮机给水系统概述1、给水系统的作用给水系统是指从除氧器出口到锅炉省煤器入口的全部设备及其管道系统。

给水系统的主要功能是将除氧器水箱中的凝结水通过给水泵提高压力,经过高压加热器进一步加热后达到锅炉给水的要求,输送到锅炉省煤器入口,作为锅炉的给水。

此外,给水系统还向锅炉过热器的一、二级减温器、再热器的减温器以及汽机高压旁路装置的减温器提供高压减温水,用于调节上述设备的出口蒸汽温度。

2、给水系统的组成我公司的机组给水系统主要包括两台50%容量的汽动给水泵及其前置泵,驱动小汽轮机及其前置泵驱动电机,35%容量的电动给水泵、液力偶合器、前置泵及其驱动电机,1号、2号、3号高压加热器、阀门、滤网等设备以及相应管道。

给水泵是汽轮机的重要辅助设备,它将旋转机械能转变为给水的压力能和动能,向锅炉提供所要求压力下的给水。

随着机组向大容量、高参数方向发展,对给水泵的工作性能和调节提出愈来愈高的要求。

为适应机组滑压运行、提高机组运行的经济性,大型机组的给水调节采用变速方式,避免调节阀产生的节流损失。

同时给水泵的驱动功率也随着机组容量的增大而增大,若采用电动机驱动,其变速机构必将更庞大,耗费的电能也将全部由发电机和厂高变提供,为保证机组对系统的电力输出,发电机的容量将不得不作相应的增加,厂高变的容量也需增大,因此大型机组的给水泵多采用转速可变的小汽轮机来驱动。

通常配置两台汽动给水泵(简称汽泵),作为正常运行时供给锅炉给水的动力设备,另配一台电动给水泵(简称电泵),作为机组启动泵和正常运行备用泵。

为提高除氧器在滑压运行时的经济性,同时又确保给水泵的运行安全,通常在给水泵前加设一台低速前置泵,与给水泵串联运行。

由于前置泵的工作转速较低,所需的泵进口倒灌高度(即汽蚀裕量)较小,从而降低了除氧器的安装高度,节省了主场房的建设费用;并且给水经前置泵升压后,其出水压头高于给水泵所需的有限汽蚀裕量和在小流量下的附加汽化压头,有效地防止给水泵的汽蚀。

给水系统

给水系统

给水系统发电厂的给水系统是指从除氧器给水箱经前置泵、给水泵、高压加热器到锅炉省煤器前的全部给水管道,还包括给水泵的再循环管道、各种用途的减温水管道以及管道附件等。

给水系统的主要作用是把除氧水升压后,通过高压加热器利用汽轮机抽汽加热供给锅炉,提高循环的热效率,同时提供高压旁路减温水、过热器减温水及再热器减温水等。

一、给水系统的形式1、低压给水系统由除氧器给水箱经下水管至给水泵进口的管道、阀门和附件组成,由于承受的给水压力较低,称为低压给水系统。

为减少流动阻力,防止给水泵汽蚀,一般采用管道短、管径大、阀门少、系统简单的管道系统。

低压供水管道常分为单母管分段制和切换母管制两种。

单母管分段制是下水管接在低压给水母管上,给水再由母管分配到给水泵中。

这种系统由于系统简单,布置方便,阀门少,压力损失小,故应用比较广泛。

切换母管制是一台除氧器与一台给水泵组成单元,单元之间用母管联络,备用给水泵接在切换母管上。

这种系统调度灵活、阻力小,但管道布置复杂,投资大,多用于给水泵出力与机炉容量匹配的情况。

2、高压给水系统由给水泵出口经高压加热器到锅炉省煤器前的管道、阀门和附件组成,由于承受的给水压力很高,称为高压给水系统。

高压给水管道系统有:集中母管制、切换母管制、扩大单元制和单元制四种形式。

前三种形式的给水管道系统,由于运行调度灵活、供水可靠,并能减少备用泵的台数,在我国超高参数以下机组中普遍采用,如图3-51所示。

它们的共同特点是:①在给水泵出口的高压给水管道上按水流方向装设一个止回阀和一个截止阀。

止回阀用于防止高压水倒流,截止阀用于切断高压给水与事故泵和备用泵的关系。

②为防止低负荷时给水泵汽蚀,在各给水泵的出口截止阀前接出至除氧器给水箱的再循环管,保证在低负荷工况下有足够的水量通过给水泵。

③高压加热器均设有给水自动旁路,当高压加热器故障解列时,可通过旁路向锅炉供水。

④在冷、热高压给水母管之间,设置直通的“冷供管”,作为高压加热器事故停用或锅炉启动时间向锅炉直接供水,机组正常运行时,处于热备用状态。

《除氧给水系统》课件

《除氧给水系统》课件

给水系统设计要点
01
02
03
04
水量确定
根据城市规模、居民和工业用 水需求来确定。
水质标准
根据国家或地区的水质标准, 确保供水达到生活和工业用水 的需求。
水源选择
优先选择优质、稳定、易于保 护的水源。
管网设计
确保供水压力和流量的稳定性 ,同时考虑管网的布局和材料 选择。
给水系统优化方法与案例
优化方法
05
除氧给水系统案例分析
工业除氧给水系统案例
工业除氧给水系统案例
介绍工业除氧给水系统的应用场景,包括钢铁、电力、化工等行业的给水需求和特点。
案例分析
分析工业除氧给水系统的设计、运行和管理,探讨如何提高系统的稳定性和可靠性,以满足工业生产 的用水需求。
住宅小区给水系统案例
住宅小区给水系统案例
介绍住宅小区的给水需求和特点,包括高层建筑、多层建筑和别墅等不同类型住宅的给 水系统设计。
方法
加入化学药剂,如亚硫酸钠、亚硫酸氢钠、联氨等,使溶解 氧与之反应生成不溶于水的物质或难溶于水的气体,再通过 过滤等方法去除。
物理除氧原理及方法
原理
利用物质的物理性质,如吸附、渗透、扩散等,将溶解氧从水中分离出来。
方法
采用活性炭、分子筛、硅胶等吸附剂,使溶解氧吸附在吸附剂表面,再通过再 生等方法将吸附剂中的氧去除。
THANK YOU
感谢聆听
发展趋势
随着环保要求的提高和技术的不断创 新,高效、节能、环保型的除氧技术 成为未来的发展方向。
02
除氧技术原理及方法
除氧技术分类
化学除氧
利用化学反应除去水中的溶解氧。
物理除氧
利用物理方法将溶解氧从水中分离出来。

除氧给水系统

除氧给水系统
(3)蝶型喷嘴
1100t/h蝶型stork喷嘴
喷嘴的作用
喷嘴的作用在于使凝结水形成适当的水膜,以获得最佳的水滴,既增大水与蒸汽的接触表面积,又缩短了气体离析的路径。
除氧器布置有喷头,由于喷头弧形圆盘的调节作用,当机组负荷大时,喷头内外压差增大,弧形圆盘开度亦增大,流量随之增大。当机组负荷小时,喷头压差降低,弧形圆盘开度亦减少,流量随之减少。使喷出的水膜始终保持稳定的形态,以适应机组滑压运行。
过热蒸汽冷却段是利用从汽轮机抽出的过热蒸汽的一部分显热来提高给水温度的;它位于给水出口流程侧,并有包壳板密闭。采用过热蒸汽冷却段可提高离开加热器的给水温度,使它接近或略超过该抽汽压力下的饱和温度。
01
从进口接管进入的过热蒸汽在一组隔板的导向下以适当的线速度和质量速度均匀地流过管子,并使蒸汽保留有足够的过热度以保证蒸汽离开该段时呈干燥状态,这样,当蒸汽离开该段进入凝结段时,可防止湿蒸汽冲蚀和水蚀的损害。
给水泵的出口母管通过高加组的进口三通阀进入高加组,高加组出口设有出口电动门,出口电动门与进口三通阀一起控制高加组的投切。高加组进口三通阀上设有注水门 。
高加组由三台高压加热器组成,各高加之间只有给水管道相连,中间不设阀门 。
每台高加的水侧出口管道上设有安全门 。
各高加的水侧进口管道以及高加组出口电动门前后都设有放水门 。
STEP5
STEP4
STEP3
STEP2
STEP1
按高加投入检查卡恢复系统完毕,确认各阀门位置正确。
开启高加注水门,以不大于55℃/h的温升率向高加注水,加热器水侧放气阀见连续水后关闭。
高加全压后关闭注水门,检查水压不下降;关闭高加疏水门检查高加水位计无水位指示,确认高加水侧无泄漏。
缓慢开启高加出口电动门至全开。

汽机给水系统的组成和各部分的作用

汽机给水系统的组成和各部分的作用

汽机给水系统的组成和各部分的作用汽机给水系统是汽轮机工作过程中非常重要的一个系统,它负责提供所需的给水,并对给水进行预处理,确保给水的质量和性能满足汽轮机的工作要求。

该系统由多个组成部分组成,包括给水泵、锅炉、再热器、凝汽器、变频器和水处理设备等。

以下是对每个组成部分的详细介绍。

1.给水泵:给水泵是给水系统的核心部分,它的作用是将进口水源抽送至锅炉内,提供给汽轮机使用。

给水泵通常分为高压给水泵和低压给水泵两种类型,其工作原理类似于普通的水泵。

高压给水泵通常用于将水送入锅炉系统,而低压给水泵则用于将锅炉内的水送至汽轮机使用。

2.锅炉:锅炉是汽机给水系统中的一个重要组成部分,它的主要作用是将水加热并转化为蒸汽。

蒸汽是汽轮机工作的动力来源。

锅炉通常由炉膛、冷凝器和烟囱等部分组成。

在锅炉内,水经过加热后转变为高温高压的蒸汽,然后通过输汽管道送至汽轮机。

3.再热器:再热器是汽机给水系统中的一个关键部分,它的作用是在蒸汽流向汽轮机之前再次加热蒸汽。

再热器可以提高蒸汽的温度和能量,从而提高汽轮机的热效率。

再热器通常位于汽轮机的中间部位,通过再热器,蒸汽的温度可以进一步提高,以实现更高的功率输出。

4.凝汽器:凝汽器是汽机给水系统中的另一个重要组成部分,它的主要作用是将汽轮机排出的高温低压的排汽冷却并凝结成水。

凝汽器通常通过冷却介质(如冷却水)来实现蒸汽的冷凝,并将冷凝后的水送回给水泵,形成循环。

5.变频器:变频器是汽机给水系统中的一个辅助设备,它的主要作用是控制给水泵的运行速度。

通过调整给水泵的运行速度,变频器可以使给水量与汽轮机负荷变化相匹配,从而确保汽机给水系统的稳定运行。

6.水处理设备:水处理设备是汽机给水系统中一个必不可少的组成部分。

它的作用是对进入锅炉的给水进行处理,以去除其中的杂质和有害物质,以减少对锅炉和汽轮机的腐蚀和污染。

水处理设备通常包括过滤器、软水器、除氧器等。

综上所述,汽机给水系统是汽轮机工作中不可或缺的一个系统,它通过多个组成部分的协调和配合,确保给水的质量和性能满足汽轮机的工作要求。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽机除氧给水系统讲解一、除氧器除氧器是大型火电机组回热系统中重要的辅机之一,它的主要作用是除去凝结水中的氧和二氧化碳等非冷凝气体,其次将凝结水加热到除氧器运行压力下的饱和温度,加热汽源是四抽及其它方面的余汽,疏水等,从而提高了机组的热经济性,并将达到标准含氧量的饱和水储存于除氧器的水箱中随时满足锅炉的需要,保证锅炉的安全运行。

二、除氧器工作原理热力除氧原理:气体在水中的溶解度正比于该气体在水面的分压力,水中气体分压力的总合与水面混合气体的总压力相平衡,当水加热至沸腾时,水面各蒸汽的分压力接近混合气体的总压力,其它气体的分压力接近零,故不能溶解的其它气体被排出水面。

三、除氧器的运行1.除氧器滑压运行时,应保证除氧器水汽侧压差的大小与机组需要凝结水流量大小(及喷嘴流量大小)相匹配,才能使喷嘴达到最佳的雾化效果从而保证凝结水在喷雾除氧器段空间的除氧效果。

2、除氧器在安装投运前和大修后应进行安全门开启试验。

3、除氧器安装后投运、大修或长期停机后投运应对除氧系统进行除铁冲洗。

合格指标是:含铁量≤50μg∕l;悬浮物≤10μg∕L4、正常运行中的监视1)除氧器运行中应注意监视压力、温度要与机组运行工况相对应,温度变化率不能太大,压力不能超过额定值。

2)正常运行时,水位应投入自动,控制在正常范围之内。

3)正常运行时,辅助蒸汽供除氧器主、旁路压力控制投入自动,定值在0.147MPa。

4)正常运行时,溶氧量要合格,如含氧量超限,应调整除氧器电动排气门开度,使除氧器溶氧合格。

5)除氧器正常运行中应对就地水位计和远方水位计进行校核;对水位保护进行试3佥,保证其动作正常。

6)正常运行时应对各阀门、管道经常检查,不应有漏水、漏汽、汽水冲击振动等现象。

四、设备参数概述1.型式:卧式。

2、设计压力为:≥1.23MPa(g);最高工作压力1.081MPa(a)r额定工作压力1.029MPa(a)β3、设计温度:≥392.2°C;最高工作温度368.7°C,额定工作温度362.1。

4、除氧器额定出力:2150t∕h o5、除氧器有效容积:235m3;相当于约6.5分钟的锅炉最大给水量(除氧水箱的贮水量是指除氧水箱正常水位至水箱出水管顶部之间的水容积)。

6、运行方式:定——滑;滑压范围0.147-1.081MPa(a)o7、加热蒸汽温度:362.1o C(VWO工况)。

8、除氧器进水温度:142.9。

C(VWO工况)9、除氧器出水温度:181.5。

C(VWO工况)10、除氧器出水含氧量:≤7μg∕L(非加氧工况)IL除氧器最大运行(VWO)工况参数表:序号名称流量t/h压力MPa(a)温度。

C焙kJ/kg1进除氧器凝结水1535-3.0142.9602.62高加正常疏水363~2.1192.9820.33除氧器加热蒸汽98.91.081362.03182.54除氧器出水19971.038181.5770.0五、除氧器本体项目除氧器型式内置式卧式型号GC-2150/GS-235有效容积235m3额定出力2150t/h最大出力2365t/h设计压力MPa1.23(g)设计温度。

C395六、除氧组件1.喷嘴数量:2个材料:不锈钢最大出力为1320000kg/h流量下,压降为0.05MPa o2、安全阀项目除氧器安全阀数量2安全阀尺寸mmDN200安全阀公称压力/整定压力MPa2.5/1.18通流量kg/h108169七、除氧器性能特点除氧器性能表项目单位数据排汽量%o2-3滑压范围%10-100冷态启动中所需的预暖时间分120出力t/h2150出口含氧量μg∕L≤7八、给水系统及设备1.系统概述给水系统是电厂中热力循环的一个重要环节,它把除氧水升压后通过高压加热器加热直接供给除氧器入口联箱,做为锅炉的给水。

同时供给再热器、过热器、高压旁路减温器作为减温水,用以调节上述设备出口蒸汽的温度。

每台机组配备3台高压加热器,采用全焊接结构壳体、双流程卧式U型管。

加热器由过热蒸汽冷却段、凝结段和疏水冷却段三个传热段组成。

具有较高的传热效率,配有水位保护,水、汽侧均有安全阀以防超压。

高加疏水方式为逐级自流,最后进入除氧器。

2、给水泵配置本期工程共两台机组,每台机组配置3×35%BMCR的电动调速给水泵(含电动给水泵、电泵前置泵、电动机及液力偶合器)。

3、泵组的布置电动给水泵组安装在汽机房0∙00m标高层。

每台泵组(含前置泵及给水泵)由一台电动机提供动力;电动机与前置泵同轴布置,电动给水泵与液力偶合器输出轴同轴布置。

4、前置泵入口给水水质输送介质名称:锅炉给水。

总硬度~0μmol∕L溶解氧(加氧处理后)(30~200)μg∕L铁≤10μg∕L铜<5μg∕L二氧化硅≤15μg∕L油~0mg∕LPH值8.0-9.0电导率25。

C≤0.2μS∕cm钠≤5μg∕L5、给水泵的运行方式1)在机组正常运行工况下,三台35%容量电动给水泵并列运行时,给水泵(包括前置泵)应能满足汽机从低负荷至最大负荷给水参数的要求。

2)在一台电动给水泵事故状态下,两台35%电动给水泵组运行时,应能满足机组70%负荷机组给水参数的要求。

3)在机组启动状态下,单台给水泵组运行时,给水泵(包括前置泵)加给水旁路调节阀应能满足启动状态下机组给水参数的要求。

6、给水泵组的综合性能1)前置泵性能应与给水泵相匹配,在任何允许运行工况下均应保证前置泵及给水泵不会发生汽蚀。

当并列运行中一台泵停运时,其余运行泵在额定转数下连续运行,不发生汽蚀。

2)泵的最小流量应不超过额定流量的25%o最小流量调节装置应与水泵所需最小流量匹配,具有确保给水泵安全运行的性能。

3)在泵的运行范围内,三台主泵并联运行时,各泵间的分配负荷偏差应限制在5%以内。

4)给水泵应设有中间抽头,以供给锅炉再热蒸汽减温用水。

无论是单台泵组运行还是两台或三台泵组并列运行,应均能保证能以系统所需要的压力输送一定流量的给水到再热减温器。

三台给水泵组的特性曲线应完全一致。

作为备用的给水泵能在30秒内投运点达到所需压力。

泵组的设计应能经受热冲击,当主机甩负荷后,允许给水温度下降速率为2.8o C∕s o给水泵组启动时间应尽量短。

5)对于刚性转子,泵的第一临界转速应高于最大工作转速的125%,或低于变速泵工作转速下限值。

6)泵的转子及其主要的旋转部件都应进行静平衡和动平衡试验。

静平衡精度不低于GB9239中的G6.3级给水泵动平衡精度不低于GB9239中的G2.5级,前置泵动平衡精度不低于GB9239中的G6.3级。

泵的振动应在无汽蚀运转条件下测量,轴承处的振动值应符合JB/T8097的规定。

7)噪声控制标准:给水泵、前置泵及调速装置应符合JB/T8098及DL5053-1996中的有关规定〃即距泵体外壁1米、距地面高(泵高+1)/2米处的噪声不大于85dB(八)"。

8)泵组汽蚀余量应符合GB/T13006-1991的要求。

9)给水泵组应能在机组最大工况下(VWO工况)长期连续运行,同时又能满足锅炉各种运行工况下锅炉给水和减温水的需要量。

3台泵组并列运行,从对应主机TMCR工况至最大工况点,给水泵的运行效率应处于特性曲线最高效率范围,且不得低于82.8%o10)给水泵的叶轮、转子、芯包和其它可拆卸的部件应是可互换的。

叶轮和泵壳上均应装设可拆卸的磨环,磨环的装配应确保磨环不发生转动,叶轮的硬度应比磨环的硬度明显大些,从而可避免叶轮的咬损。

11)泵轴应在其磨损部位装配可更换的轴套。

给水泵前、后轴承体应设安装轴振动测量装置。

泵转子上留有键相槽。

12)所有径向轴承应为压力润滑式,其布置应便于更换。

推力轴承能在任何稳态和瞬态运行情况下,包括启动和停止时,能够承受轴向推力。

轴承座的结构应便于在轴承解体前将油全部排出。

13 )泵的结构设计应考虑防止密封冷却水混入油系统的措施。

各台前置泵入口管上分别装设Y型粗过滤网(在30%的堵塞程度下,其阻力变化范围为0.02〜0.03MPa),过滤精度40目。

各台给水泵入口分别装设Y型精过滤网(其阻力变化范围为0.03〜0.04MPa),过滤精度60目。

滤网及布置形式满足买方要求。

上述滤网卖方应分别提供临时和永久滤网滤芯各一套。

14 )给水泵前置泵应为卧式,进出水接口方向为水平方向。

给水泵应为卧式多级双壳芯包式。

芯包采用国产产品。

可以整体从泵筒体内抽出,与筒体一起构成泵的主压力边界。

这种设计,由英国高级给水泵发展而来,利用备用芯包,使得维修时间大为减少,芯包内包括有泵所有的易损部件,并具有互换性。

泵由进口侧泵脚下的一对横向键轴向定位在联轴器端,筒体下有一纵向键,在泵脚和泵座间使用铜质滑块,从而保证能自由地热膨胀和良好的接触。

筒体为具有良好焊接性能的镒钢锻件,进、出口支管为碳钢铸件,焊接到筒体上。

这种结构,使得在拆开联轴器和辅助管路并松开端盖螺栓后,就能将整个芯包作为一个整体拆下来。

因此,在较大故障停机时,必要时可在约24h 内拆下内部的芯包。

15 )给水泵出口设逆止阀及最小流量接口;前置泵泵体设有放水、排气接口及其关断阀、密封水接头、进口和出口法兰上的压力表接口。

16 )给水泵进出口接管采用焊接连接,前置泵进出口均采用法兰连接并提供反法兰及连接件,法兰标准采用国标。

17 )联轴器及其它外露旋转部件应装设可拆卸的刚性钢护罩。

联轴器护罩应是金属封闭式18 )液力偶合器液力偶合器用来对高速的工业机械进行无级调速控制,液力偶合器采用整体集装式箱体结构,液力偶合器将偶合器的主体部分和一对增速齿轮,工作油、润滑油油管路合并在一个箱体中,箱体的下部作为油箱,使得箱体和油箱组成一个紧凑的整体。

偶合器与电机以及给水泵之间的动力传递由联轴器完成,输入转速由一对增速齿轮增速后传到泵轮轴,泵轮与涡轮之间由工作油传递扭矩。

原动机的转矩使工作油在泵轮中加速,然后工作油在涡轮中减速并对涡轮产生一等量的转矩,工作油在泵涡轮间循环是靠两轮间滑差所产生的压差来实现,这就要求涡轮的转速要低于泵轮。

因此,要传动动力,两轮之间必须有滑差。

选用偶合器时,应保证在满载全充液的情况下有T氐的满载滑差。

输出转速可通过调节泵涡轮间工作腔室内的工作油充液量来调节,而工作腔室的充液量由勺管的位置所决定。

由于滑差造成的功率损耗将使工作油温度升高,为了消除这些热量,必须冷却工作油。

液力偶合器油循环工作油和润滑油都使用同一种油。

离心式的工作油泵和齿轮泵润滑油泵组合成一个冲油泵组,有偶合器的输入轴驱动。

在给水泵组启动、停机、损坏时,给水泵组的润滑油由电动辅助润滑油泵供给。

(辅助油泵为齿轮式油泵。

)19 )工作油循环工作油循环是由一个闭式循环叠加一个开式循环所组成,从而能够改变充油量。

在闭式循环回路中,工作油泵从油槽内把压力油吸出经过工作油控制阀向偶合器的工作腔供给开始工作时的润滑用油,作动力传送。

相关文档
最新文档