对口高考试卷数学

合集下载

2024年广西中职对口数学高考真题-+参考答案

2024年广西中职对口数学高考真题-+参考答案

2024年广西壮族自治区中等职业教育对口升学考试真题数学注意事项:1.本试卷共4页,总分100分,考试时间60分钟,请使用黑色中性笔直接在试卷上作答.2.试卷前的项目填写清楚.题号一二三总分评分人得分一、单项选择题(本大题共8小题,每小题5分,共40分。

在每小题给出的四个选项中,只有一个是正确的,请将正确选项填入相应题号下)1.已知集合M ={—1,1,x 2},则x 满足()A.x ≠0且x ≠1B.x ≠-1且x ≠0C.x ≠0D.x ≠±12.函数y=ln √x -1+的定义域为()A.{x |x ≠0且x ≠1} B.{x |x >1}C.{x |x ≥1}D.{x |0<x <1}3.下列函数为奇函数的是()A.f (x )=x 2—1B.f (x )=|x |C.21)(x x x f +=D.f (x )=sin 2x 4.下列各值的大小不正确的是()A.2ln 21<log 23B.(-2)3<(-3)3C.6-2<(-5)-2D.log 23<log 39_____1x (x -1)___5.圆心为(4,-5)且与x 轴相切的圆的方程为()A.(x -4)2+(y +5)2=42B.(x +4)2+(y -5)2=42C.(x +4)2+(y -5)2=52D.(x -4)2+(y +5)2=526.下列说法正确的是()A.若直线l 平行于平面α内的无数条直线,则l //α;B.若直线l 在平面α外,则l //α;C.若l //b,直线b ⊂α,则l //α;D.若l //b ,直线b ⊂α,则l 平行于平面α内无数条直线.7.一个笔筒有2B 24支,另一个笔筒有HB 30支,从中任取一支,则有取法.()A.24种B.30种C.54种D.720种8.从编号为1,2,3,…,10的大小相同的求中任取4个,则4个球中号码最大为7的概率()A.212B.152C.74 D.31二、填空题(本大题共5小题,每小题6分,共30分)9.不等式x 2-x -30≤0的解集为.10.已知α是第二象限的角,且tan α=-3,则cos α=.11.已知平面向量a =(1,k),向量b =(-2,5),则a //b,则k=.12.过点M(a ,-1),N(2,a )的直线,且与直线2y -x +1=0平行,则a =.13.如图,在正方体ABCD-A1B 1C 1D 1中,则异面直线A 1B 与AD 1所成角大小为.三、解答题(本大题共2小题,共30分,答题时应写出文字说明、证明过程或验算步骤)14.在等差数列{a n}中,a n=n+8,求S10.(10分)15.某宾馆有相同标准床位100张,根据经验,当宾馆每天的床价不超过100元时,床位可以全部租出去;当床价超过100元时,每提高10元将有5张床空闲,为了提高效益,该宾馆要给床位定一个合适的价格,而且该宾馆每天支出的费用是5000元.(1)当床价为150元时,当天有多少张空床?(2)写出该宾馆一天出租床位的纯收入y与床价x之间的函数关系式.(3)宾馆床价多少时,纯收入最多?2024年广西壮族自治区中等职业教育对口升学考试真题数学(参考答案)一、选择题。

中职对口高考数学试题

中职对口高考数学试题

对口高考数学试题一、 选择题(每题5分,共60分)1、已知集合U=﹛1,2,3,4﹜,A=﹛2,4﹜,B=﹛3, 4﹜,则 (UC A)UB = ( ) A 、﹛3﹜ B 、﹛1,3,4﹜ C 、﹛2,3,4﹜D 、﹛1,3,4,3﹜ 2、sin150。

的值等于( )A 、-12B 、12C D 、-3、下列式子中正确的是( )A 、lg 3﹤0B 、lg5>lg2C 、0.1l g 5o >0.1l g 3oD 、0.5l g 0.3o >0.5l g 0.2o4、函数y=lg(2x -1)的定义域为( )A 、(-1,1)B 、[-1,1]C 、(-∞,-1)U (1, +∞)D 、(-∞,-1]U[1, +∞)5、下列命题正确的是( )A 、x=y 是∣x ∣=∣y ∣的必要条件B 、x=3是2x -9=0的充要条件C 、x>y 是的2x >2y 的充分条件D 、a>b,c>0是ac>bc 的充分条件6、下列函数是偶函数的是( )A 、f(x)=2x+1B 、f(x)= 1xC 、f(x) =2x +2x+1D 、f(x) =-2x 7、函数221y x x =++的单调递增区间是( )A 、(-∞,-1)B 、(-1,+∞)C 、(-∞,1)D 、(1,+∞)8、已知sin x =m -12有意义,则实数m 的取值范围是( ) A 、[-1,1] B 、[-12,32] C 、(-12,32) D 、[-32,32] 9、抛物线22y x =的准线方程为A .18y =- B .14y =- C .12y =- D .1y =-10、以双曲线22154x y -=的右焦点为焦点的抛物线的标准方程是( ) A 、24y x = B 、212y x = C 、26y x = D 、212x y =11、下列说法正确的是( )A 、经过平面外一点有且只有一条直线平行于这个平面B 、经过平面外一点有且只有一条直线垂直于这个平面C 、经过直线外一点有且只有一个平面平行于这条直线D 、经过直线外一点有且只有一条直线垂直于这条直线12、为了解某一地区高一年级7000名学生的体重情况,从中抽查了500名学生的体重,就这个问题来说,下列说法中正确的是( )A 、7000名学生是总体B 、每个学生是个体C 、500名学生是抽取的一个样本D 、样本容量是500二、填空题(每题5分,共20分)13、cos70cos10sin70sin10+=-----------------14、已知函数f(x)= x a 的图像经过(-2,9),则f(1)=------------------15、已知偶函数y=f(x)在[0, π]上是增函数,则f (﹣π), f (2π),f (﹣2)的大小关系 是------------------------16、若α+=-------------------------- 三、解答题17、在ABC 中,角A 、B 、C 的边分别为a 、b 、c ,60,1A ab =︒==,求: ⑴角B ;⑵边c 。

2024年对口高职升学考试数学考试卷

2024年对口高职升学考试数学考试卷

2024年对口高职升学考试数学考试卷一、 选择题(共10小题,每题6分,共计60分。

)1、已知不等式2x-5<0,x ∈N,则解集子集的个数( )解不等式求子集个数A.{1}B.{2}C.{1,3}D.{2,3}2、已知|a |>|b |,则下列正确的是( )不等式性质A.a >bB.a <bC.a ²>b ²D. a ²<b ²3、COS 25π3=( )特殊角的三角函数值 A. √32 B.− √32 C.12 D.− 124、求()f x =定义域为( )定义域及不等式A .(-∞,0) B. (-∞,0] C. D.5、不等式组{2x −6<03x +3>0的解集为( )解不等式组 6、4个男生,3个女生,选4人参赛,要求至少有一男生一女生有多少种不同的选法。

( )排列组合A . B. C.34 D.7、已知圆的半径为1,圆心(2,1),则圆的标准方程为( 园 8、在∆ABC 中,a ²=b ²+c ²-bcsinA ,求tanA ( )正弦定理9、设函数f(x)=√3cos 2x +sinxcosx ,则函数的最大值为( )三角函数10、f (x )在[-2024,2024]中,最大值为M ,最小值为m ,若f (x )+1为奇函数,求M+m 的值。

( )函数的性质A .-2 B.2 C.1 D.0二、解答题。

(共三题,共计40分)11、设数列{a n }为等比数列,已知a 2=4,a 5=32,求(1) 数列{a n }的公比;(2)数列{a n }的前8项和.+x.12、已知f(x)=1x(1)、判断f(x)的奇偶性;(2)、证明f(x)在(-∞,-1)上是增函数。

此类题型以往较少13、已知椭圆半长轴长为6,且过(3√3,0)。

(1)求椭圆方程。

(2)有一条直线与椭圆交于A、B两点,AB两点的中点坐标为(-2,1),求直线的方程。

对口高中数学试题及答案

对口高中数学试题及答案

对口高中数学试题及答案一、选择题(每题3分,共30分)1. 若函数f(x) = 2x^2 - 4x + 3的图像与x轴的交点个数为:A. 0个B. 1个C. 2个D. 3个2. 已知等差数列{an}的首项a1=1,公差d=2,那么a5的值为:A. 9B. 10C. 11D. 123. 以下哪个选项不是二次函数的图像?A. 抛物线B. 直线C. 双曲线D. 椭圆4. 计算以下极限lim(x→0) (sin(x)/x)的值:A. 1B. 0C. πD. -15. 以下哪个选项是函数y=x^3+2x-5的极值点?B. x=1C. x=-2D. x=26. 已知向量a=(3, -2)和向量b=(2, 1),那么向量a与向量b的点积为:A. -4B. 4C. 0D. 87. 以下哪个选项是正弦函数sin(x)的周期?A. πB. 2πC. π/2D. 4π8. 计算以下定积分∫(0到π) sin(x) dx的值:A. 0B. πC. -2D. 29. 以下哪个选项是函数f(x)=|x|的图像?A. 直线B. 抛物线C. V形D. 双曲线10. 已知复数z=1+i,那么|z|的值为:B. 2C. 1D. 0二、填空题(每题4分,共20分)1. 计算以下表达式的值:(2x+3)(x-1) = _______。

2. 若函数f(x)=x^2-4x+4,则f(0)=_______。

3. 已知圆的方程为(x-2)^2+(y+1)^2=9,圆心坐标为(_______,_______)。

4. 计算以下极限lim(x→∞) (1/x)的值:_______。

5. 已知向量a=(1, 2)和向量b=(3, -1),那么向量a与向量b的叉积为:_______。

三、解答题(每题10分,共50分)1. 解方程:3x^2 - 5x - 2 = 0。

2. 证明函数f(x)=x^3在R上是增函数。

3. 计算定积分∫(0到1) (x^2+1) dx。

全国对口单独招生考试数学试卷(答案) (1)

全国对口单独招生考试数学试卷(答案) (1)

全国对口单独招生统一考试数学试卷(满分120分,考试时间120分钟)一、选择题:(本题共20小题,每小题3分,共60分) 1.向量)3,1(),1,1(+=-=x b x a ,则“x=2”是“b a //"的( ) A. 充分但不必要条件 B. 必要但不充分条件 C. 充要条件 D. 既不充分也不必要条件 2.简2+cos2-sin21的结果是( )A .-cos1B .cos1 C.3cos1 D .-3cos1 3.函数(其中)的图象如图所示,为了得到的图像,则只需将的图像( )A .向右平移个长度单位B .向右平移个长度单位C .向左平移个长度单位D .向左平移个长度单位4、函数)32(log )(22-+=x x x f 的定义域是( ) A.[3,1] B.(-3,1) C.(][)+∞-∞-,13, D.()()+∞-∞-,13,5、设,6.0,6.05.16.0==b a 6.05.1=c ,则c b a ,,的大小关系是( )A.c b a <<B.b c a <<C.c a b <<D.a c b <<()sin()f x A x ωϕ=+0,||2A πϕ><x x g 2sin )(=()f x 6π12π6π12π6.某商场准备了5份不同礼品全部放入4个不同彩蛋中,每个彩蛋至少有一份礼品的放法有( )A. 280种B. 240种C. 180种D. 144种7、函数,若,则的值为( ) .3 .0 . .8、若函数的定义域是,则函数的定义域是( ). . . .9、已知为上的减函数,则满足的实数的取值范围是( ). . . .10、下列函数中,在其定义域内既是奇函数又是减函数的是( ). . . .11.已知平面向量βα,的夹角为1800()1,2,52-==β,则α= ( )A .()2,4-B .()2,4-C .()2,4--D .()2,412.已知函数0)1(),0()(2=->++=f a c bx ax x f ,则“b<0”是“f (1) < 0”的( )A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条 13. 若 ,且 为第四象限角,则 的值等于 ( )A.B.C.D.14. 函数的定义域是 ( ))(1sin )(3Rx x x x f ∈++=2)(=a f )(a f -A B C 1-D 2-)(x f y =[]2,01)2()(-=x x f x g A []1,0B [)1,0C [)(]4,11,0 D ()1,0)(x f R )1()1(f x f <x A ()1,1-B ()1,0C ()()1,00,1 -D ()()+∞-∞-,11, A R x x y ∈-=,3B R x x y ∈=,sinC R x x y ∈=,D R x y x∈⎪⎭⎫⎝⎛=,21A. C.15. 若,,则的坐标是 ( )A. B. C. D. 以上都不对16. 在等差数列中,已知,且,则与的值分别为 ( )A. -2,3B. 2,-3C. -3,2D. 3,-217. 设,“”是“”的 ( )A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分又非必要条件18. 函数的图象如图所示,则最大、最小值分别为 ( )A. B.C. D.19. 设,,,其中为自然对数的底数,则,,的大小关系是 ( )A. B. C. D.20. 设,,,都为正数,且不等于,函数,,,在同一坐标系中的图象如图所示,则,,,的大小顺序是 ( )B.C.D.二、填空题(共10小题,每小题3分;共计30分) 1、已知点)1,5(),1,(-N m M ,且13=MN ,则=m _________.2.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同学至少2人,每项工作至少1人,则不同的选派方法的种数为__________; 3.有n 个球队参加单循环足球比赛,其中2个队各比赛了三场就退出了比赛,这两队之间未进行比赛,这样到比赛结束共赛了34场,那么=n ________;4.一排共8个座位,安排甲,乙,丙三人按如下方式就座,每人左、右两边都有空位,且甲必须在乙、丙之间,则不同的坐法共有__________种;5.现有6个参加兴趣小组的名额,分给4个班级,每班至少1个,则不同的分配方案共___________种; 三、大题:(满分30分)1、求过直线0123=++y x 与0532=+-y x 的交点,且与直线0526:=+-y x l 垂直的直线方程.2、图①,图②均是4x4的正方形网格,每个小正方形的顶点称为格点。

对口升学数学试题及答案

对口升学数学试题及答案

对口升学数学试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是奇函数?A. \( f(x) = x^2 \)B. \( f(x) = x^3 \)C. \( f(x) = x^4 \)D. \( f(x) = \frac{1}{x} \)答案:B2. 已知等差数列的首项为2,公差为3,求该数列的第5项。

A. 17B. 14C. 11D. 8答案:A3. 计算以下极限:\[ \lim_{x \to 0} \frac{\sin x}{x} \]A. 0B. 1C. 2D. 3答案:B4. 以下哪个选项是二项式定理的展开式?A. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)B. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)C. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)D. \( (a+b)^n = \sum_{k=0}^{n} \binom{n}{k} a^k b^{n-k} \)答案:B5. 已知函数 \( f(x) = ax^2 + bx + c \) 的图像与x轴有两个交点,且这两个交点的横坐标之和为-4,求b的值。

A. 4B. -4C. 2D. -2答案:B6. 计算以下定积分:\[ \int_{0}^{1} x^2 dx \]A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:A7. 已知圆的方程为 \( (x-2)^2 + (y-3)^2 = 9 \),求该圆的半径。

A. 3B. 4C. 5D. 6答案:A8. 计算以下二重积分:\[ \iint_{D} (x^2 + y^2) dxdy \]其中D是由x=0,y=0,x+y=1构成的区域。

对口高考高二数学试卷

对口高考高二数学试卷

考试时间:120分钟满分:100分一、选择题(本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

)1. 已知函数f(x) = ax^2 + bx + c,其中a、b、c为常数,且f(1) = 3,f'(1) = 2,f(2) = 7,则a、b、c的值分别为:A. 1, 2, 4B. 1, 3, 4C. 2, 1, 4D. 2, 3, 42. 下列命题中正确的是:A. 若a > b,则a^2 > b^2B. 若a > b,则a + c > b + cC. 若a > b,则ac > bcD. 若a > b,则a/c > b/c(c > 0)3. 已知等差数列{an}的首项为a1,公差为d,则第n项an的表达式为:A. an = a1 + (n-1)dB. an = a1 - (n-1)dC. an = a1 + ndD. an = a1 - nd4. 已知等比数列{bn}的首项为b1,公比为q,则第n项bn的表达式为:A. bn = b1 q^(n-1)B. bn = b1 / q^(n-1)C. bn = b1 q^nD. bn = b1 / q^n5. 若复数z = a + bi(a、b为实数),则|z|的值为:A. √(a^2 + b^2)B. a^2 + b^2C. a + bD. a - b6. 已知直线l的方程为2x - 3y + 6 = 0,则直线l的斜率为:A. 2/3B. -2/3C. 3/2D. -3/27. 圆C的方程为x^2 + y^2 - 4x - 6y + 9 = 0,则圆C的半径为:A. 2B. 3C. 4D. 58. 已知向量a = (2, -3),向量b = (3, 4),则向量a与向量b的点积为:A. 0B. -1C. 1D. 59. 函数y = log2(x - 1)的图像经过点(3, 1),则该函数的定义域为:A. (1, +∞)B. (2, +∞)C. (3, +∞)D. (4, +∞)10. 若不等式2x - 3 < x + 5,则x的取值范围为:A. x < 8B. x < 3C. x > 8D. x > 3二、填空题(本大题共5小题,每小题10分,共50分。

中职对口高考考题数学试卷

中职对口高考考题数学试卷

一、选择题(每题3分,共30分)1. 下列数中,有理数是()A. √9B. √16C. √25D. √362. 已知函数y = 2x - 1,当x = 3时,y的值为()A. 5B. 4C. 3D. 23. 在△ABC中,∠A = 45°,∠B = 60°,则∠C的度数为()A. 75°B. 80°C. 85°D. 90°4. 下列不等式中,正确的是()A. 2x > 4B. 3x ≤ 9C. 5x < 10D. 4x ≥ 85. 下列各式中,同类项是()A. 2a^2 + 3bB. 4x^2 - 5xC. 3a^2 + 2a - 1D. 5ab - 2a^26. 若x^2 - 5x + 6 = 0,则x的值为()A. 2或3B. 1或4C. 2或4D. 1或37. 下列函数中,反比例函数是()A. y = x^2 + 1B. y = 2x - 1C. y = 1/xD. y = 3x^2 + 48. 下列图形中,是轴对称图形的是()A. 等腰三角形B. 平行四边形C. 梯形D. 长方形9. 已知正方形的边长为4cm,则它的周长为()A. 8cmB. 12cmC. 16cmD. 20cm10. 下列各式中,正确的是()A. (a + b)^2 = a^2 + b^2B. (a - b)^2 = a^2 - b^2C. (a + b)^2 = a^2 + 2ab + b^2D. (a - b)^2 = a^2 - 2ab + b^2二、填空题(每题3分,共30分)11. 若a + b = 5,a - b = 1,则a = ______,b = ______。

12. 已知函数y = -2x + 3,当x = -1时,y的值为 ______。

13. 在△ABC中,∠A = 2∠B,∠C = 3∠B,则∠B的度数为 ______。

14. 若x^2 - 6x + 9 = 0,则x的值为 ______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

湖南省2018年普通高等学校对口招生考试
数学
本试题卷包括选择题、填空题和解答题三部分,共4页。

时量120分钟。

满分120分一.选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)
1.已知集合A={1,2,3,4},B={3,4,5,6},则
A.{1,2,3,4,5,6}
B.{2,3,4}
C.{3,4}
D.{1,2,5,6}
2.“的
A.充分必要条件
B.必要不充分条件
C.充分不必要条件
D.既不充分也不必要条件
3.函数的单调增区间是
A.(
B.[1,+
C.(
D.[0,+
4.已知,且为第三象限角,则
A. B. C. D.
5.不等式的解集是
A.{x|x}
B.{x|x}
C.{x|0}
D.{x|x}
6.点M在直线3x+4y-12=0上,O为坐标原点,则线段OM长度的最小值是
A.3
B.4
C. D.
7.已知向量a,b满足=7,
A.30°
B.60°
C.120°
D.150°
8.下列命题中,错误的是
A.平行于同一个平面的两个平面平行
B.平行于同一条直线的两个平面平行
C.一个平面与两个平行平面相交,交线平行
D.一条直线与两个平行平面中的一个相交,则必与另一个相交
9.已知
A.a b c
B.a c b
C.c
D.c
10.过点(1,1)的直线与圆相交于A,B两点,O为坐标原点,则△OAB面积的最大值为
A.2
B.4
C.
D.
二、填空题(本大题共5小题,每小题4分,共20分)
11.某学校有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该学校学生中抽取一个容量为45的
样本,则应抽取男生的人数为______。

12.函数(b为常数)的部分图像如图所示,则b=______。

13.的展开式中的系数为______(用数字作答)。

14.已知向量a=(1,2),b=(3,4),c=(11,16),且c=xa+yb,则x+y=______。

15.如图,画一个边长为4的正方形,再将这个正方形各边的中点相连得到第2个正方形,依次类推,这样一共画了10个正方形,则第10个正方形的面积为______。

三、解答题(本大题共7小题,其中第21、22小题为选做题,满分60分,解答应写出文字说明、证明过程或演算步骤)
16.(本小题满分10分)
已知数列为等差数列,.
()求数列的通项公式;
(II)设数列的前n项和,若,求n.
17.(本小题满分10分)
某种饮料共6瓶,其中有2瓶不合格,从中随机抽取2瓶检测,用ξ表示取出饮料中不合格的评述,求:
()随机变量ξ的分布列;
(II)检测出有不合格饮料的概率。

18. (本小题满分10分)
已知函数的图像过点(5,1)。

()求f(x)的解析式,并写出f(x)的定义域
(II)若f(m),求m的取值范围。

19. (本小题满分10分)
如图,在三棱柱ABC-中,,,∠ABC=90°,D 为AC的中点。

(I)证明:BD⊥平面;
(II)求直线与平面所成的角。

20.(本小题满分10分)
已知椭圆C:()的焦点为(-1,0),(1,0),点A(0,1)在椭圆C上。

(I)求椭圆C的方程;
(II)直线L过点且与垂直,L与椭圆C相交于M,N两点,求MN的长
选做题:请考生在第21,22题中选择一题作答,如果两题都做,则按所做的第21题计分,作答时,请写清题号。

21. (本小题满分10分)
如图,在四边形ABCD中,BC=CD=6,AB=4,∠BCD=120°,∠ABC=75°,求四边形ABCD 的面积。

22. (本小题满分10分)
某公司生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲产品可获利4万元,生产1吨乙产品可获利润5万元,问:该公司如何规划生产,才能使公司每天获得的利润最大?
甲乙原料限额
A(吨) 1 2 8
B(吨) 3 2 12。

相关文档
最新文档