初二下册数学证明题及答案

合集下载

初二数学证明试题

初二数学证明试题

初二数学证明试题1.要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做_______.【答案】证明【解析】根据证明的概念直接填空即可。

要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做证明.【考点】本题考查的是证明的概念点评:解答本题的关键是熟练掌握证明的概念:要判定一个命题是真命题,往往需要从命题的条件出发,根据已知的定义、公理、定理一步一步推得结论成立.这样的推理过程叫做证明.2.证明几何命题时,表述要按照一定的格式,一般为:(1)按题意________;(2)分清命题的________,结合图形,在“已知”中写出______,在“求证”中写出______;(3)在“证明”中写出______.【答案】画出图形,条件和结论,条件,结论,推理过程【解析】根据证明几何命题的格式直接填空即可。

证明几何命题时,表述要按照一定的格式,一般为:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.【考点】本题考查的是证明几何命题的格式点评:解答本题的关键是熟练掌握证明几何命题的格式:(1)按题意画出图形;(2)分清命题的条件和结论,结合图形,在“已知”中写出条件,在“求证”中写出结论;(3)在“证明”中写出推理过程.3.在△ABC中,∠A+∠B=110°,∠C=2∠A,则∠A=______,∠B=_______.【答案】∠A=35°,∠B=75°【解析】根据∠A+∠B=110°,三角形的内角和为180°,即可求得∠C的度数,再根据∠C=2∠A 求得∠A的度数,从而得到∠B的度数。

∵∠A+∠B=110°,∴∠C=180°-(∠A+∠B)=70°,∵∠C=2∠A,∴∠A=35°,∴∠B=180°-∠A-∠C=75°.【考点】本题考查的是三角形的内角和定理点评:解答本题的关键是熟练掌握三角形的内角和为180°.4.如图所示,AB∥CD,CE平分∠ACD并交AB于E,∠A=118°,则______.【答案】31°【解析】由AB∥CD,∠A=118°,根据平行线的性质可求得∠ACD的度数,再由CE平分∠ACD可求得∠ECD的度数,再根据平行线的性质即可得到结果。

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版初二数学8年级下册 第18章(平行四边形)含辅助线证明题训练(含答案)

人教版数学八年级下期第十八章平行四边形含辅助线证明题训练1.已知边长为2的正方形ABCD中,P是对角线AC上的一个动点(与点A,C不重合),过点P作PE⊥PB,PE交DC于点E,过点E作EF⊥AC,垂足为点F.(1)求证:PB=PE;(2)在点P的运动过程中,PF的长度是否发生变化?若不变,求出这个不变的值;若变化,试说明理由.2.在▱ABCD中,BE平分∠ABC交AD于点E.(1)如图1,若∠D=30°,AB=6,求△ABE的面积;(2)如图2,过点A作AF⊥DC,交DC的延长线于点F,分别交BE,BC于点G,H,且AB=AF.求证:ED-AG=FC.3.如图,在平行四边形ABCD中,AC,BD交于点O,且AO=BO,∠ADB的平分线DE交AB于点E.(1)求证:四边形ABCD是矩形.(2)若AB=8,OC=5,求AE的长.4.如图,在正方形ABCD中,E是边AB上一动点(不与点A,B重合),连接DE,点A关于直线DE的对称点为F,连接EF并延长交BC于点G,连接DG,过点E 作EH⊥DE交DG的延长线于点H,连接BH.(1)求证:GF=GC;(2)用等式表示线段BH与AE的数量关系,并证明.5.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC,CF为邻边作平行四边形ECFG.(1)证明平行四边形ECFG是菱形;(2)若∠ABC=120°,连接BG,CG,DG,①求证:△DGC≌△BGE;②求∠BDG的度数;(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,求DM的长.6.已知正方形ABCD如图所示,连接其对角线AC,∠BCA的平分线CF交AB于点F,过点B作BM⊥CF于点N,交AC于点M,过点C作CP⊥CF,交AD延长线于点P.(1)求证:DP=BF;(2)若正方形ABCD的边长为4,求DP的长;(3)求证:CP=BM+2FN.7.如图,四边形ABCD是菱形,E是AB的中点,AC的垂线EF交AD于点M,交CD的延长线于点F.(1)求证:AM=AE;(2)连接CM,DF=2.①求菱形ABCD的周长;②若∠ADC=2∠MCF,求ME的长.8.在菱形ABCD中,AB=4,∠ABC=60°,E是对角线AC上一点,F是线段BC延长线上一点.且CF=AE,连接BE、EF.(1)如图1,若E是线段AC的中点,求EF的长;(2)如图2.若E是线段AC延长线上的任意一点,求证:BE=EF.AC,将菱形ABCD绕着点B (3)如图3,若E是线段AC延长线上的一点,CE=12顺时针旋转α°(0≤α≤360),请直接写出在旋转过程中DE的最大值.9.如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.10.如图,正方形ABCD中,F在CD上,AE平分∠BAF,E为BC的中点.求证:AF=BC+CF.11.已知:如图(1),点E、F分别为正方形ABCD的边BC、DC上的点,线段AE和AF分别交BD于点M和点N,连接MF,MF⊥AE于点M.(1)求证:∠EAF=45°;(2)如图(2),连接EF,当AD=5,DF=1时,求线段EF的长度;BD.(3)如图(3),作FR⊥BD于R.求证:RM=12BC,CE⊥AB于点E,F是AD的中点,连接12.如图,在平行四边形ABCD中,AB=12EF,CF.求证:(1)EF=CF;(2)∠EFD=3∠AEF.13.如图1,点E为正方形ABCD的边AB上一点,EF⊥EC,且EF=EC,连接AF.(1)求∠EAF的度数;(2)如图2,连接FC交BD于M,交AD于N.求证:BD=AF+2DM.14.已知:如图,G为平行四边形ABCD中BC边的中点,点E在AD边上,且∠1=∠2.(1)求证:E是AD的中点;(2)若F为CD延长线上一点,连接BF,得∠3=∠2,求证:CD=BF+DF.15.如图,四边形ABCD是平行四边形,AD=AC,AD⊥AC,E是AB的中点,F是AC延长线上一点.(1)若ED⊥EF,求证:ED=EF:(2)在(1)的条件下,若DC的延长线与FB交于点P,试判断四边形ACPE是否为平行四边形.并证明你的结论(请先补全图形,再解答):(3)若ED=EF,则ED与EF垂直吗?若垂直给出证明,若不垂直说明理由.16.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F。

初二数学压轴几何证明题(含答案)

初二数学压轴几何证明题(含答案)

1.四边形ABCD是正方形,△BEF是等腰直角三角形,∠BEF=90°,BE=EF,连接DF,G 为DF的中点,连接EG,CG,EC.ﻫ(1)如图1,若点E在CB边的延长线上,直接写出EG与GC 的位置关系及的值;ﻫ(2)将图1中的△BEF绕点B顺时针旋转至图2所示位置,请问(1)中所得的结论是否仍然成立?若成立,请写出证明过程;若不成立,请说明理由;(3)将图1中的△BEF绕点B顺时针旋转α(0°<α<90°),若BE=1,AB=,当E,F,D三点共线时,求DF的长及tan∠ABF的值.解:(1)EG⊥CG,=,ﻫ理由是:过G作GH⊥EC于H,ﻫ∵∠FEB=∠DCB=90°,∴EF∥GH∥DC,ﻫ∵G为DF中点,ﻫ∴H为EC中点,ﻫ∴EG=GC,GH=(EF+DC)=(EB+BC),ﻫ即GH=EH=HC,ﻫ∴∠EGC=90°,即△EGC是等腰直角三角形,∴=;ﻫ(2)ﻫ解:结论还成立,ﻫ理由是:如图2,延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,∵在△EFG和△HDG中ﻫ∴△EFG≌△HDG(SAS),∴DH=EF=BE,∠FEG=∠DHG,∴EF∥DH,ﻫ∴∠1=∠2=90°-∠3=∠4,ﻫ∴∠EBC=180°-∠4=180°-∠1=∠HDC,在△EBC和△HDC中ﻫ∴△EBC≌△HDC.ﻫ∴CE=CH,∠BCE=∠DCH,∴∠ECH=∠DCH+∠ECD=∠BCE+∠ECD=∠BCD=90°,∴△ECH是等腰直角三角形,ﻫ∵G为EH的中点,ﻫ∴EG⊥GC,=,ﻫ即(1)中的结论仍然成立;ﻫﻫ(3)ﻫ解:连接BD,∵AB=,正方形ABCD,ﻫ∴BD=2,ﻫ∴cos∠DBE==,∴∠DBE=60°,ﻫ∴∠ABE=∠DBE-∠ABD=15°,ﻫ∴∠ABF=45°-15°=30°,∴tan∠ABF=,∴DE=BE=,∴DF=DE-EF=-1.解析: (1)过G作GH⊥EC于H,推出EF∥GH∥DC,求出H为EC中点,根据梯形的中位线求出EG=GC,GH=(EF+DC)=(EB+BC),推出GH=EH=BC,根据直角三角形的判定推出△EGC是等腰直角三角形即可;ﻫ(2)延长EG到H,使EG=GH,连接CH、EC,过E作BC的垂线EM,延长CD,证△EFG≌△HDG,推出DH=EF=BE,∠FEG=∠DHG,求出∠EBC=∠HDC,证出△EBC≌△HDC,推出CE=CH,∠BCE=∠DCH,求出△ECH是等腰直角三角形,即可得出答案;3(ﻫ)连接BD,求出cos∠DBE==,推出∠DBE=60°,求出∠ABF=30°,解直角三角形求出即可.2.已知正方形ABCD和等腰直角三角形BEF,BE=EF,∠BEF=90°,按图1放置,使点E在BC上,取DF的中点G,连接EG,CG.(1)延长EG交DC于H,试说明:DH=BE.ﻫ(2)将图1中△BEF绕B点逆时针旋转45°,连接DF,取DF中点G(如图2),莎莎同学发现:EG=CG且EG⊥CG.在设法证明时他发现:若连接BD,则D,E,B三点共线.你能写出结论“EG=CG且EG⊥CG”的完整理由吗?请写出来.ﻫ(3)将图1中△BEF绕B点转动任意角度α(0<α<90°),再连接DF,取DF的中点G(如图3),第2问中的结论是否成立?若成立,试说明你的结论;若不成立,也请说明理由.(1)证明:∵∠BEF=90°,∴EF∥DH,ﻫ∴∠EFG=∠GDH,ﻫ而∠EGF=∠DGH,GF=GD,ﻫ∴△GEF≌△GHD,ﻫ∴EF=DH,而BE=EF,ﻫ∴DH=BE;ﻫ(2)连接DB,如图,ﻫ∵△BEF为等腰直角三角形,∴∠EBF=45°,ﻫ而四边形ABCD为正方形,∴∠DBC=45°,ﻫ∴D,E,B三点共线.ﻫ而∠BEF=90°,∴△FED为直角三角形,ﻫ而G为DF的中点,∴EG=GD=GC,∴∠EGC=2∠EDC=90°,∴EG=CG且EG⊥CG;ﻫﻫ(3)第2问中的结论成立.理由如下:连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,如图,ﻫ∵G为DF的中点,O为BD的中点,M为BF的中点,ﻫ∴OG∥BF,GM∥OB,ﻫ∴四边形OGMB为平行四边形,∴OG=BM,GM=OB,而EM=BM,OC=OB,∴EM=OG,MG=OC,∵∠DOG=∠GMF,而∠DOC=∠EMF=90°,∴∠EMG=∠GOC,ﻫ∴△MEG≌△OGC,∴EG=CG,∠EGM=∠OCG,ﻫ又∵∠MGF=∠BDF,∠FGC=∠GDC+∠GCD,∴∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°,ﻫ∴EG=CG且EG⊥CG.解析:(1)由∠BEF=90°,得到EF∥DH,而GF=GD,易证得△GEF≌△GHD,得EF=DH,而BE=EF,即可得到结论.ﻫ(2)连接DB,如图2,由△BEF为等腰直角三角形,得∠EBF=45°,而四边形ABCD为正方形,得∠DBC=45°,得到D,E,B三点共线,而G为DF的中点,根据直角三角形斜边上的中线等于斜边的一半得到EG=GD=GC,于是∠EGC=2∠EDC=90°,即得到结论.ﻫ(3)连接AC、BD相交于点O,取BF的中点M,连接OG、EM、MG,由G为DF的中点,O为BD的中点,M为BF的中点,根据三角形中位线的性质得OG∥BF,GM∥OB,得到OG=BM,GM=OB,而EM=BM,OC=OB,得到EM=OG,MG=OC,又∠DOG=∠GMF,而∠DOC=∠EMF =90°,得∠EMG=∠GOC,则△MEG≌△OGC,得到EG=CG,∠EGM=∠OCG,而∠MGF=∠BD F,∠FGC=∠GDC+∠GCD,所以有∠EGC=∠EGM+∠MGF+∠FGC=∠BDF+∠GDC+∠GCD+∠OCG=45°+45°=90°.3.已知正方形ABCD和等腰Rt△BEF,BE=EF,∠BEF=90°,按图①放置,使点F在BC上,取DF的中点G,连接EG、CG.ﻫ(1)探索EG、CG的数量关系和位置关系并证明;ﻫ(2)将图①中△BEF绕B点顺时针旋转45°,再连接DF,取DF中点G(如图②),问(1)中的结论是否仍然成立.证明你的结论;(3)将图①中△BEF绕B点转动任意角度(旋转角在0°到90°之间),再连接DF,取DF的中点G(如图③),问(1)中的结论是否仍然成立,证明你的结论.ﻫ解:(1)EG=CG且EG⊥CG.ﻫ证明如下:如图①,连接BD.∵正方形ABCD和等腰Rt△BEF,∴∠EBF=∠DBC=45°.∴B、E、D三点共线.ﻫ∵∠DEF=90°,G为DF的中点,∠DCB=90°,∴EG=DG=GF=CG.ﻫ∴∠EGF=2∠EDG,∠CGF=2∠CDG.ﻫ∴∠EGF+∠CGF=2∠ED C=90°,ﻫ即∠EGC=90°,∴EG⊥CG.ﻫﻫ(2)仍然成立,证明如下:如图②,延长EG交CD于点H.ﻫ∵BE⊥EF,∴EF∥CD,∴∠1=∠2.ﻫ又∵∠3=∠4,FG=DG,ﻫ∴△FEG≌△DHG,∴EF=DH,EG=GH.∵△BEF为等腰直角三角形,∴BE=EF,∴BE=DH.ﻫ∵CD=BC,∴CE=CH.∴△ECH为等腰直角三角形.又∵EG=GH,∴EG=CG且EG⊥CG.ﻫ(3)仍然成立.证明如下:如图③,延长CG至H,使GH=CG,连接HF交BC于M,连接EH、EC.∵GF=GD,∠HGF=∠CGD,HG=CG,ﻫ∴△HFG≌△CDG,ﻫ∴HF=CD,∠GHF=∠GCD,∴HF∥CD.∵正方形ABCD,∴HF=BC,HF⊥BC.∵△BEF是等腰直角三角形,∴BE=EF,∠EBC=∠HFE,∴△BEC≌△FEH,ﻫ∴HE=EC,∠BEC=∠FEH,ﻫ∴∠BEF=∠HEC=90°,ﻫ∴△ECH为等腰直角三角形.又∵CG=GH,∴EG =CG 且EG ⊥C G.解析:(1)首先证明B 、E、D三点共线,根据直角三角形斜边上的中线等于斜边的一半,即可证明EG=DG=GF=CG,得到∠EGF=2∠EDG ,∠CGF=2∠CDG,从而证得∠EGC=90°;ﻫ(2)首先证明△FE G≌△DHG,然后证明△ECH 为等腰直角三角形.可以证得:EG=CG 且EG ⊥C G.ﻫ(3)首先证明:△BEC ≌△FEH,即可证得:△ECH 为等腰直角三角形,从而得到:EG=C G且EG ⊥CG.已知,正方形A BCD 中,△BEF 为等腰直角三角形,且BF 为底,取DF 的中点G,连接EG 、C G.ﻫ(1)如图1,若△B EF 的底边B F在BC 上,猜想E G和CG 的数量关系为______;ﻫ(2)如图2,若△B EF 的直角边BE 在BC 上,则(1)中的结论是否还成立?请说明理由;(3)如图3,若△B EF 的直角边BE 在∠DB C内,则(1)中的结论是否还成立?说明理由. 解:(1)GC=EG,(1分)理由如下:ﻫ∵△BEF 为等腰直角三角形,ﻫ∴∠DEF=90°,又G为斜边DF 的中点, ∴EG= DF,∵A BCD 为正方形,ﻫ∴∠BCD=90°,又G为斜边DF 的中点,∴CG= DF,ﻫ∴G C=EG;ﻫ(2)成立.如图,延长EG 交CD 于M,D,∵∠BEF =∠FEC=∠BCD=90°,∴EF ∥C1 2 1 2∴∠EFG=∠MD G,ﻫ又∠E GF=∠DGM ,D G=FG ,∴△G EF ≌△GMD,ﻫ∴EG=MG,即G 为EM 的中点.∴CG为直角△EC M的斜边上的中线,ﻫ∴CG=G E= EM;(3)成立.ﻫ取BF 的中点H,连接EH ,GH ,取BD 的中点O,连接O G,OC . ∵CB=CD,∠DCB=90°,∴C O= BD .ﻫ∵DG=G F,ﻫ∴GH ∥BD ,且GH= BD ,ﻫOG ∥BF,且OG= B F,ﻫ∴CO =GH .∵△BEF 为等腰直角三角形. B F∴EH=∴EH=OG . ∵四边形O BHG 为平行四边形, ∴∠BOG =∠BH G.∵∠B OC=∠BH E=90°. ∴∠GOC=∠EHG .ﻫ∴△GOC ≌△E HG .ﻫ∴EG=GC .此题考查了正方形的性质,以及全等三角形的判定与性质.要求学生掌握直角三角形斜边上的中线等于斜边的一半,以及三角形的中位线与第三边平行且等于第三边的一半.掌握这些性质,熟练运用全等知识是解本题的关键.解析:(1)E G=CG,理由为:根据三角形BEF 为等腰直角三角形,得到∠DEF 为直角,又G 为DF 中点,根据在直角三角形中,斜边上的中线等于斜边的一半,得到EG 为DF 的一半,同理在直角三角形DC F中,得到CG 也等于DF 的一半,利用等量代换得证;ﻫ(2)成立.理由为:延长EG 交CD 于M,如图所示,根据“A SA ”得到三角形E FG 与三角形GDM 全等,由全等三角形的对应边相等得到EG 与MG 相等,即G 为EM 中点,根据直角三角形斜边上的中线等于斜边的一半得到E G与CG相等都1212 1 2 1 2。

初二数学图形与证明试题

初二数学图形与证明试题

初二数学图形与证明试题1.如图,在△ABC中,∠A=36°,AB=AC,BD是△ABC的角平分线,若在边AB上截取BE=BC,连接DE,则图中等腰三角形共有()A.2个B.3个C.4个D.5个【答案】D【解析】在△ABC中,∠A=36°,AB=AC,求得∠ABC=∠C=72°,且△ABC是等腰三角形.因为BD是△ABC的角平分线所以∠ABD=∠DBC=36°所以△ABD是等腰三角形.在△BDC中有三角形的内角和求出∠BDC=72°所以△BDC是等腰三角形.所以BD=BC=BE 所以△BDE是等腰三角形.所以∠BDE=72°, 所以∠ADE=36°, 所以△ADE是等腰三角形.共5个.故选D.【考点】角平分线的定义,三角形内角和、外角和,平角的定义.2.(本题满分8分)如图,已知□ABCD的对角线AC、BD相交于点O,四边形OCED为菱形.(1)求证:□ABCD是矩形;(2)连接AE、BE,AE与BE相等吗?请说明理由.【答案】(1)参见解析;(2)相等,理由参见解析.【解析】(1)利用对角线相等的平行四边形是矩形证得结论.(2)证明AE,BE,所在的三角形:△ADE≌△BCE,证得结论.试题解析:(1)∵四边形ABCD为平行四边形∴ AC=2OC,BD=2OD,∵四边形OCED是菱形∴OC=OD∴AC=BD又∵四边形ABCD为平行四边形,∴四边形ABCD是矩形.(2)∵四边形ABCD是矩形,∴AD=BC,∠ADC=∠BCD=90º,∵四边形OCED是菱形,∴ DE=CE,∴∠EDC=∠ECD,∴∠EDC+∠ADC =∠ECD+∠BCD,∴∠ADE=∠BCE,∴△ADE≌△BCE (SAS),∴AE=BE.【考点】1.矩形性质与判定;2.菱形性质的应用;3.证线段相等的方法.3.如图,已知△ABC的面积为24,点D在线段AC上,点F在线段BC的延长线上,且,四边形DCFE是平行四边形,则图中阴影部分的面积为().A.8B.6C.4D.3【答案】A.【解析】如图,过点A作AM⊥BC于点M,根据三角形的面积公式可得图中阴影部分的面积为,,由四边形DCFE是平行四边形可得DE=CF,又因,DE=CF可得BC=3DE,所以,即.所以图中阴影部分的面积为=8.故答案选A.【考点】平行四边形的性质;三角形的面积公式.4.如图,在□ABCD中,AD=6,AB=4,DE平分∠ADC交BC于点E,则BE的长是()A.2B.3C.4D.5【答案】A.【解析】由平行四边形的性质可得AD=BC=6,AB=CD=4,再由平行线的性质和角平分线的定义可证得∠CED=∠CDE,所以CE=CD=4,即可得BE=BC-CE=6-4=2.故答案选A.【考点】平行四边形的性质;平行线的性质;等腰三角形的性质.5.如图,四边形ABCD的对角线交于点O,从下列条件:①AD∥BC,②AB=CD,③AO=CO,④∠ABC=∠ADC中选出两个可使四边形ABCD是平行四边形,则你选的两个条件是.(填写一组序号即可)【答案】①③【解析】根据AD∥BC可得∠DAO=∠OCB,∠ADO=∠CBO,再根据AO=CO得出△AOD≌△COB,从而得出BO=DO,最后根据对角线互相平分的四边形是平行四边形可得答案.【考点】平行四边形的判定6.(3分)如图,在正方形ABCD的内部作等边△ADE,连接BE,CE,则∠BEC的度数为.【答案】150°.【解析】由等边三角形的性质可得AD=DE,∠ADE=60°,由正方形的性质可得AD=DC,∠ADC=90°,所以DE=DC,CDE=∠ADC﹣∠ADE=90°﹣60°=30°,再根据等边对等角和三角形的内角和定理可得∠CED=∠ECD=(180°﹣30°)=75°,同理可得∠AEB=75°,所以∠BEC=360°﹣75°×2﹣60°=150°.【考点】正方形的性质;等边三角形的性质.7.若一个正方形的面积为8,则这个正方形的边长为()A.4B.2C.D.8【答案】B【解析】正方形的面积等于正方形边长的平方,设正方形的边长为x,根据题意可得:=8,则x==2.【考点】正方形的性质8.(3分)下列各组数据中,不可以构成直角三角形的是()A.7,24,25B.1.5,2,2.5C.,1,D.40,50,60【答案】D【解析】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.由勾股定理的逆定理,只要验证两小边的平方和是否等于最长边的平方即可.解:A、72+242=625=252,故是直角三角形,不符合题意;B、1.52+22=6.25=2.52,故是直角三角形,不符合题意;C、12+()2==()2,故是直角三角形,不符合题意;D、402+502=4100≠602,故不是直角三角形,符合题意.故选:D.【考点】勾股定理的逆定理.9.已知E为平行四边形ABCD外一点,AE⊥CE,BE⊥DE,求证:平行四边形ABCD是矩形.【答案】详见解析.【解析】如图,连接AC、BD交于点O,连接OE,已知AE⊥CE,BE⊥DE,根据直角三角形斜边上的中线等于斜边的一半得到OE=AC=BD,进而得到AC=BD,根据对角线相等的平行四边形是矩形即可判定平行四边形ABCD是矩形..试题解析:证明:连接AC、BD交于点O,连接OE,∵AE⊥CE,BE⊥DE,∴OE=AC=BD,∴AC=BD,∵四边形ABCD是平行四边形,∴平行四边形ABCD为矩形.【考点】平行四边形的性质;矩形的判定.10.如图,▱ABCD的对角线AC与BD相交于点O,AB⊥AC,若AB=4,AC=6,则BD的长是()A.8B.9C.10D.11【答案】C.【解析】∵▱ABCD的对角线AC与BD相交于点O,∴BO=DO,AO=CO,∵AB⊥AC,AB=4,AC=6,∴BO=,∴BD=2BO=10,故选C.【考点】1.平行四边形的性质;2.勾股定理.11.(8分)如图,已知平行四边形ABCD,延长BC至E,使CE=BC,连接AC,DE,求证:AC=DE.【答案】见试题解析【解析】根据平行四边形的判定和性质定理即可得到结论.试题解析:证明:∵四边形ABCD 是平行四边形,∴AD=BC,AD∥BC,∵CE=BC,∴AD∥CE,AD=CE,∴四边形ACED是平行四边形,∴AC=DE.【考点】平行四边形的判定与性质.12.长方形纸片ABCD中,AD=4cm,AB=10cm,按如图方式折叠,使点B与点D重合,折痕为EF,求DE的长.【答案】【解析】设DE=xcm,在折叠的过程中,BE=DE=x,AE=AB﹣BE=10﹣x,△ADE中,DE2=AE2+AD2,即x2=(10﹣x)2+16.∴x=(cm).【考点】勾股定理;翻折变换(折叠问题).13.如图,在平四边形ABCD中,对角线AC与BD相交于点O,P为线段BC上一点(除端点外),连接PO并延长交AD于点Q,延长BC到点E,使CE=BC,连接DE.(1)求证:BP=DQ;(2)已知AB=5,AC=6,若CD=BE,求△BDE的周长.【答案】见试题解析【解析】(1)由平行四边形的性质得出AD∥BC,OB=OD,AD=BC,CD=AB,得出∠OBP=∠ODQ,由ASA证明△BOP≌△DOQ,得出对应边相等即可;(2)先证明四边形ACED是平行四边形,得出DE=AC=6,再证明△BDE是直角三角形,根据勾股定理求出BD,即可得出结果.试题解析:(1)证明:∵四边形ABCD是平行四边形,∴AD∥BC,OB=OD,AD=BC,CD=AB,∴∠OBP=∠ODQ,在△BOP和△DOQ中,,∴△BOP≌△DOQ(ASA),∴BP=DQ;(2)解:∵AD=BC,CE=BC,∴AD=CE=BC,∵AD∥BC,∴AD∥CE,∴四边形ACED是平行四边形,∴DE=AC=6,∵CD=BE,∴∠BDE=90°,BE=2CD=2AB=10,∴BD===8,∴△BDE的周长=BD+BE+DE=8+10+6=24.【考点】平行四边形的性质;全等三角形的判定与性质;勾股定理.14.如图,在直角三角形ABC中,∠ACB=90°,CD是AB边上的高,AB=13cm,BC=12cm,AC=5cm,求:(1)CD的长;(2)作出△ABC的边AC上的中线BE,并求出△ABE的面积.(10分)【答案】(1)cm;(2)15cm2.【解析】(1)由勾股定理求得AB==13cm,再由S△ABC=×BC×AC=AB•CD即可求得CD的长;(2)已知BE为△ABC的边AC上的中线,根据S△ABE =S△ABC即可得△ABE的面积.试题解析:解:∵∠ACB=90°,BC=12cm,AC=5cm,∴AB==13cm,∵S△ABC=×BC×AC=30cm2,∴AB•CD=30,∴CD=cm;如图∵E为AC的中点,∴S△ABE =S△ABC=×30=15cm2.【考点】勾股定理;直角三角形面积的两种表示法;三角形的中线的性质.15.如图所示,折叠长方形一边AD,点D落在BC边的点F处,已知BC=10厘米,AB=8厘米,求EC的长。

初二数学证明试题答案及解析

初二数学证明试题答案及解析

初二数学证明试题答案及解析1.如图的算式中字母ABC分别表示各不相同的一个数字,则B= .【答案】6【解析】利用竖式左侧5+5+9=19,结果下面为1,也就是前面7+8+B相加后进位是2,故C=2,2+4+4=10,则7+8+B=21.解:∵竖式左侧5+5+9=19,结果下面为1,∴C=2,∵2+4+4=10,应进位1,∴7+8+1+B=22,∴B=6.故答案为:6.点评:此题主要考查了推理与论证,根据加法法则分别分析得出C的值是解题关键.2.元旦联欢会上,林老师跟同学们玩猜匣游戏,礼物放在一只匣子中,谁猜中谁就可以得到这个礼物.三只匣子上都各有一句话.红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中;绿匣子:礼物在此匣中.林老师向同学们交了底:这三句话中,至少有一句是真的,而且至少有一句是假的.你猜猜看,礼物放在匣子中.【答案】红【解析】根据这三句话中,至少有一句是真的,而且至少有一句是假的,可以分别分析假设正确与否得出答案.解:根据红匣子:礼物不在黄匣中;黄匣子:礼物不在此匣中可以认为是对的,则绿匣子:礼物在此匣中,可以认为是错的.所以答案就是在红匣子.故答案为:红.点评:此题主要考查了推理论证,根据已知假设命题的真伪是解题关键.3.小明同学每天早上6:00钟起床,穿衣需要5min,煮早饭需要7min,他洗脸刷牙需要5min,吃早饭需要8min,吃完早饭就去上学,小明同学从开始起床到吃完早饭仅需要min.【答案】18【解析】本题需先根据题意得出最节省时间的方法,然后即可求出最少需要多少时间.解:小明起床后先煮饭需要7分钟,在煮饭的同时穿衣服需要5分钟、再刷牙需要5分钟,这时饭已煮完,在吃早饭需要8分钟所以小明同学从开始起床到吃完早饭仅需要18分钟.故答案为18.点评:本题主要考查了推理与论证,在解题时要注意统筹方法的应用.4.甲乙两个布袋中各有12个大小一样的小球,且都是红、白、蓝各4个.从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,这时甲袋中有个球,乙袋中有个球(拿出时不能看).【答案】19球,5球【解析】注意满足题中的要求:从甲袋中拿出尽可能少且至少两个颜色一样的球放入乙袋中,则从甲袋拿出最少要4个;再从乙袋中拿出尽可能少的球放入甲袋中,使甲袋中每种颜色的球不少于3个,则最少要拿11个,据此求解.解:从甲袋拿出最少要4个,才可以保证至少有两个颜色一样的球.不妨设是白球拿了两个,红蓝各拿了一个,现在乙袋中有5红,5蓝,6白,一袋中有3红3蓝2白;再从乙袋中拿球保证至少有一个白球就可以保证一袋每种颜色球都不少于3个,而乙袋5红,5蓝,6白,保证至少拿到一个白球,最少要拿11个,即刚好是5红,5蓝,1白.这样最后甲袋有12﹣4+11=19球,乙袋12+4﹣11=5球.点评:解决问题的关键是读懂题意,尽量满足题中的要求,即是求解的途径.5.如图,电路中有4个电阻和一个电流表A,若没有电流通过电流表A,问电阻器断路的可能情况共有种.【答案】8+3=11种【解析】要使没有电流通过电流表A,则若总路上的电阻是断开的,其它的三个电阻无论是断开,还是通的都可以,共有23=8种情况;若总路上的电阻是通的,则每一个支路都不能是通的,所以下面的电阻一定是断开的,上面的两个电阻只要有一个是断开的即可,有3种情况.故共有11种情况.解:本题分两种情况:①若主路的电阻不通,那么这个电路必为断路.因此共有2×2×2=8种可能;②若主路的电阻通电,那么两条支路必须同时为断路,因此共有3种可能.故电阻器断路的可能情况共有8+3=11种.点评:此题的学科综合性较强,能够结合物理中的知识进行分析求解是解答本题的关键.6.有一地球同步卫星A与地面四个科研机构B、C、D、E,它们两两之间可以互相接发信息,由于功率有限,卫星及每个科研机构都不能同时向两处发送信息(如A不能同时给B、C发信息,它可先发给B,再发给C),它们彼此之间一次接发信息的所需时间如右图所示.则一个信息由卫星发出到四个科研机构都接到该信息时所需的最短时间为.【答案】4【解析】首先卫星A传递信息给B用时1(秒),然后B传给C(3秒);同时卫星传给E(1秒),信息传给D和C的时候同时进行,所有动作在4秒钟内结束.解:开始的时候,时间0秒,卫星传给B(1秒)第1秒钟时候,B传给C(3秒);同时卫星传给E(1秒),第2秒钟的时候,E传给D,所有动作在4秒钟内结束,故接到该信息时所需的最短时间为4秒,故答案为4.点评:本题主要考查推理与论证的知识点,解答本题的关键是注意卫星传递信息的同时性,此题难度不大.7.某学生连续观察了n天的天气情况,观察结果是:①共有5个下午是晴天;②共有7个上午是晴天;③共有8个半天是雨天;④下午下雨的那天上午是晴天,则该学生观察的天数n= .【答案】10【解析】他们每天上午、下午各测一次,七次上午晴,五次下午晴,共下八次雨,所以共测了20次,所以这个学生工观察了10天.解:由题意,知:这位学生每天测两次,总共测的次数为7+5+8=20;因此x=20÷2=10(天).故答案为:10.点评:此题主要考查了推理论证,解决本题的关键是得到学生观察天气的规律:每天上午、下午各测一次.8.为了从500只外形相同的鸡蛋中找到唯一的一只双黄蛋,检查员将这些鸡蛋按1﹣500的顺序排成一列,第一次先从中取出序号为单数的蛋,发现其中没有双黄蛋,他将剩下的蛋的原来位置上又按1﹣250编号(即原来的2号变为1号,原来的4号变成2号,…,原来的500号变成250号).又从中取出新序号为单数的蛋进行检查,任没有发现双黄蛋,…,如此下去,检查到最后的一个是双黄蛋,问这只双黄蛋最初的序号是.【答案】256【解析】根据题意,知第一次剩下的是原来编号中的偶数,有250个,第二次剩下的4的倍数,即22的倍数,剩下125个,第三次剩下的是23的倍数,剩下62个,以此类推,最后剩下1个,则需取8次,即剩下28=256.解:根据分析,知最后剩下的是号是28=256.点评:此题要能够正确分析每一次取走的是原来的什么号数以及每一次剩下的个数.9.甲、乙、丙、丁和小强五位同学单循环比赛象棋,到现在为止甲已经赛了四盘,乙赛了三盘,丙赛了二盘,丁赛了一盘,则小强赛了盘.【答案】2【解析】根据甲赛的盘数,可知甲与乙、丙、丁和小强4人各赛了一盘.然后探究乙、丙、丁和小强4人之间赛的盘数(设小强赛的盘数为x),进而得到小强赛的总盘数.解:乙、丙、丁和小强除去与甲赛的一盘后,在他们之间赛的盘数分别是:2、1、0、x.即丁只和甲赛了一盘,没与乙、丙、小强比赛,则乙、丙、小强之间赛的盘数分别为2、1、x,假设丙与小强赛了一盘,那么乙赛的两盘都是与小强赛的,这与单循环比赛相矛盾,是不可能的,所以丙与乙赛了一场,乙又与小强赛了一盘,小强与甲也赛了一盘,故小强共赛了2盘.故填2.点评:解决问题的关键是读懂题意,将实际问题转化为数学问题,利用数学知识进行探讨、解答实际问题.10.10位小运动员,他们着装的运动服号码分别是1﹣10,能否将这10位运动员按某种顺序站成一排,使得每相邻3名运动员号码数之和都不大于15?【答案】不可能【解析】首先计算所有的号码之和是55,若每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,这样导致第10个号码必须为10;同理,后9个号码的和不大于45,可得出第一个号码必须为10,显然这是不可能的.解:不能.理由如下:因为所有号码的总和为55,如果每相连的3个号码数都不大于15,则前9个号码数的和不大于3×15=45,故第10个号码数不小于10,即只能为10.同理,后9个号码数的和不大于45,故第1个号码数不小于10,因此,也必须为10,显然这是不可能的.点评:解决本题的关键是能够根据总数的和以及每相连的3个号码数都不大于15,进行综合分析.11.问:在8×8的国际象棋盘上最多可以放多少个“+”字形(其中每个“+”字形占据棋盘的5个小方格),使得任意两个“+”字形不重叠,且每个“+”字形都不超出棋盘的边界?证明你的结论.【答案】8个【解析】本题可根据小“+”字形的中心来求,那么小“+”字形的中心应该在6×6的方格中,每3×3的方格中最多可放2个因此“+”字形的最多的个数为8个. 解:8个.证明:设“+”字形的中心为中间的那个方格,显然所有的中心在6×6的方格内,而每个3×3的方格内最多放2个中心, 6×6的棋盘内够有3×3的个数为6×6÷(3×3)=4, 因此最多的个数应该是4×2=8个.点评:解决问题的关键是读懂题意,找到所求的量的等量关系.12. 10名棋手参加比赛,规定:每两名棋手间都要比赛一次,胜者得2分,下和各得1分,输者得0分.比赛结果表明:棋手们所得分数各不相同,前两名棋手没输过,前两名的总分之和比第三名多20分,第四名得分与后四名得分总和相等,那么前六名得分分别是多少? 【答案】17,16,13,12,11,9【解析】先设第k 名选手的得分为a k (1≤k≤10),得出a 1、a 2的值,再根据得出a 4≥12,求出a 3,再根据a 1≤a 3﹣1=12,求出a 4,最后根据a 1+a 2+a 3+…a 8+a 9+a 10=90分别求出a 5、a 6的值.解:设第k 名选手的得分为a k (1≤k≤10),依题意得:a 1>a 2>a 3>…a 9>a 10a 1≤1+2×(9﹣1)=17,a 2≤a 1﹣1=16,a 3+20=a 1+a 2,∴a 3≤13 ①,又后四名棋手相互之间要比赛=6场,每场比赛双方的得分总和为2分,∴a 7+a 8+a 9+a 10≥12,∴a 4≥12而a 3≥a 4+1≥13,②∴由①②得:a 3=13,∴a 1+a 2=33,∴a 1=17,a 2=16,又∵a 1≤a 3﹣1=12,∴a 4=12, ∵a 1+a 2+a 3+…a 8+a 9+a 10=×2=90,∴17+16+13+12+a 5+a 6+12=90,而a 5+a 6≤a 5+a 5﹣1,即:a 5≥10\frac{1}{2},又a5<a 4=12, ∴a 5=11,a 6=9,故前六名得分分别是:17,16,13,12,11,9.点评:本题考查了推理与论证;解决问题的关键是读懂题意,找到所求的量的等量关系是解题的关键.13. 我们的数学教材中有一个“抢30的游戏”,现在改为“甲、乙二人抢20”的游戏.游戏规则是:甲先说“1”或“1、2”乙接着甲的数往下说一个或两个数,然后又轮到甲再接着乙的数往下说一个或两个数,甲、乙反复轮流说,每次每人说一个或两个数都可以,但不能连续说三个数,也不能一个数也不说.谁先抢到20,谁就获胜.因为甲先说,你认为谁会获胜?请你分析获胜策略、推理说明获胜的道理. 【答案】第一个人必胜【解析】第一个人可以两个两个的说,也可以一个一个的说,还可以有时说一个,有时说两个,但不论第二个人怎样变化,2,5,8,11,17,20这些数的主动权都在第一个人手中. 解:第一个人必胜;因为是第一个人先说,所以主动权在第一个人,他肯定按2,5,8,11,17,20,报数,故第一个人必胜.点评:此题考查的知识点是推理与论证,解答此题需要逆向思维,因为是抢20,故应先从20倒推,20,17,11,8,5,2的顺序.14. 成都七中学生网站是由成都七中四大学生组织共同管理的网站,该网站是成都七中历史上首次由四大学生组织共同合作建成的一个学生网站,其内容囊括了成都七中学生学习及生活的各个方面.某学生在输入网址“http :∥www .cdqzstu .com”中的“cdqzstu .com”时,不小心调换了两个字母的位置,则可能出现的错误种数是( ) A .90 B .45 C .88 D .44【答案】D【解析】“cdqzstu .com”中字母有10个.相同字母有2个.若第一个错误的字母是第一个字母c ,那么c 和它后面除c 外任何一个字母调换后都可能出现错误,则错误的种类可能有8种.若第1个错误的字母是第二个字母d ,排除和第一个字母已经计算过的错误后,可能出现的错误应该有8种,按照此种方法,错误的种类依次为:7,6,5,4,3,2,1;共有:16+7+6+5+4+3+2+1=44种.解:“cdqzstu.com”中共有10个字母;若c与后面的字母分别调换,则有:10﹣1=9种调换方法;依此类推,调换方法共有:9+8+7+…+1=45种;由于10个字母中,有两个字母相同,因此当相同字母调换时,不会出现错误.因此出现错误的种数应该是:45﹣1=44种.故选D.点评:解答本题时需注意:相同字母调换后结果不会出现错误.15.图中小圆圈表示网络的结点,结点之间的连接表示它们有网线相连,相连标注的数字表示该段网线单位时间内可以通过的最大信息量.现从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为()A.11B.10C.8D.7【答案】C【解析】先找出从结点A向结点B传递信息可沿A﹣C﹣B和A﹣D﹣B路线同时传递,再找出每条路线通过的最大信息量,然后相加即可得到答案.解:由于信息可以分开沿不同路线同时传递,所以从结点A向结点B传递信息可经过结点D和结点B;又因为从结点A到结点D的最大信息量为5,从结点C到结点B的最大信息量为3,所以从结点A向结点B传递信息,若信息可以分开沿不同路线同时传递,则单位时间内传递的最大信息量为5+3=8.故选C.点评:本题考查了推理与论证的方法:先分析题目所给的条件或要求,然后通过推理得到相关的结论.16.在一次1500米比赛中,有如下的判断:甲说:丙第一,我第三;乙说:我第一,丁第四;丙说:丁第二,我第三.结果是每人的两句话中都只说对了一句,则可判断第一名是()A.甲B.乙C.丙D.丁【答案】B【解析】假设甲说的前半句话是正确的,即丙第一,则乙的后半句是正确的,即丁第四,则丙说的后半句应是正确的,出现矛盾,所以必须是甲说的后半句是正确的,即甲第三,所以丙说的前半句是正确的,即丁第二,所以乙说的前半句是正确的,即乙第一.解:根据分析,知第一名应是乙.故选B.点评:此类题应从假设出发,经过推理,如果得到矛盾,则假设错误,再进一步推理即可.17.某市初中12支排球队进行比赛,如果采用单循环赛制,一共举行几场比赛()A.11B.12C.66D.72【答案】C【解析】一共有12支球队,每支队伍要比赛的场数为11场,因此共需比赛(12×11)场,由于采用单循环赛制,因此需将重复的比赛场数去掉,即比赛的场数为(12×11)÷2=66场.解:由于采用单循环赛制,则一共举行的比赛场数为:(12×11)÷2=66(场).故选C.点评:解答本题的关键是理解单循环赛的规则,即:每两个队只比赛一场.18.用锯锯木,锯会发热;用锉锉物,锉会发热;在石头上磨刀,刀会发热,所以物体摩擦会发热.此结论的得出运用的方法是()A.观察B.实验C.归纳D.类比【答案】C【解析】由多种现象得到一个规律属于归纳.解:由多种现象得到一个规律属于归纳.故选C.点评:本题考查归纳的形成.所谓归纳,是指通过对特例的分析来引出普遍结论的一种推理形式.它由推理的前提和结论两部分构成:前提是若干已知的个别事实,是个别或特殊的判断、陈述,结论是从前提中通过推理而获得的猜想,是普遍性的陈述、判断.19.甲、乙、丙、丁四位同学猜测自己的数学成绩,甲说:“如果我得优,那么乙也得优”;乙说:“如果我得优,那么丙也得优”;丙说:“如果我得优,那么丁也得优”,大家都没有说错,但只有三个人得优,请问甲、乙、丙、丁中谁没有得优()A.甲B.乙C.丙D.丁【答案】A【解析】此题含有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…解题可以从这里突破.也就是丁得优,而甲不得优.由此进行推理即可得到结论.解:∵这个题还有一个隐含条件,也就是丁没有说:如果我得优,那么甲也得优…,也就是丁得优,而甲不得优.如果甲不得优,乙可得可不得优;如果乙不得优,而丁可以得优也可以不得优;如果丁一定要得优,因为题中说有3人得优,所以按反推法,有丙也得优;如果问题是1人得优,那肯定是丁,如果2人得优,那肯定是丁、丙.如果3人得优,那肯定是丁、丙、乙.故选A.点评:此题比较麻烦,首先要找出题目的隐含条件,然后利用隐含条件进行推理才能正确得出结论.20. A、B、C、D、E五支球队进行单循环比赛(每两支球队间都要进行一场比赛),当比赛进行到一定阶段时,统计A、B、C、D四个球队已赛过的场数,依次为A队4场,B队3场,C队2场,D队1场,这时,E队已赛过的场数是()A.1B.2C.3D.4【答案】B【解析】首先利用已知得出A队必须和B、C、D、E这四个球队各赛一场,进而得出B队只能和C、D、E中的两个队比赛,再利用D队只赛过一场,得出B队必须和C、E各赛1场,即可得出E队赛过2场.解:A、B、C、D、E五支球队进行单循环比赛,已知A队赛过4场,所以A队必须和B、C、D、E这四个球队各赛一场,已知B队赛过3场,B队已和A队赛过1场,那么B队只能和C、D、E中的两个队比赛,又知D队只赛过一场(也就是和A队赛过的一场),所以B队必须和C、E各赛1场,这样满足C队赛过2场,从而推断E队赛过2场.故选:B.点评:此题主要考查了推理论证,利用A队比赛场数得出B队、D队比赛过的对应球队是解题关键.。

初二数学下册证明题(中等难题 含答案)

初二数学下册证明题(中等难题 含答案)

一:已知:如图,在直角梯形ABCD 中,AD ∥BC ,∠ABC =90°,DE ⊥AC 于点F ,交BC 于点G ,交AB 的延长线于点E ,且AE AC =.(1)求证:BG FG =;(2)若2AD DC ==,求AB 的长.二:如图,已知矩形ABCD ,延长CB 到E ,使CE=CA ,连结AE 并取中点F ,连结AE 并取中点F ,连结BF 、DF ,求证BF ⊥DF 。

DCEBGAF三:已知:如图,在矩形ABCD 中,E 、F 分别是边BC 、AB 上的点,且EF=ED,EF ⊥ED.求证:AE 平分∠BAD.四、(本题7分)如图,△ABC 中,M 是BC 的中点,AD 是∠A 的平分线,BD ⊥AD 于D ,AB=12,AC=18,求DM 的长。

(第23题)EDBAF五、(本题8分)如图,四边形ABCD 为等腰梯形,AD ∥BC ,AB=CD ,对角线AC 、BD交于点O ,且AC ⊥BD ,DH ⊥BC 。

⑴求证:DH=21(AD+BC ) ⑵若AC=6,求梯形ABCD 的面积。

六、(6分) 、如图,P 是正方形ABCD 对角线BD 上一点,PE ⊥DC ,PF ⊥BC ,E 、F 分别为垂足,若CF=3,CE=4,求AP 的长.七、(8分)如图,等腰梯形ABCD 中,AD ∥BC ,M 、N 分别是AD 、BC 的中点,E 、F 分别是BM 、CM 的中点.(1)在不添加线段的前提下,图中有哪几对全等三角形?请直接写出结论; (2)判断并证明四边形MENF 是何种特殊的四边形?(3)当等腰梯形ABCD 的高h 与底边BC 满足怎样的数量关系时?四边形MENF 是正方形(直接写出结论,不需要证明).选择题:15、如图,每一个图形都是由不同个数的全等的小等腰梯形拼成的,梯形上、下底及腰长如图,依此规律第10个图形的周长为 。

……第一个图 第二个图 第三个图 16、如图,矩形ABCD 对角线AC 经过原点O ,B 点坐标为(―1,―3),若一反比例函数xky 的图象过点D ,则其 解析式为 。

初中数学证明题练习5套(含答案)

初中数学证明题练习5套(含答案)

初中数学证明题练习5套(含答案)(一)1、已知:如图,O 是半圆的圆心,C 、E 是圆上的两点,CD ⊥AB ,EF ⊥AB ,EG ⊥CO .求证:CD =GF .(初二)证明:过点G 作GH ⊥AB 于H ,连接OE ∵EG ⊥CO ,EF ⊥AB∴∠EGO=90°,∠EFO=90° ∴∠EGO+∠EFO=180° ∴E 、G 、O 、F 四点共圆 ∴∠GEO=∠HFG∵∠EGO=∠FHG=90° ∴△EGO ∽△FHG∴FG EO =HGGO∵GH ⊥AB ,CD ⊥AB ∴GH ∥CD ∴CD CO HG GO = ∴CD CO FG EO = ∵EO=CO ∴CD=GF 2、已知:如图,P 是正方形ABCD 内部的一点,∠PAD =∠PDA =15°。

求证:△PBC 是正三角形.(初二) 证明:作正三角形ADM ,连接MP ∵∠MAD=60°,∠PAD=15° ∴∠MAP=∠MAD+∠PAD=75° ∵∠BAD=90°,∠PAD=15°∴∠BAP=∠BAD-∠PAD=90°-15°=75° ∴∠BAP=∠MAP ∵MA=BA ,AP=AP ∴△MAP ≌△BAP∴∠BPA=∠MPA ,MP=BP 同理∠CPD=∠MPD ,MP=CP ∵∠PAD =∠PDA =15°∴PA=PD ,∠BAP=∠CDP=75° ∵BA=CD∴△BAP ≌∠CDP ∴∠BPA=∠CPD∵∠BPA=∠MPA ,∠CPD=∠MPD ∴∠MPA=∠MPD=75°∴∠BPC=360°-75°×4=60°∵MP=BP ,MP=CP ∴BP=CP ∴△BPC 是正三角形3、已知:如图,在四边形ABCD 中,AD =BC ,M 、N 分别是AB 、CD 的中点,AD 、BC 的延长线交MN 于E 、F .求证:∠DEN =∠F .证明:连接AC ,取AC 的中点G,连接NG 、MG ∵CN=DN ,CG=DG∴GN ∥AD ,GN=21AD∴∠DEN=∠GNM ∵AM=BM ,AG=CG∴GM ∥BC ,GM=21BC∴∠F=∠GMN ∵AD=BC ∴GN=GM∴∠GMN=∠GNM ∴∠DEN=∠F(二)1、已知:△ABC 中,H 为垂心(各边高线的交点),O 为外心,且OM ⊥BC 于M . (1)求证:AH =2OM ;(2)若∠BAC =600,求证:AH =AO .(初二)证明:(1)延长AD 交圆于F ,连接BF ,过点O 作OG ⊥AD 于G∵OG ⊥AF ∴AG=FG ∵AB ⌒ =AB⌒ ∴∠F=∠ACB又AD ⊥BC ,BE ⊥AC ∴∠BHD+∠DBH=90° ∠ACB+∠DBH=90° ∴∠ACB=∠BHD ∴∠F=∠BHD∴BH=BF 又AD ⊥BC ∴DH=DF∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH )=2GD 又AD ⊥BC ,OM ⊥BC ,OG ⊥AD ∴四边形OMDG 是矩形 ∴OM=GD ∴AH=2OM (2)连接OB 、OC∵∠BAC=60∴∠BOC=120° ∵OB=OC ,OM ⊥BC∴∠BOM=21∠BOC=60°∴∠OBM=30°∴BO=2OM由(1)知AH=2OM ∴AH=BO=AO2、设MN 是圆O 外一条直线,过O 作OA ⊥MN 于A ,自A 引圆的两条割线交圆O 于B 、C 及D 、E ,连接CD 并延长交MN 于Q ,连接EB 并延长交MN 于P. 求证:AP =AQ .证明:作点E 关于AG 的对称点F ,连接AF 、CF 、QF ∵AG ⊥PQ ∴∠PAG=∠QAG=90°又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF 即∠PAE=∠QAF∵E 、F 、C 、D 四点共圆 ∴∠AEF+∠FCQ=180° ∵EF ⊥AG ,PQ ⊥AG ∴EF ∥PQ∴∠PAF=∠AFE ∵AF=AE∴∠AFE=∠AEF ∴∠AEF=∠PAF ∵∠PAF+∠QAF=180° ∴∠FCQ=∠QAF ∴F 、C 、A 、Q 四点共圆 ∴∠AFQ=∠ACQ 又∠AEP=∠ACQ ∴∠AFQ=∠AEP3、设MN 是圆O 的弦,过MN 的中点A 任作两弦BC 、DE ,设CD 、EB 分别交MN 于P 、Q . 求证:AP =AQ .(初二)证明:作OF ⊥CD 于F ,OG ⊥BE 于G ,连接OP 、OQ 、OA 、AF 、AG ∵C 、D 、B 、E 四点共圆 ∴∠B=∠D ,∠E=∠C ∴△ABE ∽△ADC∴DF BG FD 2BG 2DC BE AD AB === ∴△ABG ∽△ADF ∴∠AGB=∠AFD ∴∠AGE=∠AFC ∵AM=AN , ∴OA ⊥MN 又OG ⊥BE ,∴∠OAQ+∠OGQ=180° ∴O 、A 、Q 、E 四点共圆 ∴∠AOQ=∠AGE 同理∠AOP=∠AFC ∴∠AOQ=∠AOP在△AEP 和△AFQ 中 ∠AFQ=∠AEP AF=AE ∠QAF=∠PAE ∴△AEP ≌△AFQ ∴AP=AQ又∠OAQ=∠OAP=90°,OA=OA ∴△OAQ ≌△OAP ∴AP=AQ4、如图,分别以△ABC 的AB 和AC 为一边,在△ABC 的外侧作正方形ABFG 和正方形ACDE ,点O 是DF 的中点,OP ⊥BC 求证:BC=2OP (初二)证明:分别过F 、A 、D 作直线BC 的垂线,垂足分别是L 、M 、N ∵OF=OD ,DN ∥OP ∥FL∴PN=PL∴OP 是梯形DFLN 的中位线 ∴DN+FL=2OP ∵ABFG 是正方形 ∴∠ABM+∠FBL=90° 又∠BFL+∠FBL=90° ∴∠ABM=∠BFL又∠FLB=∠BMA=90°,BF=AB ∴△BFL ≌△ABM ∴FL=BM同理△AMC ≌△CND ∴CM=DN∴BM+CN=FL+DN ∴BC=FL+DN=2OP(三)1、如图,四边形ABCD 为正方形,DE ∥AC ,AE =AC ,AE 与CD 相交于F .求证:CE =CF .(初二)证明:连接BD 交AC 于O 。

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(答案解析)(1)

(必考题)初中数学八年级数学下册第一单元《三角形的证明》测试题(答案解析)(1)

一、选择题1.如图,在Rt ABC △中,90,ACB AC BC ∠=︒≠.点P 是直角边所在直线上一点,若PAB △为等腰三角形,则符合条件的点P 的个数最多为( )A .3个B .6个C .7个D .8个2.如图,在ABC 中,BO 平分ABC ∠,CO 平分ACB ∠,EF 经过点O 且//EF BC ,若7AB =,8AC =,9BC =,则AEF 的周长是( )A .15B .16C .17D .243.如图,在ABC 中,4AB AC ==,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//MN BC 分别交AB 、AC 于M 、N ,则AMN 的周长为( )A .12B .4C .8D .不确定 4.下列各组数分别为一个三角形三边的长,其中不能构成直角三角形的一组是( ) A .8,10,12 B .3,4,5 C .5,12,13 D .7,24,25 5.如图,△ABC 中,DC =2BD =2,连接AD ,∠ADC =60°.E 为AD 上一点,若△BDE 和△BEC 都是等腰三角形,且AD =31+,则∠ACB =( )A .60°B .70°C .55°D .75°6.如图,在OAB 和△OCD 中,OA OB =,OC OD =,OA OC >,40AOB COD ∠=∠=︒,连接AC ,BD 交于点M ,连接OM .下列结论:①AC BD =;②40AMB ∠=︒;③OM 平分BOC ∠;④MO 平分BMC ∠. 其中一定正确的为( )A .①②③B .①②④C .①③④D .②③④ 7.如图,在ABC 中,30C ∠=︒,点D 是AC 的中点,DE AC ⊥交BC 于E ;点O 在DE 上,OA OB =,2OD =,4OE =,则BE 的长为( )A .12B .10C .8D .68.如图,在Rt ABC △中,90BAC ︒∠=,AD BC ⊥于点D ,AE 平分BAD ∠交BC 于点E ,则下列结论一定成立的是( )A .AC AE =B .EC AE = C .BE AE =D .AC EC = 9.如图,在四边形ABCD 中,90A BDC ∠=∠=︒,C ADB ∠=∠,点P 是BC 边上的一动点,连接DP ,若3AD =,则DP 的长不可能是( )A .2B .3C .4D .510.如图,在ABC 中,以点A 为圆心,AC 的长为半径作弧,与BC 交于点E ,分别以点E 和点C 为圆心、大于12EC 的长为半径作弧,两弧相交于点P ,作射线AP 交BC 于点D .若45B ∠=︒,2C CAD ∠=∠,则BAE ∠的度数为( )A .15︒B .25︒C .30D .35︒11.如图,ABC 中,36A ∠=︒,72C ∠=︒,BD 平分ABC ∠,//ED BC ,则图中等腰三角形的个数是( )A .3B .4C .5D .612.如图,A ,B 两点在正方形网格的格点上,每个方格都是边长为1的正方形,点C 也在格点上,且ABC 为等腰三角形,在图中所有符合条件的点C 的个数为( )A .7B .8C .9D .10二、填空题13.如图,已知ABC ∆中,90,C AC BC ∠=︒=,点D 在BC 上,DE AB ⊥,点E 为垂足,且DC DE =,联结AD ,则ADB ∠的大小为___________.14.如图,一副含30和45︒角的三角板ABC 和EDF 拼合在个平面上,边AC 与EF 重合,6cm AC =.当点E 从点A 出发沿AC 方向滑动时,点F 同时从点C 出发沿射线BC 方向滑动.当点E 从点A 滑动到点C 时,连接BD .则ABD △的面积最大值为_________2cm .15.如图,在ABC 中,AB AC =,AD 平分BAC ∠,PD 垂直平分AB 连接BD 并延长,交边AC 于点E .若BCE 是等腰三角形,则BAC ∠的度数为________.16.如图,已知△ABC 的周长是18,OB 、OC 分别平分∠ABC 和∠ACB ,OD ⊥BC 于D ,且OD =1,△ABC 的面积是_____.17.如图,AD 是△ABC 的平分线,DF ⊥AB 于点F ,DE =DG ,AG =16,AE =8,若S △ADG =64,则△DEF 的面积为 ________.18.如图,BD 是△ABC 的角平分线,DE ⊥AB ,垂足为E ,△ABC 的面积为60,AB =16,BC =14,则DE 的长等于_____.19.上午10时,一艘船从A 处出发以每小时25海里的速度向正北航行,中午12时到达B 处,从A 、B 两点观望灯塔C ,测得42DAC ∠=︒,84DBC ︒∠=,则B 到灯塔C 的距离是________海里.20.如图,ABC 是等边三角形,AD 是BC 边上的高,且6,33,AB AD E ==是AC 的中点,P 是AD 上的一个动点,PC 与PE 的和最小为______.三、解答题21.已知A (3, 5),B (-1, 2),C (1, 1).(1)在所给的平面直角坐标系中作出△ABC ;(2)△ABC 是直角三角形吗?请说明理由.22.已知:如图1,等边ABC 的边长为cm 6,点P ,Q 分别从B ,C 两点同时出发,点P 沿BC 向终C 运动,速度为1cm/s ;点Q 沿CA ,AB 向终点B 运动,速度为2cm/s .设它们运动的时间为s x .(1)当x = 时,//PQ AB ;(2)若PQ AC ⊥,求x ;(3)如图2,当点Q 在AB 上运动时,若PQ 与ABC 的高AD 交于点O ,请你补全图形,猜想OQ 与OP 是否总是相等?并说明理由.23.如图,在Rt ABC △中,CM 平分ACB ∠交AB 于点M ,过点M 作//MN BC 交AC 于点N ,且MN 平分AMC ∠,若1AN =.(1)求B 的度数;(2)求CN 的长.24.如图,Rt △ABC 中,∠BCA =90°,AC =BC ,点D 是BC 的中点,CE ⊥AD 于E ,BF ∥AC 交CE 的延长线于点F .(1)求证:△ACD ≌△CBF ;(2)连结DF ,求证:AB 垂直平分DF ;(3)连结AF ,试判断△ACF 的形状,并说明理由.25.如图.在△ABC 中,∠C =90 °,∠A =30°.(1)用直尺和圆规作AB 的垂直平分线,分别交AB 、AC 于D 、E ,交BC 的延长线于F ,连接EB .(不写作法,保留作图痕迹)(2)求证:EB 平分∠ABC .(3)求证:AE =EF .26.已知:如图,在ABC 中,,90AC BC ACB =∠=︒,D 是AB 延长线上一点,过点C 作CE CD ⊥,使CE CD =,连结,BE DE .(1)求证:AD BE =.(2)求DBE ∠的度数.(3)连结AE ,若ADE 是等腰三角形,1AB =,求DE .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】分为三种情况:①BP=AB,②AP=AB,③AP=BP,再求出答案即可.【详解】解:作BC、AC所在直线,然后分别以B、A点为圆心,以AB为半径作圆分别交BC、AC所在直线于6点,再作AB的垂直平分线与BC所在直线交于2点,总共符合条件的点P的个数最多有8个,故选:B.【点睛】本题考查了等腰三角形的判定,线段垂直平分线的性质.能求出符合的所有情况是解此题的关键.2.A解析:A【分析】先根据平行线的性质、角平分线的定义、等边对等角得到BE=OE,OF=CF,再进行线段的代换即可求出AEF的周长.【详解】解:∵EF∥BC,∴∠EOB=∠OBC,,∵BO平分ABC∴∠EBO=∠OBC,∴∠EOB=∠EBO,∴BE=OE,同理可得:OF=CF,∴AEF的周长为AE+AF+EF=AE+OE+OF+AF= AE+BE+CF+AF=AB+AC=7+8=15.故答案为:A【点睛】本题考查了等腰三角形的判定“等边对等角”,熟知平行线的性质,角平分线的定义和等腰三角形的判定定理是解题关键.3.C解析:C【分析】由角平分线的定义和平行线性质易证△BME和△CNE是等腰三角形,即BM=ME,CN=NE,由此可得△AMN的周长=AB+AC.【详解】解:∵∠ABC和∠ACB的平分线交于点E,∴∠ABE=∠CBE,∠ACE=∠BCE,∵MN//BC,∴∠CBE=∠BEM,∠BCE=∠CEN,∴∠ABE=∠BEM,∠ACE=∠CEN,∴BM=ME,CN=NE,∴△AMN的周长=AM+ME+AN+NE=AB+AC,∵AB=AC=4,∴△AMN的周长=4+4=8.故选C.【点睛】本题考查了等腰三角形的判定与性质,平行线的性质,熟记各性质是解题的关键.4.A解析:A【分析】利用勾股定理的逆定理:如果三角形两条边的平方和等于第三边的平方,那么这个三角形就是直角三角形,最长边所对的角为直角来判定即可.【详解】解:A、∵82+102≠122,∴三条线段不能组成直角三角形,故A选项符合题意;B、∵32+42=52,∴三条线段能组成直角三角形,故B选项不符合题意;C、∵52+122=132,∴三条线段能组成直角三角形,故C选项不符合题意;D、∵72+242=252,∴三条线段能组成直角三角形,故D选项不符合题意;故选:A.【点睛】本题考查的是勾股定理逆定理,解题的关键是掌握勾股定理逆定理以及准确计算.5.D解析:D【分析】根据等腰三角形的性质求解即可;【详解】∵60EDC ∠=︒,∴60EBD BED ∠+∠=︒,∵△BDE 是等腰三角形,∴30EBD BED ∠=∠=︒,1BD DE ==,∵△BEC 是等腰三角形,∴30EBD ECD ∠=∠=︒,∵60EDC ∠=︒,∴90DEC ∠=︒,在Rt △DEC 中,∵30ECD ∠=︒,1DE =,∴tan 30DEEC ==︒又∵AD 1, ∴AE AD DE EC =-==,∴△AEC 为等腰三角形,又∵90DEC AEC ∠=∠=︒,∴45ECA EAC ∠=∠=︒,∴453075ACB ACE ECD ∠=∠+∠=︒+︒=︒;故答案选D .【点睛】本题主要考查了等腰三角形的性质应用,准确计算是解题的关键.6.B解析:B【分析】由SAS 证明△AOC ≌△BOD 得出∠OCA=∠ODB ,AC=BD 即可判断①;由全等三角形的性质得出∠OAC=∠OBD ,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD ,得出∠AMB=∠AOB=40°,即可判断②;作OG ⊥MC 于G ,OH ⊥MB 于H ,则∠OGC=∠OHD=90°,由AAS 证明△OCG ≌△ODH (AAS ),得出OG=OH ,由角平分线的判定方法得出MO 平分∠BMC ,即可判断④;由∠AOB=∠COD ,得出当∠DOM=∠AOM 时,OM 平分∠BOC ,假设∠DOM=∠AOM ,由△AOC ≌△BOD 得出∠COM=∠BOM ,由MO 平分∠BMC 得出∠CMO=∠BMO ,推出△COM ≌△BOM ,得OB=OC ,而OA=OB ,所以OA=OC 即可判断③;【详解】∵ ∠AOB=∠COD=40°,∴∠AOB+∠AOD=∠COD+∠AOD ,即∠AOC=∠BOD,在△AOC和△BOD中,OA OBOC ODAOC BOD=⎧⎪=⎨⎪∠=∠⎩,∴△AOC≌△BOD(SAS),∴∠OCA=∠ODB,AC=BD,故①正确;∴∠OAC=∠OBD,由三角形的外角性质得:∠AMB+∠OAC=∠AOB+∠OBD,∴∠AMB=∠AOB=40°,故②正确;作OG⊥MC于G,OH⊥MB于H,如图所示:则∠OGC=∠OHD=90°,在△OCG和△ODH中OCA ODBOGC OHD OC OD∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△OCG≌△ODH(AAS),∴OG=OH,∴MO平分∠BMC,故④正确;∵∠AOB=∠COD,∴当∠DOM=∠AOM时,OM平分∠BOC,假设∠DOM=∠AOM,∵△AOC≌△BOD∴∠COM=∠BOM,∵MO平分∠BMC∴∠CMO=∠BMO,在△COM和△BOM中,COM BOMOM OMCMO BMO∠∠⎧⎪=⎨⎪∠=∠⎩,∴△COM≌△BOM(ASA)∴OB=OC,∵OA=OB,∴OA=OC 与OA >OC 矛盾,故③错误;故选:B .【点睛】本题考查了全等三角形的判定与性质,三角形的外角性质,角平分线的判定等知识,证明三角形全等是解题的关键;.7.C解析:C【分析】连接OC ,过点O 作OF BC ⊥于F ,求得212CE DE ==,60CED ∠=︒,再根据条件得出9030EOF OEF ∠=︒-∠=︒,得到122EF OE ==,即可得解; 【详解】连接OC ,过点O 作OF BC ⊥于F ,如图,∵2OD =,4OE =,∴6DE OD OE =+=, 在Rt △CDE 中,30C ∠=︒,∴212CE DE ==,9060CED C ∠=︒-∠=︒, ∵D 为AC 的中点,DE AC ⊥,∴OA OC =,∵OA OB =,∴OB OC =,∵OF BC ⊥,∴12CF BF BC ==, 在Rt △OEF 中, ∵60OEF ∠=︒, ∴9030EOF OEF ∠=︒-∠=︒,∴122EF OE ==, ∴10CF CE EF =-=,∴8BE BC CE =-=;故答案选C .【点睛】本题主要考查了等腰三角形的判定与性质,准确分析计算是解题的关键.8.D解析:D【分析】根据角平分线的性质得出∠BAE=∠DAE ,再根据∠CEA=∠B+∠BAE ,∠CAE=∠CAD+∠DAE 得出∠CAE=∠CEA 即可得出答案.【详解】解:∵90BAC ∠=︒,∴∠BAE+∠DAE+∠CAD=90°,∠B+∠C=90°∵AD ⊥BC∴∠BAE+∠DAE+∠B=90°,∠DAE+∠DEA=90°,∠CAD+∠C=90°∵AE 平分BAD ∠∴∠DAE=∠BAE∵∠B+∠C=90°∴∠CAD=∠B∵∠CEA=∠B+∠BAE∴∠CEA=∠DAE+∠CAD=∠CAE∴AC=EC ,其他选项均缺少条件,无法证明一定相等,故选:D .【点睛】本题考查直角三角形两锐角和为90°,角平分线的定义以及等腰三角形的判定等知识,解题的关键是灵活运用所学知识解决问题.9.A解析:A【分析】由三角形的内角和定理和角的和差求出∠ABD =∠CBD ,角平分线的性质定理得AD =DH ,垂线段定义证明DH 最短,求出DP 长的最小值为3,即可得到正确答案 .【详解】过点D 作DH ⊥BC 交BC 于点H ,如图所示:∵∠A=∠BDC=90°,又∵∠C+∠BDC+∠DBC=180°,∠ADB+∠A+∠ABD=180°,∴∠ABD=∠CBD,∴BD是∠ABC的角平分线,又∵AD⊥AB,DH⊥BC,∴AD=DH,又∵AD=3,∴DH=3,∴当点P在BC上运动时,点P运动到与点H重合时DP最短,其长度为DH长等于3,即DP长的最小值为3,故DP的长不可能是2,故选:A.【点睛】本题综合考查了三角形的内角和定理,角的和差,角平分线的性质定理,垂线段的定义等知识点,重点掌握角平分线的性质定理,难点是作垂线段找线段的最小值.10.A解析:A【分析】根据作图过程可得,AP是EC的垂直平分线,可得AE=AC,∠ADB=∠ADC=90°,再根据∠B=45°,∠C=2∠CAD,即可求出∠CAD的度数,进而即可求解.【详解】解:由作图过程可知:AP是EC的垂直平分线,也是∠CAE的角平分线,∴AE=AC,∠ADB=∠ADC=90°,∵∠B=45°,∴∠BAD=45°,∵∠C=2∠CAD,∴3∠CAD=90°,∴∠CAD=30°,∴∠EAD=30°,=45°-30°=15°.∴BAE故选:A.【点睛】本题考查了作图−基本作图,直角三角形的性质,解决本题的关键是掌握基本作图方法.11.C解析:C【分析】利用三角形内角和定理,平行线的性质,角平分线的定义求出各个角,再根据等腰三角形的判定定理,即可判断.【详解】解:∵∠A=36°,∠C=72°,∴∠ABC=180°−72°−36°=72°,∴∠ABC=∠C,∴△ABC是等腰三角形,∵DE∥BC,∴∠AED=∠ABC,∠ADE=∠C,∴∠AED=∠ADE,∴△AED是等腰三角形,∵BD平分∠ABC,∴∠ABD=∠DBC=36°,∴∠A=∠ABD=36°,∠EDB=∠EBD=36°,∴△ABD,△BDE都是等腰三角形,∵∠BDC=180°-72°-36°=72°,∴∠C=∠BDC=72°,∴△BDC是等腰三角形,∴等腰三角形有5个,故选:C.【点睛】本题考查等腰三角形的判定,平行线的性质,角平分线的定义等知识,解题的关键是熟练掌握等腰三角形的判定定理,属于中考常考题型.12.B解析:B【分析】分两种情况:①AB为等腰三角形的底边;②AB为等腰三角形的一条腰;画出图形,即可得出结论.【详解】解:如图所示:①AB为等腰三角形的底边,符合条件的点C的有5个;②AB为等腰三角形的一条腰,符合条件的点C的有3个.所以符合条件的点C共有8个.故选:B.【点睛】此题考查了等腰三角形的判定,熟练掌握等腰三角形的判定是解题的关键,注意数形结合的解题思想.二、填空题13.5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线然后利用外角性质求∠ADB 的度数即可【详解】解:∵∠C =90°DE ⊥AB ∴∠C=∠AED=90°在Rt∆ACD 和Rt∆AED 中∴Rt∆解析:5°【分析】首先根据角平分线的判定方法判定AD 是∠BAC 的平分线,然后利用外角性质求∠ADB 的度数即可.【详解】解:∵∠C =90°,DE ⊥AB∴∠C=∠AED=90°,在Rt∆ACD 和Rt∆AED 中DE DC AD AD=⎧⎨=⎩, ∴Rt∆ACD ≌Rt∆AED ,∴∠CAD=∠EAD ,∴AD 平分∠BAC ,∴∠CAD =12∠BAC , ∵∠C =90°,AC =BC ,∴∠B =∠CAB =45°,∴∠CAD =22.5°,∴∠ADB=∠CAD +∠C =112.5°.故答案为:112.5°.【点睛】本题考查了角平分线的判定方法以及三角形外角的性质,角平分线的判定方法是:到角的两边距离相等的点在这个角的平分线上.14.cm2【分析】过点作于点作于点连接由直角三角形的性质可得cmcmcm 由可证△△可得由三角形面积公式可求则时有最大值【详解】解:cmcmcmcm 当点从点滑动到点时得△过点作于点作于点连接且且△△当时有解析:cm 2【分析】过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',由直角三角形的性质可得BC =,AB =,ED DF ==cm ,由“AAS ”可证△D NE ''≅△D MF '',可得D N D M ''=,由三角形面积公式可求111222AD B S BC AC AC D N BC D M '''=⨯+⨯⨯-⨯⨯△,则E D AC ''⊥时,AD B S '△有最大值.【详解】解:6AC =cm ,30A ∠=︒,45DEF ∠=︒, 233BC ∴==cm ,43AB =cm ,32ED DF ==cm ,当点E 从点A 滑动到点C 时,得△E D F ''',过点D 作D N AC '⊥于点N ,作D M BC '⊥于点M ,连接BD ',AD ',90MD N '∴∠=︒,且90E D F '''∠=︒,E D NF D M ''''∴∠=∠,且90D NE D MF ''''∠=∠=︒,E D D F ''''=,∴△D NE ''≅△()D MF AAS '',D N D M ''∴=,AD B ABC AD C BD C S S S S '''=+-△△△△当E D AC ''⊥时,AD B S '△有最大值,1111123(623)2222AD B S BC AC AC D N BC D M D N ''''∴=⨯+⨯⨯-⨯⨯=-⨯△ AD B S '∴△最大值1123(623)32(1239236)2=-⨯=cm 2. 故答案为:(1239236)cm 2.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质,角平分线的性质,三角形面积公式等知识,确定AD B S '△有最大值时的图形位置是本题的关键.15.45°或36°【分析】设∠BAD=∠CAD=α根据三角形内角和定理和三角形外角的性质表示∠EBC ∠BEC 和∠C 再分三种情况讨论即可【详解】解:∵AD 平分∴设∠BAD=∠CAD=α∵AB=AC ∴∠AB解析:45°或36°.【分析】设∠BAD=∠CAD=α,根据三角形内角和定理和三角形外角的性质表示∠EBC 、∠BEC 和∠C ,再分三种情况讨论即可.【详解】解:∵AD 平分BAC ∠,∴设∠BAD=∠CAD=α,∵AB=AC ,∴∠ABC=∠C=1802902αα︒-=︒-, ∵PD 垂直平分AB ,∴AD=BD , ∴∠ABD=∠BAD=α,∠EBC=∠ABC-∠ABE=902α︒-,∴∠BEC=∠ABE+∠BAC=3α,当BE=BC 时,∴∠BEC=∠C ,即903αα︒-=,解得22.5α=︒,∴245BAC α∠==︒;当BE=CE 时,∠EBC=∠C ,此时E 点和A 点重合,舍去;当BC=CE 时,∴∠EBC=∠BEC ,即9023αα︒-=,解得18α=︒,∴236BAC α∠==︒,故答案为:45°或36°.【点睛】本题考查三角形外角的性质,等腰三角形的性质,三角形内角和定理,垂直平分线的性质.掌握方程思想,能正确表示相关角是解题关键.16.9【分析】过点O 作OE ⊥AB 于EOF ⊥AC 与F 连接OA 根据角平分线的性质求出OEOF 根据三角形面积公式计算得到答案【详解】解:过点O 作OE ⊥AB 于EOF ⊥AC 于F 连接OA ∵OB 平分∠ABCOD ⊥BC解析:9【分析】过点O 作OE ⊥AB 于E ,OF ⊥AC 与F ,连接OA ,根据角平分线的性质求出OE 、OF ,根据三角形面积公式计算,得到答案.【详解】解:过点O 作OE ⊥AB 于E ,OF ⊥AC 于F ,连接OA ,∵OB 平分∠ABC ,OD ⊥BC ,OE ⊥AB ,∴OE =OD =1,同理可知,OF =OD =1,∴△ABC 的面积=△OAB 的面积+△OAC 的面积+△OBC 的面积, =12×AB ×OE +12×AC ×OF +12×BC ×OD , =12×18×1, =9,故答案为:9.【点睛】本题主要考查了角平分线的性质,准确计算是解题的关键.17.16【分析】过点D 作于H 先利用三角形的面积公式计算出DH=8再利用角平分线的性质得到DF=DH=8接着证明得到证明得到利用等线段代换得到于是求出EF 的长然后根据三角形的面积公式计算即可【详解】过点D解析:16【分析】过点D 作DH AC ⊥于H ,先利用三角形的面积公式计算出DH=8,再利用角平分线的性质得到DF=DH=8,接着证明Rt DEF DGH △≌Rt △得到EF HG =,证明Rt ADF △≌Rt △ADH 得到AF AH =,利用等线段代换得到EF AG HG AE =--,于是求出EF 的长,然后根据三角形的面积公式计算即可【详解】过点D 作DH AC ⊥于H ,64S =△ADG ,16AG =1642AG DH ∴⨯⨯= 8DH ∴= AD 是ABC 的平分线,,DF AB DH AC ⊥⊥8DF DH ==∴在Rt DEF △和Rt DGH △中DE DG DF DH=⎧⎨=⎩\ ∴Rt DEF △≌Rt DGH △EF HG ∴=同理可得Rt ADF △≌Rt △ADHAF AH ∴=168EF AF AE AH AE AG HG AE EF =-=-=--=--4EF ∴= 11481622DEF S EF DF ∴=⨯⨯=⨯⨯=△ 【点睛】本题考查了角平分线的性质,全等三角形的判定和性质,熟练掌握角平分线的性质,全等三角形的判定定理是解题关键.18.【分析】过点D 作DF ⊥BC 垂足为F 根据角平分线的性质得到FD=DE 再利用面积求DE 即可【详解】解:过点D 作DF ⊥BC 垂足为F ∵BD 是△ABC 的角平分线DE ⊥ABDF ⊥BC ∴FD=DEDE=4故答案为解析:【分析】过点D 作DF ⊥BC ,垂足为F ,根据角平分线的性质得到FD=DE ,再利用面积求DE 即可.【详解】解:过点D 作DF ⊥BC ,垂足为F ,∵BD 是△ABC 的角平分线,DE ⊥AB ,DF ⊥BC ,∴FD=DE ,182ABD SAB DE DE =⋅=, 172CBDS BC DF DE =⋅=, ABC ABD DBC S S S =+△△△,8760DE DE +=,DE=4,故答案为:4.【点睛】本题考查是角平分线的性质,解题关键是熟知角平分线性质,作垂线,利用面积求DE . 19.50【分析】根据题意得到证明BC=AB 即可得解;【详解】根据题意得:海里∵∴∴∴海里;故答案是50【点睛】本题主要考查了等腰三角形的判定与性质结合方位角计算是解题的关键解析:50【分析】根据题意得到C BAC ∠=∠,证明BC=AB ,即可得解;【详解】根据题意得:22550AB =⨯=海里,∵42DAC ∠=︒,84DBC ︒∠=,∴42C DBC DAC ∠=∠-∠=︒,∴C BAC ∠=∠,∴50BC AB ==海里;故答案是50.【点睛】本题主要考查了等腰三角形的判定与性质,结合方位角计算是解题的关键.20.【分析】连接BE 与AD 交于点P 连接CP 则BE 的长度即为PE 与PC 和的最小值根据三角形的面积公式即可证出从而得出结论【详解】如图连接BE 与AD 交于点P 连接CP ∵△ABC 是等边三角形AD ⊥BC ∴AD 垂直 解析:33【分析】连接BE ,与AD 交于点P ,连接CP ,则BE 的长度即为PE 与PC 和的最小值,根据三角形的面积公式即可证出33BE AD ==,从而得出结论.【详解】如图,连接BE ,与AD 交于点P ,连接CP∵△ABC 是等边三角形,AD ⊥BC ,∴AD 垂直平分BC ,BC=AC∴PC=PB ,∴PE+PC=PB+PE=BE ,根据两点之间线段最短,BE 的长就是PE+PC 的最小值,∵E 是AC 的中点,∴BE ⊥AC∵ABC S =12BC·AD=12AC·BE 6,33AB AD ==6AB BC AC ∴===∴BE=AD=33 即PC 与PE 的和最小值是33故答案为:33. 【点睛】本题考查了最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.三、解答题21.(1)见解析;(2)是,理由见解析【分析】(1)在平面直角坐标系中描出A 、B 、C 三点,再顺次连接三点即可做出△ABC ; (2)利用网格特点,分别求出AB 2、AC 2、BC 2,再根据勾股定理的逆定理判断即可.【详解】(1)如图所示;(2)△ABC 是直角三角形,理由为:∵AB 2=42+32=25,AC 2=22+42=20,BC 2=12+22=5,∴AC 2+BC 2=AB 2,∴△ABC 是直角三角形,且∠C=90°.【点睛】本题考查平面直角坐标系、勾股定理及其逆定理,熟练掌握网格结构和平面直角坐标系,准确找出对应点的位置,会利用勾股定理的逆定理判断直角三角形是解答的关键. 22.(1)2x =;(2)65x =;(3)相等,画图和理由见解析 【分析】(1)当PQ //AB 时,△PQC 为等边三角形,根据PC=CQ 列出方程即可解出x 的值; (2)当PQ ⊥AC 时,可得1=2QC PC ,列出方程解答即可; (3)作QH ⊥AD 于点H ,计算得出QH=DP ,从而证明△OQH ≌△OPD (AAS )即可.【详解】解:(1)∵当PQ //AB 时,∴∠QPC=∠B=60°,又∵∠C=60°∴△PQC 为等边三角形∴PC=CQ ,∵PC=6-x ,CQ=2x ,由6-x=2x解得:2x =,∴当2x =时,PQ //AB ;(2)若PQ ⊥AC ,∵∠C=60°,∴∠QPC=30°, ∴1=2QC PC , 即12(6)2x x =-, 解得:65x = ∴当65x =时,PQ AC ⊥; (3)补全图形如图理由如下:作QH AD ⊥于H ,ABC 等边三角形,AD BC ⊥.30QAH ∴∠=,132BD BC ==, 12QH AQ ∴=1(26)32x x =-=-, 3DP BP BD x =-=-,QH DP ∴=,在OQH △和OPD △中,QOH POD QHO PDO QH PD ∠=∠⎧⎪∠=∠⎨⎪=⎩()OQH OPD AAS ∴△≌△,OQ OP ∴=.【点睛】本题考查了等边三角形的性质,含30°直角三角形的性质,全等三角形的性质及判定,几何中的动点问题,解题的关键是灵活运用等边三角形及全等三角形的性质及判定. 23.(1)30B ∠=︒;(2)2.【分析】(1)先利用直角三角形的两个锐角互余,得到一个等式,再利用平行线的性质,角平分线的性质,用B 的代数式表示这个等式,转化为B 的方程求解即可;(2)利用30°角所对的直角边等于斜边的一半计算MN ,再利用平行线的性质,角平分线的性质证明CN=MN ,问题得证.【详解】(1)∵CM 平分ACB ∠,MN 平分AMC ∠,∴ACM BCM ∠=∠,AMN CMN ∠=∠,又∵//MN BC ,∴AMN B ∠=∠,CMN BCM ∠=∠,∴B BCM ACM ∠=∠=∠,∵90A ∠=︒,∴90B ACB ∠+∠=︒,∴30B ∠=︒;(2)由(1)得,30AMN B ∠=∠=︒又∵90A ∠=︒ ∴12AN MN =∵1AN =∴2MN = ∵MCN CMN ∠=∠∴MN NC =,∴2CN =. 【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,直角三角形的性质,根据条件,熟练将问题与相应的知识准确对接是解答关键.24.(1)见解析;(2)见解析;(3)△ACF 是等腰三角形,理由见解析【分析】(1)由AAS 证明△ACD ≌△CBF 即可;(2)由全等三角形的性质得CD =BF ,由CD =BD ,得BF =BD ,证出∠ABC =∠ABF ,由等腰三角形的性质即可得出结论;(3)由全等三角形的性质得AD =CF ,由垂直平分线的性质得AD =AF ,得出AF =CF 即可.【详解】(1)证明:∵CE ⊥AD ,∠BCF +∠ADC =90°,∵∠BCA =90°,BF ∥AC ,∴∠CBF =180°﹣∠BCA =90°,∴∠BCF +∠CFB =90°,∴∠CFB =∠ADC ,在△ACD 和△CBF 中,ACD CBF ADC CFB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△CBF (AAS );(2)证明:由(1)得:△ACD ≌△CBF ,∴CD =BF ,∵D 为BC 的中点,∴CD =BD ,∴BF =BD ,∵∠BCA =90°,AC =BC ,∴∠ABC =45°,∴∠ABF =90°﹣∠ABC =45°,∴∠ABC =∠ABF ,∵BF =BD ,∴AB 垂直平分DF ;(3)解:△ACF 是等腰三角形,理由如下,如图:连接AF由(1)得:△ACD≌△CBF,∴AD=CF,由(2)得:AB垂直平分DF,∴AD=AF,∴AF=CF,∴△ACF是等腰三角形.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的判定和性质,直角三角形的性质,线段垂直平分线的性质等知识,熟练掌握等腰三角形的判定与性质,全等三角形的判定定理是解题关键.25.见解析【分析】(1)先作线段AB的垂直平分线DE,再延长BC即可;(2)先利用直角三角形的性质求∠ABC= 60︒,再垂直平分线的性质得到∠ABE=∠A=30︒,再求出∠EBC=∠ABC-∠ABE=30︒,即可得到∠EBC=∠ABE,得到答案;(3)证明:先利用直角三角形的性质求∠DEB=90︒-∠ABE =60︒再利用三角形外角的性质求∠EFB=∠DEB-∠EBC=60︒-30︒=30︒,进而得∠EFB=∠EBC,证得BE=EF,又因为AE= BE,利用等量代换即可求得答案.【详解】(1)如图,即为所求;(2)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴AE=BE∵∠A=30︒,∠ACB=90︒∴∠ABE=∠A=30︒,∠ABC=90︒-∠A=60︒∴∠EBC=∠ABC-∠ABE=60︒-30︒=30︒∴∠EBC=∠ABE∴EB 平分∠ABC .(3)证明:∵DE 是AB 的垂直平分线∴DE ⊥AB∴∠DEB=90︒-∠ABE =60︒∴∠EFB=∠DEB-∠EBC=60︒-30︒=30︒∴∠EFB=∠EBC∴BE=EF又∵AE= BE∴AE=EF【点睛】本题考查了尺规作图和垂直平分线性质得应用,解决此题的关键利用尺规作图,画出图形.26.(1)见解析;(2)90°;(3【分析】(1)用SAS 证明△ACD ≌△BCE ,即可得到结论;(2)根据全等三角形的性质得到∠EBC=∠BAC=45°,可得∠DBE ;(3)分DA=DE ,DA=AE ,DE=AE ,三种情况根据等腰三角形的性质求解.【详解】解:(1)∵CE ⊥CD ,∴∠DCE=90°=∠ACB ,∴∠ACB+∠BCD=∠DCE+∠BCD ,即∠ACD=∠ECB ,∴在△ACD 和△BCE 中,AC BC ACD ECB CD CE =⎧⎪∠=∠⎨⎪=⎩,∴△ACD ≌△BCE (SAS ),∴AD=BE ;(2)由(1)可知:△ACD ≌△BCE ,∴∠EBC=∠BAC=45°,∴∠DBE=180°-∠EBC-∠ABC=90°;(3)∵△ADE 是等腰三角形,若DA=DE,则∠DAE=∠DEA,∵∠DAC=∠DEC,∴∠CAE=∠CEA,∴AC=EC,∵AC≠EC,∴DA≠DE;若DA=AE,∵∠EBA=90°,∴AE>BE,∵△ACD≌△BCE,∴AD=BE,∴AE≠AD;若DE=AE,∵EB⊥AD,AE=DE,∴B是AD中点,∴AD=2AB=2BD=1,∵△ACD≌△BCE,∴BE=AD=2,由(2)可知:∠DBE=90°,∴DE=225+=;BE DB综上:DE的值为5.【点睛】本题考查了全等三角形的判定和性质,等腰三角形的性质,解题的关键是注意分类讨论,灵活运用等腰三角形的性质.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
AC.
D
A ( 1)求证: BG FG;
(2)若 AD DC 2,求 AB 的长.
B
G
C
E
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 1 / 48
精品文档
二:如图,已知矩形 ABCD,延长 CB 到 E,使 CE=CA,连结 AE 并取中点 F,连结 AE 并取中点 F,连结 BF、DF,求证 BF ⊥ DF。
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 4 / 48
精品文档 k 的图象过点 D,则其 x
于点 F, 一:解:( 1
, DE⊥ AC ABC 90°
ABC AFE.
A AC AE EAF
CAB,
ABC≌△ AFE AB AF. 连接 AG,
AG= AG,AB= AF, B D F
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 10 / 48
G
E 篇二 : 《初二数学下册证明题 ( 中等难题 _含答案 ) 》
一.计算题
21
66 ( 6)6
(6x
40 39(简便计算)
4)(3x
2)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 7 / 48
精品文档 33
( a b)( a b)
(a
(a b c)2
b c)(a b c)
六、 (6 分 ) 、如图, P 是正方形 ABCD对角线 BD上一点, PE ⊥DC,PF⊥ BC,E、F 分别为垂足, 若 CF=3,CE=4,求 AP的长 .
七、 (8 分 ) 如图,等腰梯形 ABCD中, AD∥ BC,M、 N 分别是 AD、 BC的中点, E、 F 分别是 BM、
CM的中点.
五、(本题 8 分)如图,四边形 ABCD为等腰梯形, AD∥BC, AB=CD,对角线 AC、 BD
交于点 O,且 AC⊥BD, DH⊥BC。
⑴求证: DH=
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 2 / 48
精品文档 1
(AD+BC) 2
⑵若 AC=6,求梯形 ABCD的面积。
2xy 34
精品文档
1232
(4) ( 22) (b a)
( 2
0.25)11 222 (a b)
m4m
( 2xy) 8( x) ( y) (a
( x)
xx
b) (a b)
233232
2
(p q m)( p q m)
(2a 3b)(4a2 6ab 9b2)
25 ( 2)2 ( 2)3
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 9 / 48
精品文档 三:证明:∵四边形 ABCD是矩形
∴∠ B=∠C=∠ BAD=90° AB=CD ∴∠ BEF+∠ BFE=90°
∵ EF⊥ ED∴∠ BEF+∠ CED=90° ∴∠ BEF=∠ CED∴∠ BEF=∠ CDE 又∵ EF=ED∴△ EBF≌△ CDE ∴ BE=CD
∴ BE=AB∴∠ BAE=∠ BEA=45° ∴∠ EAD=45° ∴∠ BAE=∠ EAD ∴ AE平分∠ BAD
(x
2)(x
2)(x2
4)
x8 x4 x4
简便计算: 9982
(a2b a)2 ( ab)2 (a2 ( x 2y)2
b2)2 ( 2ab)2
(x { 初二下册数学证明题及答案 }. 解
2x (2 x) 2x 6x
2
2
1211
y z)2
(4x3y
6x2y2 xy3)
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 8 / 48
精品文档
初二下册数学证明题及答案
下文是关于初二下册数学证明题及答案相关内容,希望对 你有一定的帮助: 篇一 : 《初二数学下册证明题 ( 中等难题 含答案 ) 》
一:已知:如图,在直角梯形 ABCD中,AD∥ BC,∠ ABC=90°, DE⊥ AC于点 F,交 BC于点 G,交 AB 的延长线于点 E,且 AE
( 51)5 (7)6736
精品文档
(3a 4b 2c)2
(3a
2b)2 (2b 3a)2
已知 a
1
a
7,y2) (2x2
z3
)255
( 0.53)3 12
( m5)4 ( m2)7 3
1111
1992( 简便计算)
(4m2
9n2)2
8( 3mn)2
精品文档
M
D
选择题:
15、如图,每一个图形都是由不同个数的全等的小等腰梯形 拼成的,梯形上、下底及腰长如
图,依此规律第 10 个图形的周长为

……
第一个图
第二个图
第三个图
16、如图,矩形 ABCD对角线 AC经过原点 O, B 点坐标为
(― 1,― 3),若一反比例函数 y

B{ 初二下册数学证明题及答案 }. N
在直角三角形 AEB中, BF 是斜边上中线 ∴ BF=AF
又: AD=BC CF=CF∴△ BCF≌△ ADF ∠ BFC=∠ AFD 而∠ AFD+ ∠DFC=AFC=90∴∠ BFC+∠DFC=∠ BFD=90 ∵ BF⊥ DF
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 6 / 48
C
Rt △ABG≌Rt △ AFG. BG FG.
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 5 / 48
精品文档 (2)解:∵ AD= DC,DF⊥ AC,
AF
11
2AC 2
AE.
E 30°.
FAD
E 30°, { 初二下册数学证明题及答案 }. AF
AB AF
二:证明:∵ CE=CA AF=EF ∴ CF⊥AE ∠ AFC=∠ EFC=90
( 1)在不添加线段的前提下,图中有哪几对全等三角形? 请直接写出结论; (2)判断并证明四边形 MENF是何种特 殊的四边形?
(3)当等腰梯形 ABCD的高 h 与底边 BC 满足怎样的数量关 系时?四边形 MENF是正方形 (直接写出结论, 不需要证明) .
A
2016 全新精品资料 - 全新公文范文 -全程指导写作 –独家原创 3 / 48
三:已知 : 如图 , 在矩形 ABCD中 ,E 、F 分别是边 BC、 AB 上的 点, 且 EF=ED,EF⊥ ED.
求证 :AE 平分∠ BAD.
(第 23 题)
四、(本题 7 分)如图,△ ABC中, M是 BC的中点, AD是∠ A 的平分线, BD⊥ AD于 D,
AB=12,AC=18,求 DM的长。
相关文档
最新文档