五年级下册长方体和正方体体积教案
五年级数学《长方体和正方体的体积》教案【优秀6篇】

五年级数学《长方体和正方体的体积》教案【优秀6篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!五年级数学《长方体和正方体的体积》教案【优秀6篇】在教学工作者开展教学活动前,通常需要用到教学设计来辅助教学,教学设计以计划和布局安排的形式,对怎样才能达到教学目标进行创造性的决策,以解决怎样教的问题。
人教五年级下册数学:长方体和正方体的体积教学教案

长方体和正方体的体积教学教案学生姓名年级学科授课老师上课时间教学课题长方体和正方体的体积总课时课时计划教学内容教学内容概括教学重难点1.认识常用的体积单位以及掌握长方体和正方体的体积计算公式。
2.灵活运用长方体和正方体的体积计算公式解决实际问题。
3.体积单位之间的换算方法,以及用体积单位间的互化解决实际问题。
1.理解各体积单位的意义并掌握长方体和正方体的体积计算公式。
2.理解长方体和正方体的体积计算公式的推导过程。
3.运用长方体和正方体的体积计算公式解决实际问题。
4.掌握体积单位之间互化的方法。
【知识点一】体积的意义例1 乌鸦是怎样喝到水的?为什么?归纳总结物体所占空间的大小叫做物体的体积。
物体所占的空间越大,物体的体积就越大;物体所占空间越小,物体的体积就越小。
归纳总结常用的体积单位有立方厘米(cm 3)、立方分米(dm 3)和立方米(m 3)。
【知识点二】体积单位例1 怎样比较下面两个长方体体积的大小呢?【知识点三】长方体和正方体的体积计算公式例1 怎样知道一个长方体的体积是多少呢?归纳总结长方体的体积计算公式:长方体的体积=长×宽×高。
字母公式:V=abh。
正方体的体积计算公式:正方体的体积=棱长×棱长×棱长。
字母公式:V=a3考点题库一1.(重点题)在括号里填上适当的体积单位。
(1)牙膏盒的体积大约是60()。
(2)一节火车车厢的体积大约是80()。
(3)一箱核桃牛奶的体积大约是8()。
( ) ( )( )2.(难点题)连一连。
一个粉笔盒的体积 一粒蚕豆的体积 由8块棱长为0.5m 的正方体石块 所拼摆成的大正方体的体积1m 3 1dm 3 1cm 33.(变式题)用字母标出下列图形的长、宽、高或棱长,再分别写出它们的体积公式。
V= V=4.(潜能开发题)某果汁饮料厂原来用棱长是10cm 的正方体包装盒包装果汁。
改进生产工艺后,把原包装改成了棱长是5cm 的正方体包装盒,请你帮忙算一算,原来200盒果汁饮料,现在要装多少盒?(包装盒厚度忽略不计)5.(综合运用题)一个长方体的长、宽、高分别是10cm ,8cm ,6cm ,如果把这个长方体 切割成棱长是2cm 的小正方体,可以切成多少个?将这些小正方体排成一行,有多长?【知识点五】长方体和正方体体积计算公式的应用 例1 计算下面图形的体积。
五年级下册数学长方体、正方体的体积教案精选5篇

五年级下册数学长方体、正方体的体积教案精选5篇长方体的体积教学设计篇一一、教材分析:本课内容来自人教版小学数学五年级下册第三单元《长方体和正方体》。
长方体和正方体是最基本的立体图形,在认识了一些平面图形的基础上学习立体图形,是学生认识上的一次飞跃。
学生以前虽然接触过长方体和正方体,但只是直观形象的认识,要上升到理性认识还有一定难度。
本单元前几课时已经认识了长方体和正方体的特征,学习了表面积的计算,。
这节课要在此基础上掌握体积的概念和常用的'体积单位,学会长方体和正方体的体积计算,掌握公式的意义和用法。
这是下一步学习体积单位进率的基础,更是以后学习容积的基础。
因此,长方体和正方体的体积计算必须掌握熟练。
二、教学目标:1、结合具体操作,引导学生探索并掌握长方体、正方体体积的计算公式,并能熟练地运用公式解决一些实际问题。
2、通过探索活动,培养学生的分析、概括能力,发展学生的空间观念。
3、培养学生数学的应用意识。
重点:掌握长方体、正方体体积的计算方法,并运用公式解决实际问题。
难点:理解体积公式的意义。
三、教法与学法学生是学习的主体,在儿童的心灵深处,都有一种根深蒂固的需要,就是希望自己是一个发现者、研究者、探索者,好奇心促使他们什么事都要自己去动手尝试。
而他们的思维特点又一般都是从感性认识开始,然后形成表象,再通过一系列的思维活动,上升到理性认识。
因此要引导学生通过自己的探索、实践,独立地发现问题、思考问题、解决问题,才能真正对所学内容有所领悟,进而内化为己有,使教学收到事半功倍的教学效果。
为了实现教学目标,本课以学生动手操作,合作交流与探究为主,教师同时配合多媒体课件演示,指导学生自主学习。
四、教学过程(一)激情引趣,揭示课题。
任何新知识都是以原有知识体系为依托,因此在复习中我设计了如下内容来为新课做好铺垫。
1.什么叫体积,常用的体积单位有哪些?用学具手势或其他方式描述出1立方厘米,1立方分米,1立方米分别有多大。
《长方体和正方体的认识》教案15篇

《长方体和正方体的认识》教案15篇《长方体和正方体的认识》教案1教学目标(一)了解并掌控体积单位间的进率。
(二)理解并掌控体积高级单位与低级单位间的化和聚。
(三)培育同学仔细审题的习惯,使同学在解决实际问题时,能精确地运用单位间的化聚法进行计算。
教学重点和难点(一)体积单位进率和单位之间的互化。
(二)复名数和单名数之间的转化。
教学用具投影片,电脑动画软件(或活动投影片)。
教学过程设计(一)复习预备老师:常用的长度单位有哪些?相邻的两个单元之间的进率是多少?同学口答后老师板书:长度单位1米=10分米1分米=10厘米厘米老师:常用的面积单位有哪些?相邻的两个单位间的.进率是多少?同学口答后老师板书:面积单位1米2=100分米21分米2=100厘米2厘米2口答填空,并说明算法和算理:4米=( )分米=( )厘米。
(算法:进率×高级单位的数。
)500厘米=( )分米=( )=米。
(算法:低级单位的数÷进率。
)老师:我们复习了长度单位和面积单位的进率,和高级单位和低级单位之间转换的方法,今日我们学习常用的体积单位间的进率和单位之间的转化。
板书课题:体积单位间的进率。
(二)学习新课1.认识体积单位间的进率。
(1)出示电脑动画图(或抽拉投影片)。
出示棱长1分米的正方体,提问:体积是多少?(1分米3。
)给一条棱涂色,提问:棱长多少厘米?(10厘米。
)1厘米3为单位,一个一个涂,涂满一排,提问:体积是多少?一排一排涂,涂满十排(一层),提问:体积是多少?一层一层涂,涂满十层(即全部涂上)。
提问:体积是多少?(10×10×10=1000(厘米3)。
)老师:由此可知1分米3等于多少厘米3?同学口答后老师板书:1分米3=1000厘米3老师:假如把刚才的图理解为棱长1米,即体积为1米3,它的体积是多少分米3?再请同学看一遍电脑动画图后,同学口答老师板书:1米3=1000分米3。
老师:能说一说相邻的两个体积单位间的进率是多少吗?(1000。
人教版五年级数学下册第三单元长方体和正方体——长方体和正方体的体积教案

◎教学笔记第2课时长方体和正方体的体积(1)教学内容教科书P29~31的内容,完成教科书P31“做一做”。
教学目标1.经历长方体和正方体体积计算公式的推导过程,理解和掌握长方体和正方体的体积计算方法。
2.通过自主探索和合作交流,培养学生分析、比较、类推、归纳的能力,进一步发展学生的空间观念。
3.能运用长方体和正方体的体积公式解决简单的实际问题,感悟到数学来源于生活,应用于生活。
教学重点理解并掌握长方体和正方体体积的计算方法。
教学难点理解长方体和正方体体积计算公式的推导过程。
教学准备课件,12个棱长为1cm的小正方体。
教学过程一、情境导入,探索新知师:同学们,什么叫体积?常用的体积单位有哪些?你能用手势比画出1cm3、1dm3、1m3的大小吗?【学情预设】学生基本上都能回答出这些问题,教师适当补充。
师:昨天,我到超市买了一箱苹果醋饮料和一块香皂,怎样才能知道它们的体积大小呢?课件出示图片。
师:同学们真聪明,你们有什么好办法测量出它们的体积吗?【学情预设】学生会说到“把香皂切成一个个1cm3的小正方体”“根据苹果醋饮料箱子的长、宽、高估一估大约是多少个1cm3的小正方体”等方法,但还想不到只要知道长方体的长、宽、高,沿长、宽、高摆1cm3的小正方体就可以推算物体的体积。
【设计意图】创设与生活密切相关的问题情境,让学生在观察、猜想、比较的过程中明确了本节课的研究方向和目标。
师:这节课我们一起来研究长方体和正方体的体积。
[板书课题:长方体和正方体的体积(1)]二、动手操作,探究长方体和正方体的体积计算方法1.启发思考。
师:怎样知道长方体的体积呢?【学情预设】有了计算平面图形面积的经验,学生会想到看一个长方体里有多少个1cm3的小正方体,测量长方体的长、宽、高进行计算等方法。
师:我们可以通过实验研究,发现规律。
2.操作实验。
(1)出示课件要求,学生小组合作摆不同形状的长方体。
用12个棱长为1cm的小正方体拼摆不同形状的长方体,它们的长、宽、高各是多少?体积又是多少呢?四人小组一起动手操作并填写表格。
五年级下册数学《长方体和正方体的体积》教案

五年级下册数学《长方体和正方体的体积》教案教师新课肯定要设计教案啊,那么教案该如何设计?以下是小编为大家精心整理的“五年级下册数学《长方体和正方体的体积》教案”,欢迎大家阅读,供大家参考。
更多内容还请关注哦!五年级下册数学《长方体和正方体的体积》教案(1)教学目标:1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;2.培养学生实际操作能力,同时发展他们的空间观念;3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:探索长方体体积的计算方法。
教学难点:理解长方体和正方体体积公式的推导过程.教具准备:课件,若干个1立方厘米小正方块学具准备:1立方厘米的正方体16块教学过程:一、激情导入1、复习引入师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。
请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
二、民主导学师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。
大家请看大屏幕,这个长方体的体积是多少?(学情欲设)生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。
生2、可以量一量。
生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。
老师认为这个提议不错,你们认为呢?师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。
好,请同学们看今天的第一个学习任务。
任务呈现:用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:出示表格。
学生四人一小组,每组一张表格。
长(厘米)宽(厘米)高(厘米)小正方体的数量长方体的体积师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
《长方体的体积》教案

《长方体的体积》教案《长方体的体积》教案1教学目标1、巩固长方体,正方体体积的计算2、探索长方体、正方体体积与底面积和高之间的关系教学重点长方体、正方体体积计算教学难点底面积和高之间的关系教具准备长方体、正方体教师指导与教学过程学生学习活动过程设计意图一、复习导入1、出示长方体思考:如何计算它的体积?2、带入数字,计算长方体体积。
长:2cm宽:3cm高:4cm二、引入新课1、出示正方体提问:如何计算正方体体积?2、根据学生反馈,教师极书公式:正方体体积=棱长_棱长_棱长V=a_a_a=a33、试一试1出示三幅图。
学生进行思考反馈:长_宽_高学生进行计算2_3_4=24cm3学生回顾长方体体的公式,联系长方体、正方体的关系,进行推理。
正方体体积=棱长_棱长_棱长V=a_a_a=a3通过对长方体体积公式的回顾,引导学生联系长方体和正方体之间方之间的关系,引导学生自己进行推测,从而得出正方体体积的计算公式。
培养学生推理能力和理解,分析问题的能力。
教师指导与教学过程学生学习活动过程设计意图2引导学生观察:图中阴影部分叫什么?它们与高之间有什么关系?3你还能提示三个图形的体积吗?4引导学生计逄三幅图的体积。
三、练一练1、练一练1引导学生通过观察得出长方体的长、宽、高成正方体的棱长,再利用公式计算。
2、练一练2让学生应用公式进行计算独立完成。
反馈计论结果。
引导学生观察,找出阴影部分,并认识体面积。
独立思考:它们与高之间的关系。
得出:底面积_高=体积学生利用所推导出的公式,计算三幅图的体积。
反馈。
学生观察图计算教师指导详细教研组4.7学生在观察中体会底面积与高之间的关系,进一步理解记忆长方体、正方体体积的计算。
《长方体的体积》教案2教学目标:1、使学生理解长方体和正方体体积公式的推导,能运用公式进行计算。
2、培养学生空间和空间想象能力。
教学重点:长、正方体体积公式的推导。
教学难点:运用公式计算。
教学用具:1立方厘米学具。
人教版五年级数学下册第三单元《正方体》教案三篇

【导语】正⽅体的学习是以长⽅体知识为基础的,在教学时可以将两者联系在⼀起,便于学⽣的学习。
准备了以下内容,供⼤家参考!【篇⼀】⼈教版五年级数学下册第三单元《正⽅体》教案 ⼀、学习⽬标 (⼀)学习内容 “正⽅体的认识”是《义务教育教科书数学》(⼈教版)五年级下册第三单元第20页例3以及课后做⼀做。
本节内容是在学⽣已经直观的认识了长⽅体、正⽅体等⽴体图形的基础上进⾏教学的。
学⽣能通过实物或模型辨认正⽅体,知道正⽅体有6个⾯,每个⾯都是正⽅形。
在教学正⽅体时,应激活经验,回顾特点,对⽐长⽅体特点,感知“正⽅体是特殊的长⽅体”。
(⼆)核⼼能⼒ 能运⽤迁移类推的学习⽅法,通过观察、操作,认识正⽅体,建⽴空间观念,提⾼分析对⽐,抽象概括的能⼒。
(三)学习⽬标 1.在认识长⽅体的基础上,通过观察正⽅体、动⼿操作折正⽅体,⾃主探究正⽅体关于⾯、棱、顶点的特征,建⽴空间观念。
2.通过对⽐分析长⽅体和正⽅体的特征,抽象概括出长⽅体和正⽅体之间的关系。
(四)学习重点 掌握正⽅体的特征,理解长⽅体和正⽅体的关系。
(五)学习难点 建⽴空间观念,形成⽴体图形的初步印象。
(六)配套资源 实施资源:《正⽅体的认识》名师教学课件,各种正⽅体实物,长⽅体模型,剪好书本第123页的正⽅体展开图。
⼆、学习设计 (⼀)课前设计 (1)长⽅体的特征有哪些?我们是从⼏⽅⾯来认识它的?请⾃⼰整理出来。
(2)请找找⽣活中的正⽅体物品,并思考:关于正⽅体你都知道了哪些知识? (⼆)课堂设计 1.谈话导⼊ 师:课前让同学们寻找⽣活中的正⽅体物品,谁来和⼤家分享⼀下你找到了什么? 师:⽣活中有许多物体的形状是正⽅体,正⽅体也叫⽴⽅体,这节课我们⼀起来认识它。
板书课题。
【设计意图:结合⽣活实际,学⽣对正⽅体已有⼀定的认识,因此通过分享学⽣在⽣活中找到的正⽅体,使学⽣对正⽅体有了初步的了解,激发了进⼀步学习正⽅体的兴趣。
】 2.问题探究 (1)观察模型,探究特征 师:长⽅体和正⽅体都属于⽴体图形,回想⼀下,我们是从⼏⽅⾯来认识长⽅体的? (⾯、棱、顶点,长宽⾼) 师:对于正⽅体,你们准备从⼏⽅⾯来认识? ⽣⾃由发⾔。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级下册《长方体和正方体的体积》教案设计教学内容:人教版数学五年级下册第三单元《长方体和正方体的体积》,教材29页30页。
学情分析:学生已经探索并掌握长方形、正方形以及其他一些常见多边形的特征,并直观认识长方体和正方体的基础上进行教学的。
从研究平面图形到研究立体图形,是学生空间观念发展的一次飞跃。
对常见平面图形特征及其周长、面积计算方法的探索,既为进一步探索长方体、正方体这样的立体图形的特征以及表面积、体积的计算方法奠定了知识基础,同时也积累了探索的经验,准备了研究的方法。
通过学习长方体和正方体,可以使学生更好地以数学的眼光观察、了解周围的世界,形成初步的空间观念;同时也能为进一步学习其它立体图形打好基础。
教学目标:1.使学生经历长方体,正方体体积公式的推导过程,理解长方体、正方体体积的计算公式;初步学会计算长方体和正方体的体积;2.培养学生实际操作能力,同时发展他们的空间观念;3.在活动中使学生感受数学与实际生活的密切联系,体验学数学、用数学的乐趣,从而激发学生的学习兴趣。
教学重点:探索长方体体积的计算方法。
教学难点:理解长方体和正方体体积公式的推导过程.教具准备:课件,若干个1立方厘米小正方块学具准备:1立方厘米的正方体16块教学过程:一、激情导入1、复习引入师:上节课,我们认识了体积和体积单位,谁来说说什么是物体的体积?请同学们用合适的体积单位填空。
2、昨天的知识大家掌握的很好,今天我们一起利用这些知识探究长方体和正方体的体积(板书课题)。
请同学们齐读本节课的学习目标。
3、相信同学们能运用手中的学具,勤于动手,善于思考,快乐合作,获得新知识。
二、民主导学师:可见要计量一个物体的体积,就要看这个物体含有多少个体积单位。
大家请看大屏幕,这个长方体的体积是多少?(学情欲设)生1、可以分割成以立方厘米的小块,看看一共有多少块,就有多少立方厘米。
生2、可以量一量。
生3、这些方法都有局限性,我们可以像以前推导平行四边形的面积一样想办法找出长方体体积的计算公式。
老师认为这个提议不错,你们认为呢?师:谁来猜一猜长方体的体积怎样计算?这个猜想对吗?我们来一起验证。
好,请同学们看今天的第一个学习任务。
任务呈现:用一些体积是1立方厘米的小正方体摆成不同长方体,并完成下表:出示表格。
学生四人一小组,每组一张表格。
(厘米)宽(厘米)高(厘米)小正方体的数量长方体的体积师:请同学们以小组为单位,用1立方厘米的正方体摆出4个不同的长方体,观察摆出的长方体的长、宽、高,把上面的表格填写完整。
并在小组中讨论你发现了什么。
自主学习学生活动,师巡视。
展示交流师:同学们摆出了许多不同的长方体,并且填好了表格。
哪一组来汇报?学生黑板前展示表格,并做详细汇报。
引导学生观察表格,师:观察表格中的数据,从中你能发现什么呢?师:通过观察比较,同学们有了很大的发现:长方体的体积等于它的长、宽、高的乘积。
(板书:)长方体的体积=长×宽×高。
任务2、继续验证课件出示:用1立方厘米的正方体摆出下面的长方体,各需要多少个?先想一想,再摆一摆。
请一个同学上台操作。
1、长4厘米,宽1厘米,高1厘米。
2、长4厘米、宽3厘米、高1厘米。
3、长4厘米、宽3厘米、高2厘米师:这是三个不同的长方体,根据刚才的发现你能说出它们的体积吗?生回答:4×1×1=4立方厘米4×3×1=12立方厘米4×3×2=24立方厘米师:那究竟对不对呢?让我们再来摆一摆。
学生小组讨论,动手操作,指名一生上台操作。
师巡视。
师:和我们之前的猜想一样吗?师:根据刚才的验证,得出之前这个结论是正确的。
长方体的体积=长×宽×高,如果用V 表示长方体的体积,用a、b、h分别表示长方体的长、宽、高,你能字母表示长方体的体积吗?V=abh师:那如果再给你一个长7厘米、宽4厘米、高3厘米的长方体,一共要用多少个1立方厘米的小正方体?它的体积是多少呢?出示例1课件出示:师:7×4×3=84立方厘米,所以它的体积就是84立方厘米。
师:长、宽、高都相等的长方体就是什么图形?你能直接写出正方体的体积公式吗?把你的想法在小组里说一说。
学生汇报:因为正方体是特殊的长方体。
在正方体中长,宽,高都相等,所以公式中长、宽、高都叫棱长,正方体的体积=棱长×棱长×棱长。
变换后,虽然长方体和正方体体积公式写出来不相同,但计算方法的实质是一样的,都是长×宽×高。
课件出示正方体,出示公式。
师:正方体的体积公式也可以用字母来表示。
但用字母表示正方体的体积公式时,还有一些特殊的地方,书上对此作了详细的说明。
请大家打开课本看一看。
学生阅读课本。
课件出示正方体的体积:V=a³师:写的时候,3要写在a的右上角,并且要写的小一些。
小训练:完成例2,在练习本上完成,集体订正。
三、巩固应用,1、口答题2、判断题3、解答题四、拓展延伸师:长方体和正方体的体积在生活中运用的很多,让我们一起来看一看师:这个算式表示什么意思呢?出示:品名:正方体收纳凳尺寸:30×30×30材质:涤纶+PP不织布+纤维板颜色:黑白师:你能看懂这个说明书吗?师:如果要往这里放一个长40cm宽20cm高10cm的玩具箱,能放入到收纳凳里吗?师:看来不能光比较体积的大小,还要联系实际情况,看看长宽高是否都符合要求。
五、课堂小结师:这节课我们一起学习了长方体和正方体的体积计算,你都有哪些收获?教学目标:1.让学生经历长方体和正方体的统一体积计算公式的推导过程,进一步认识两种几何体的基本特征及它们之间的关系。
2.使学生会应用长方体、正方体体积的统一计算公式解决一些简单的实际问题。
3.让学生知道我国古代数学家在两千多年前就掌握了长方体体积的计算方法,增强学生的民族自豪感和勇超先贤的信心和决心。
重点难点:掌握并运用长方体和正方体体积计算的统一公式。
课前准备:课件教学过程:一、布置要求,引导预学1、计算下面物体的体积。
二、预习反馈,诊断查学课中进行预习反馈,教师根据学生的反映有针对性地调整教学。
三、目标引领,探究导学(一)、以史料引入新课1.古代数学家求长方体体积的方法.课件展示:西汉末年我国古代数学家编撰了一本不朽的传世名著《九章算术》.这本书共九章,其中一章叫商功章,它收集的都是一些有关体积计算的问题.书中是这样叙述有两个面是正方形的长方体体积的计算方法的:“方自乘,以高乘之即积尺.”就是说,先用边长乘边长得底面积,再乘高就得到长方体的体积.2.提出探究性问题.(1)看完这段叙述,你想到什么?(2)这段文字中描述的长方体有什么特征?底面积指的是哪一个面的面积?(3)古代数学家是怎样计算长方体体积的?它与我们今天掌握的计算方法相同吗?为什么?(4)怎样将这个长方体变成一个最大的正方体?它的体积怎样计算?(二)、推导长方体和正方体统一的体积公式1.长方体体积的另一种计算方法让每个学生先独立思考上面4个问题,然后讨论(或同桌或小组)最后全班讨论、交流、总结出长方体体积的另一种计算方法。
(1)第(1)个问题是开放的,学生的回答会是多角度的.如,有的会从数学本身的角度出发,想到长方体的体积计算方法;有的会感受到数学是一种悠久的文化;有的会感受到数学是有的会仰慕祖先的睿智,从而激发自己努力寻探数学宝库的信心等等。
(2)弄清“底面”、“底面积”的含义.当学生知道图中长方体的特征之一是有两个相对的面是正方形后,让他们指出图中哪一个面是底面,说说这个底面积怎样求.学生回答后,课件将这个底面涂上颜色.并标上底面积的计算方法:底面积=长×宽=边长×边长.告诉学生,一个长方体的6个面中,任何一个面都可以做底面,不一定要以水平放置的面做底面.应根据问题中的需要来决定,哪一个面利于问题的解决,就确定那个面为底面.(3)推出长方体体积的另一种计算方法.提问:“你们掌握的长方体体积计算公式是什么?”学生回答后板书:长方体体积=长×宽×高再问:“古代数学家是怎样计算长方体体积的?”学生回答后在上面计算公式的下方对着写:长方体体积=底面积×高.引导学生对照两个公式,找出它们的异同点及之间的联系.让学生认识到古人和今人计算长方体体积的方法是一致的,两个公式可以写成如下形式:长方体体积=长×宽×高↓=底面积×高2.推出正方体体积的另一种计算方法.(1)课件展示学生讨论前面第(4)个探究性问题的答案:将长方体的高减少到和底面边长相等时,这个长方体就变成了一个最大的正方体.(2)让学生说出这个正方体的底面(课件随即涂上颜色),然后推出这个正方体体积的另一种计算方法:正方体体积=棱长×棱长×棱长↓↓=底面积× 高3.归纳出长方体和正方体统一的体积公式,并用字母表示出来.教师指着长方体、正方体体积计算公式提问:“这两个公式能统一起来吗?”学生回答后,教师写上长方体、正方体体积计算的统一公式,并用字母表示出来.长方体(或正方体)的体积=底面积×高V=Sh(三)、应用统一的体积计算公式解决实际问题1.做书上“练一练”第1、2题。
学生独立作业,对正时用课件显示答案.提醒学生正确书写体积单位“立方厘米”。
2、练习六第4题结合教室实物讲解占地面积的含义后学生独立完成,集体订正。
3、练习六第5题课件展示:什么叫“横截面”?用一个平行于底面的平面去截一个长方体,所得的截面叫横截面,这个横截面的形状大小与底面是相同的。
学生在理解了什么是“横截面”后,让其独立完成第5题。
4、练习六第8题课件展示题意:一个长方形的操场──在上面铺上10厘米厚的三合土形成一个扁扁的长方体情境──再铺上4厘米厚的煤渣形成一个更薄一些的长方体的情境。
课件展示后让学生独立作业,集体订正。
四、巩固练习,反馈练学A类练习:1、一个长方体的长是8分米,宽是6分米,高是5分米,这个长方体的底面积是()。
2、一个长方体的底面积是15平方米,高是7米,这个长方体的体积是()。
3、一个正方体的底面积是16平方米,高是9米,这个长方体的体积是()。
4、把一瓶1500毫升的果汁倒进一只底面边长是10厘米的方杯,方杯内果汁高()厘米。
5、计算下列形体的体积。
(1)长方体长9米,宽和高都是4米。
(2)正方体的底面积是36平方厘米。
B类练习:1、棱长11分米的正方体占地面积是多大?所占空间多大?2、张明把一个石块浸没在有水的底面积是24平方厘米的玻璃容器中,容器中的水面由原来的高6厘米上升到高8厘米,这个石块的体积是多少立方厘米?3、一个棱长是9分米的正方体水池,水面低于池口3分米,水的容量是多少升?4、把一根长6米的长方体木料截成相等的两段,表面积增加了16平方分米,每段木料的体积是多少立方分米?C类练习:书第29页“思考题”。