2017届高三数学一模专项练习(6)(无答案)
高三数学 高考大题专项训练 全套 (15个专项)(典型例题)(含答案)

1、函数与导数(1)2、三角函数与解三角形3、函数与导数(2)4、立体几何5、数列(1)6、应用题7、解析几何8、数列(2)9、矩阵与变换10、坐标系与参数方程11、空间向量与立体几何12、曲线与方程、抛物线13、计数原理与二项式分布14、随机变量及其概率分布15、数学归纳法高考压轴大题突破练(一)函数与导数(1)1.已知函数f (x )=a e x x+x . (1)若函数f (x )的图象在(1,f (1))处的切线经过点(0,-1),求a 的值;(2)是否存在负整数a ,使函数f (x )的极大值为正值?若存在,求出所有负整数a 的值;若不存在,请说明理由.解 (1)∵f ′(x )=a e x (x -1)+x 2x 2, ∴f ′(1)=1,f (1)=a e +1.∴函数f (x )在(1,f (1))处的切线方程为y -(a e +1)=x -1,又直线过点(0,-1),∴-1-(a e +1)=-1,解得a =-1e. (2)若a <0,f ′(x )=a e x (x -1)+x 2x 2, 当x ∈(-∞,0)时,f ′(x )>0恒成立,函数在(-∞,0)上无极值;当x ∈(0,1)时,f ′(x )>0恒成立,函数在(0,1)上无极值.方法一 当x ∈(1,+∞)时,若f (x )在x 0处取得符合条件的极大值f (x 0),则⎩⎪⎨⎪⎧ x 0>1,f (x 0)>0,f ′(x 0)=0,则00000200201,e 0,e (1)0,x x x a x x a x x x ⎛ > +> -+ = ⎝①②③ 由③得0e x a =-x 20x 0-1,代入②得-x 0x 0-1+x 0>0, 结合①可解得x 0>2,再由f (x 0)=0e x a x +x 0>0,得a >-020e x x , 设h (x )=-x 2e x ,则h ′(x )=x (x -2)e x, 当x >2时,h ′(x )>0,即h (x )是增函数,∴a >h (x 0)>h (2)=-4e 2.又a <0,故当极大值为正数时,a ∈⎝⎛⎭⎫-4e 2,0, 从而不存在负整数a 满足条件.方法二 当x ∈(1,+∞)时,令H (x )=a e x (x -1)+x 2,则H ′(x )=(a e x +2)x ,∵x ∈(1,+∞),∴e x ∈(e ,+∞),∵a 为负整数,∴a ≤-1,∴a e x ≤a e ≤-e ,∴a e x +2<0,∴H ′(x )<0,∴H (x )在(1,+∞)上单调递减.又H (1)=1>0,H (2)=a e 2+4≤-e 2+4<0,∴∃x 0∈(1,2),使得H (x 0)=0,且当1<x <x 0时,H (x )>0,即f ′(x )>0;当x >x 0时,H (x )<0,即f ′(x )<0.∴f (x )在x 0处取得极大值f (x 0)=0e x a x +x 0.(*) 又H (x 0)=0e x a (x 0-1)+x 20=0, ∴00e x a x =-x 0x 0-1,代入(*)得f (x 0)=-x 0x 0-1+x 0=x 0(x 0-2)x 0-1<0, ∴不存在负整数a 满足条件.2.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ). (1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且∃x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围.解 (1)∵函数f (x )=ax 3-3x 2+1,∴f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a, ∵a >0,∴x 1<x 2,当x 变化时,f ′(x ),f (x )的变化情况如下表:∴f (x )的极大值为f (0)=1,极小值为f ⎝⎛⎭⎫2a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∵∃x ∈[1,2],使h (x )=f (x ),∴f (x )≥g (x )在[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在[1,2]上有解,即不等式2a ≤1x 3+3x在[1,2]上有解, 设y =1x 3+3x =3x 2+1x3(x ∈[1,2]), ∵y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立, ∴y =1x 3+3x在[1,2]上单调递减, ∴当x =1时,y =1x 3+3x的最大值为4, ∴2a ≤4,即a ≤2.高考中档大题规范练(一)三角函数与解三角形1.(2017·江苏宿迁中学质检)已知函数f (x )=sin 2x +23sin x cos x +sin ⎝⎛⎭⎫x +π4sin ⎝⎛⎭⎫x -π4,x ∈R . (1)求f (x )的最小正周期和值域;(2)若x =x 0⎝⎛⎭⎫0≤x 0≤π2为f (x )的一个零点,求sin 2x 0的值. 解 (1)易得f (x )=sin 2x +3sin 2x +12(sin 2x -cos 2x ) =1-cos 2x 2+3sin 2x -12cos 2x =3sin 2x -cos 2x +12=2sin ⎝⎛⎭⎫2x -π6+12, 所以f (x )的最小正周期为π,值域为⎣⎡⎦⎤-32,52. (2)由f (x 0)=2sin ⎝⎛⎭⎫2x 0-π6+12=0,得 sin ⎝⎛⎭⎫2x 0-π6=-14<0,又由0≤x 0≤π2,得-π6≤2x 0-π6≤5π6, 所以-π6≤2x 0-π6<0,故cos ⎝⎛⎭⎫2x 0-π6=154, 此时sin 2x 0=sin ⎣⎡⎦⎤⎝⎛⎭⎫2x 0-π6+π6 =sin ⎝⎛⎭⎫2x 0-π6cos π6+cos ⎝⎛⎭⎫2x 0-π6sin π6=-14×32+154×12=15-38. 2.(2017·江苏南通四模)已知向量m =⎝⎛⎭⎫sin x 2,1,n =⎝⎛⎭⎫1,3cos x 2,函数f (x )=m ·n . (1)求函数f (x )的最小正周期;(2)若f ⎝⎛⎭⎫α-2π3=23,求f ⎝⎛⎭⎫2α+π3的值. 解 (1)f (x )=m ·n =sin x 2+3cos x 2=2⎝⎛⎭⎫12sin x 2+32cos x 2 =2⎝⎛⎭⎫sin x 2cos π3+cos x 2sin π3 =2sin ⎝⎛⎭⎫x 2+π3,所以函数f (x )的最小正周期为T =2π12=4π. (2)由f ⎝⎛⎭⎫α-2π3=23,得2sin α2=23,即sin α2=13. 所以f ⎝⎛⎭⎫2α+π3=2sin ⎝⎛⎭⎫α+π2=2cos α =2⎝⎛⎭⎫1-2sin 2α2=149. 3.(2017·江苏南师大考前模拟)已知△ABC 为锐角三角形,向量m =⎝⎛⎭⎫cos ⎝⎛⎭⎫A +π3,sin ⎝⎛⎭⎫A +π3,n =(cos B ,sin B ),并且m ⊥n .(1)求A -B ; (2)若cos B =35,AC =8,求BC 的长. 解 (1)因为m ⊥n ,所以m ·n =cos ⎝⎛⎭⎫A +π3cos B +sin ⎝⎛⎭⎫A +π3sin B=cos ⎝⎛⎭⎫A +π3-B =0. 因为0<A ,B <π2,所以-π6<A +π3-B <5π6, 所以A +π3-B =π2,即A -B =π6. (2)因为cos B =35,B ∈⎝⎛⎭⎫0,π2,所以sin B =45, 所以sin A =sin ⎝⎛⎭⎫B +π6=sin B cos π6+cos B sin π6=45×32+35×12=43+310, 由正弦定理可得BC =sin A sin B×AC =43+3. 4.(2017·江苏镇江三模)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且(a -c )(sin A +sin C )=(b -3c )sin B .(1)求角A ;(2)若f (x )=cos 2(x +A )-sin 2(x -A ),求f (x )的单调递增区间.解 (1)由(a -c )(sin A +sin C )=(b -3c )sin B 及正弦定理,得(a -c )(a +c )=(b -3c )b ,即a 2=b 2+c 2-3bc . 由余弦定理,得cos A =32, 因为0<A <π,所以A =π6. (2)f (x )=cos 2(x +A )-sin 2(x -A )=cos 2⎝⎛⎭⎫x +π6-sin 2⎝⎛⎭⎫x -π6 =1+cos ⎝⎛⎭⎫2x +π32-1-cos ⎝⎛⎭⎫2x -π32=12cos 2x , 令π+2k π≤2x ≤2π+2k π,k ∈Z ,得π2+k π≤x ≤π+k π,k ∈Z . 则f (x )的单调增区间为⎣⎡⎦⎤π2+k π,π+k π,k ∈Z .(二)函数与导数(2)1.设函数f (x )=2(a +1)x (a ∈R ),g (x )=ln x +bx (b ∈R ),直线y =x +1是曲线y =f (x )的一条切线.(1)求a 的值;(2)若函数y =f (x )-g (x )有两个极值点x 1,x 2.①试求b 的取值范围;②证明:g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 解 (1)设直线y =x +1与函数y =f (x )的图象相切于点(x 0,y 0),则y 0=x 0+1,y 0=2(a +1)x 0,a +1x 0=1,解得a =0. (2)记h (x )=f (x )-g (x ),则h (x )=2x -ln x -bx .①函数y =f (x )-g (x )有两个极值点的必要条件是h ′(x )有两个正零点.h ′(x )=1x -1x-b =-bx +x -1x , 令h ′(x )=0,得bx -x +1=0(x >0).令x =t ,则t >0.问题转化为bt 2-t +1=0有两个不等的正实根t 1,t 2,等价于⎩⎪⎨⎪⎧ Δ=1-4b >0,t 1t 2=1b >0,t 1+t 2=1b >0,解得0<b <14. 当0<b <14时,设h ′(x )=0的两正根为x 1,x 2,且x 1<x 2, 则h ′(x )=-bx +x -1x =-b (x -x 1)(x -x 2)x =-b (x -x 1)(x -x 2)x (x +x 1)(x +x 2). 当x ∈(0,x 1)时,h ′(x )<0;当x ∈(x 1,x 2)时,h ′(x )>0;当x ∈(x 2,+∞)时,h ′(x )<0. 所以x 1,x 2是h (x )=f (x )-g (x )的极值点,∴b 的取值范围是⎝⎛⎭⎫0,14. ②由①知x 1x 2=x 1+x 2=1b.可得g (x 1)+g (x 2)=-2ln b +1b -2,f (x 1)+f (x 2)=2b, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)=12-b ln b -b . 记k (b )=12-b ln b -b ⎝⎛⎭⎫0<b <14, 则k ′(b )=-ln b -2,令k ′(b )=0,得b =1e 2∈⎝⎛⎭⎫0,14, 且当b ∈⎝⎛⎭⎫0,1e 2时,k ′(b )>0,k (b )单调递增; 当b ∈⎝⎛⎭⎫1e 2,14时,k ′(b )<0,k (b )单调递减,且当b =1e 2时,k (b )取最大值1e 2+12, 所以g (x 1)+g (x 2)f (x 1)+f (x 2)≤1e 2+12. 2.设函数f (x )=2ax +b x+c ln x . (1)当b =0,c =1时,讨论函数f (x )的单调区间;(2)若函数f (x )在x =1处的切线为y =3x +3a -6且函数f (x )有两个极值点x 1,x 2,x 1<x 2. ①求a 的取值范围;②求f (x 2)的取值范围.解 (1)f (x )=2ax +b x+c ln x ,x >0, f ′(x )=2a -b x 2+c x =2ax 2+cx -b x 2. 当b =0,c =1时,f ′(x )=2ax +1x. 当a ≥0时,由x >0,得f ′(x )=2ax +1x>0恒成立, 所以函数f (x )在(0,+∞)上单调递增.当a <0时,令f ′(x )=2ax +1x >0,解得x <-12a; 令f ′(x )=2ax +1x <0,解得x >-12a, 所以,函数f (x )在⎝⎛⎭⎫0,-12a 上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. 综上所述,①当a ≥0时,函数f (x )在(0,+∞)上单调递增;②当a <0时,函数f (x )在⎝⎛⎭⎫0,-12a上单调递增,在⎝⎛⎭⎫-12a ,+∞上单调递减. (2)①函数f (x )在x =1处的切线为y =3x +3a -6,所以f (1)=2a +b =3a -3,f ′(1)=2a +c -b =3,所以b =a -3,c =-a ,f ′(x )=2a -b x 2+c x =2ax 2-ax +3-a x 2, 函数f (x )有两个极值点x 1,x 2,x 1<x 2,则方程2ax 2-ax +3-a =0有两个大于0的解,⎩⎨⎧ Δ=(-a )2-8a (3-a )>0,a 2a >0,3-a 2a >0,解得83<a <3. 所以a 的取值范围是⎝⎛⎭⎫83,3.②2ax 22-ax 2+3-a =0,x 2=a +9a 2-24a 4a =14⎝⎛⎭⎫1+ 9-24a , 由83<a <3,得x 2∈⎝⎛⎭⎫14,12, 由2ax 22-ax 2+3-a =0,得a =-32x 22-x 2-1. f (x 2)=2ax 2+a -3x 2-a ln x 2 =a ⎝⎛⎭⎫2x 2+1x 2-ln x 2-3x 2=-32x 2+1x 2-ln x 22x 22-x 2-1-3x 2. 设φ(t )=-32t +1t -ln t 2t 2-t -1-3t ,t ∈⎝⎛⎭⎫14,12, φ′(t )=-3⎝⎛⎭⎫2-1t 2-1t (2t 2-t -1)-⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t2 =-31t 2(2t 2-t -1)2+3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2+3t 2=3⎝⎛⎭⎫2t +1t -ln t (4t -1)(2t 2-t -1)2. 当t ∈⎝⎛⎭⎫14,12时,2t +1t-ln t >0,4t -1>0,φ′(t )>0,所以φ(t )在⎝⎛⎭⎫14,12上单调递增,φ(t )∈⎝⎛⎭⎫163ln 2,3+3ln 2, 所以f (x 2)的取值范围是⎝⎛⎭⎫163ln 2,3+3ln 2. (二)立体几何1.(2017·江苏扬州调研)如图,在四棱锥P -ABCD 中,底面ABCD 为梯形,CD ∥AB ,AB =2CD ,AC 交BD 于O ,锐角△P AD 所在平面⊥底面ABCD ,P A ⊥BD ,点Q 在侧棱PC 上,且PQ =2QC .求证:(1)P A ∥平面QBD ;(2)BD ⊥AD .证明 (1)如图,连结OQ ,因为AB∥CD,AB=2CD,所以AO=2OC.又PQ=2QC,所以P A∥OQ.又OQ⊂平面QBD,P A⊄平面QBD,所以P A∥平面QBD.(2)在平面P AD内过P作PH⊥AD于点H,因为侧面P AD⊥底面ABCD,平面P AD∩平面ABCD=AD,PH⊂平面P AD,所以PH⊥平面ABCD.又BD⊂平面ABCD,所以PH⊥BD.又P A⊥BD,P A∩PH=P,所以BD⊥平面P AD.又AD⊂平面P AD,所以BD⊥AD.2.如图,在四棱锥P-ABCD中,底面ABCD是正方形,AC与BD交于点O,PC⊥底面ABCD,E为PB上一点,G为PO的中点.(1)若PD∥平面ACE,求证:E为PB的中点;(2)若AB=2PC,求证:CG⊥平面PBD.证明(1)连结OE,由四边形ABCD是正方形知,O为BD的中点,因为PD∥平面ACE,PD⊂平面PBD,平面PBD∩平面ACE=OE,所以PD∥OE.因为O为BD的中点,所以E为PB的中点.(2)在四棱锥P-ABCD中,AB=2PC,因为四边形ABCD是正方形,所以OC=22AB,所以PC=OC.因为G为PO的中点,所以CG⊥PO.又因为PC⊥底面ABCD,BD⊂底面ABCD,所以PC⊥BD.而四边形ABCD是正方形,所以AC⊥BD,因为AC,PC⊂平面P AC,AC∩PC=C,所以BD⊥平面P AC,因为CG⊂平面P AC,所以BD⊥CG.因为PO,BD⊂平面PBD,PO∩BD=O,所以CG⊥平面PBD.3.(2017·江苏怀仁中学模拟)如图,在四棱锥E-ABCD中,△ABD为正三角形,EB=ED,CB=CD.(1)求证:EC⊥BD;(2)若AB⊥BC,M,N分别为线段AE,AB的中点,求证:平面DMN∥平面BCE.证明(1)取BD的中点O,连结EO,CO.∵CD=CB,EB=ED,∴CO⊥BD,EO⊥BD.又CO∩EO=O,CO,EO⊂平面EOC,∴BD⊥平面EOC.又EC⊂平面EOC,∴BD⊥EC.(2)∵N是AB的中点,△ABD为正三角形,∴DN⊥AB,∵BC⊥AB,∴DN∥BC.又BC⊂平面BCE,DN⊄平面BCE,∴DN∥平面BCE.∵M为AE的中点,N为AB的中点,∴MN∥BE,又MN⊄平面BCE,BE⊂平面BCE,∴MN∥平面BCE.∵MN∩DN=N,∴平面DMN∥平面BCE.4.(2017·江苏楚水中学质检)如图,在三棱锥P-ABC中,点E,F分别是棱PC,AC的中点.(1)求证:P A∥平面BEF;(2)若平面P AB⊥平面ABC,PB⊥BC,求证:BC⊥P A.证明(1)在△P AC中,E,F分别是棱PC,AC的中点,所以P A∥EF.又P A⊄平面BEF,EF⊂平面BEF,所以P A∥平面BEF.(2)在平面P AB内过点P作PD⊥AB,垂足为D.因为平面P AB ⊥平面ABC ,平面P AB ∩平面ABC =AB ,PD ⊂平面P AB ,所以PD ⊥平面ABC , 因为BC ⊂平面ABC ,所以PD ⊥BC ,又PB ⊥BC ,PD ∩PB =P ,PD ⊂平面P AB ,PB ⊂平面P AB ,所以BC ⊥平面P AB , 又P A ⊂平面P AB ,所以BC ⊥P A .(三)数 列(1)1.已知数列{a n }的前n 项和为S n ,且S n +a n =4,n ∈N *. (1)求数列{a n }的通项公式;(2)已知c n =2n +3(n ∈N *),记d n =c n +log C a n (C >0且C ≠1),是否存在这样的常数C ,使得数列{d n }是常数列,若存在,求出C 的值;若不存在,请说明理由.(3)若数列{b n },对于任意的正整数n ,均有b 1a n +b 2a n -1+b 3a n -2+…+b n a 1=⎝⎛⎭⎫12n -n +22成立,求证:数列{b n }是等差数列. (1)解 a 1=4-a 1,所以a 1=2,由S n +a n =4,得当n ≥2时,S n -1+a n -1=4, 两式相减,得2a n =a n -1,所以a n a n -1=12,数列{a n }是以2为首项,公比为12的等比数列,所以a n =22-n (n ∈N *). (2)解 由于数列{d n }是常数列, d n =c n +log C a n =2n +3+(2-n )log C 2 =2n +3+2log C 2-n log C 2=(2-log C 2)n +3+2log C 2为常数, 则2-log C 2=0, 解得C =2,此时d n =7.(3)证明 b 1a n +b 2a n -1+b 3a n -2+…+b n a 1 =⎝⎛⎭⎫12n -n +22,①当n =1时,b 1a 1=12-32=-1,其中a 1=2,所以b 1=-12.当n ≥2时,b 1a n -1+b 2a n -2+b 3a n -3+…+b n -1a 1=⎝⎛⎭⎫12n -1-n +12,② ②式两边同时乘以12,得b 1a n +b 2a n -1+b 3a n -2+…+b n -1a 2=⎝⎛⎭⎫12n -n +14,③ 由①-③,得b n a 1=-n -34,所以b n =-n 8-38(n ∈N *,n ≥2),且b n +1-b n =-18,又b 1=-12=-18-38,所以数列{b n }是以-12为首项,公差为-18的等差数列.2.在数列{a n }中,已知a 1=13,a n +1=13a n -23n +1,n ∈N *,设S n 为{a n }的前n 项和.(1)求证:数列{3n a n }是等差数列; (2)求S n ;(3)是否存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列?若存在,求出p ,q ,r 的值;若不存在,说明理由.(1)证明 因为a n +1=13a n -23n +1,所以3n +1a n +1-3n a n =-2. 又因为a 1=13,所以31·a 1=1,所以{3n a n }是首项为1,公差为-2的等差数列. (2)解 由(1)知3n a n =1+(n -1)·(-2)=3-2n ,所以a n =(3-2n )⎝⎛⎭⎫13n,所以S n =1·⎝⎛⎭⎫131+(-1)·⎝⎛⎭⎫132+(-3)·⎝⎛⎭⎫133+…+(3-2n )·⎝⎛⎭⎫13n , 所以13S n =1·⎝⎛⎭⎫132+(-1)·⎝⎛⎭⎫133+…+(5-2n )·⎝⎛⎭⎫13n +(3-2n )·⎝⎛⎭⎫13n +1, 两式相减,得23S n =13-2⎣⎡⎦⎤⎝⎛⎭⎫132+⎝⎛⎭⎫133+…+⎝⎛⎭⎫13n -(3-2n )·⎝⎛⎭⎫13n +1=13-2⎣⎢⎡⎦⎥⎤19×1-⎝⎛⎭⎫13n -11-13+(2n -3)·⎝⎛⎭⎫13n +1=2n ·⎝⎛⎭⎫13n +1, 所以S n =n 3n .(3)解 假设存在正整数p ,q ,r (p <q <r ),使S p ,S q ,S r 成等差数列,则2S q =S p +S r ,即2q3q =p 3p +r 3r. 当n ≥2时,a n =(3-2n )⎝⎛⎭⎫13n<0,所以数列{S n }单调递减. 又p <q ,所以p ≤q -1且q 至少为2, 所以p 3p ≥q -13q -1,q -13q -1-2q 3q =q -33q .①当q ≥3时,p 3p ≥q -13q -1≥2q 3q ,又r 3r >0,所以p 3p +r 3r >2q3q ,等式不成立. ②当q =2时,p =1,所以49=13+r 3r ,所以r 3r =19,所以r =3({S n }单调递减,解惟一确定). 综上可知,p ,q ,r 的值为1,2,3.(三)应用题1.已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为1.8元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用,其标准如下:7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.(1)当9天购买一次配料时,求该厂用于配料的保管费用P 是多少元?(2)设该厂x 天购买一次配料,求该厂在这x 天中用于配料的总费用y (元)关于x 的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少? 解 (1)当9天购买一次时,该厂用于配料的保管费用 P =70+0.03×200×(1+2)=88(元).(2)①当x ≤7时,y =360x +10x +236=370x +236,②当x >7时,y =360x +236+70+6[(x -7)+(x -6)+…+2+1]=3x 2+321x +432,∴y =⎩⎪⎨⎪⎧370x +236,x ≤7,3x 2+321x +432,x >7,∴设该厂x 天购买一次配料平均每天支付的费用为f (x )元.f (x )=⎩⎨⎧370x +236x,x ≤7,3x 2+321x +432x,x >7.当x ≤7时,f (x )=370+236x ,当且仅当x =7时,f (x )有最小值2 8267≈404(元);当x >7时,f (x )=3x 2+321x +432x =3⎝⎛⎭⎫x +144x +321≥393.当且仅当x =12时取等号.∵393<404,∴当x =12时f (x )有最小值393元.2.南半球某地区冰川的体积每年中随时间而变化,现用t 表示时间,以月为单位,年初为起点,根据历年的数据,冰川的体积(亿立方米)关于t 的近似函数的关系式为V (t )=⎩⎪⎨⎪⎧-t 3+11t 2-24t +100,0<t ≤10,4(t -10)(3t -41)+100,10<t ≤12.(1)该冰川的体积小于100亿立方米的时期称为衰退期.以i -1<t <i 表示第i 月份(i =1,2,…,12),问一年内哪几个月是衰退期? (2)求一年内该地区冰川的最大体积.解 (1)当0<t ≤10时,V (t )=-t 3+11t 2-24t +100<100,化简得t 2-11t +24>0,解得t <3或t >8.又0<t ≤10,故0<t <3或8<t ≤10,当10<t ≤12时,V (t )=4(t -10)(3t -41)+100<100, 解得10<t <413,又10<t ≤12,故10<t ≤12.综上得0<t <3或8<t ≤12.所以衰退期为1月,2月,3月,9月,10月,11月,12月共7个月. (2)由(1)知,V (t )的最大值只能在(3,9)内取到.由V ′(t )=(-t 3+11t 2-24t +100)′=-3t 2+22t -24, 令V ′(t )=0,解得t =6或t =43(舍去).当t 变化时,V ′(t )与V (t )的变化情况如下表:由上表,V (t )在t =6时取得最大值V (6)=136(亿立方米). 故该冰川的最大体积为136亿立方米.3.如图,某城市有一条公路从正西方AO 通过市中心O 后转向东偏北α角方向的OB .位于该市的某大学M 与市中心O 的距离OM =313 km ,且∠AOM =β.现要修筑一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段,且经过大学M .其中tan α=2,cos β=313,AO =15 km.(1)求大学M 与站A 的距离AM ; (2)求铁路AB 段的长AB .解 (1)在△AOM 中,AO =15,∠AOM =β且cos β=313,OM =313, 由余弦定理,得AM 2=OA 2+OM 2-2OA ·OM ·cos ∠AOM =152+(313)2-2×15×313×313=13×9+15×15-2×3×15×3=72.∴AM =62,即大学M 与站A 的距离(2)∵cos β=313,且β为锐角,∴sin β=213, 在△AOM 中,由正弦定理,得AM sin β=OMsin ∠MAO ,即62213=313sin ∠MAO ,sin ∠MAO =22, ∴∠MAO =π4,∴∠ABO =α-π4,∵tan α=2,∴sin α=25,cos α=15, ∴sin ∠ABO =sin ⎝⎛⎭⎫α-π4=110, 又∠AOB =π-α,∴sin ∠AOB =sin(π-α)=25. 在△AOB 中,OA =15,由正弦定理,得 AB sin ∠AOB =OA sin ∠ABO,即AB 25=15110,∴AB =302,即铁路AB 段的长为30 2 km.4.(2017·江苏苏州大学指导卷)如图,某地区有一块长方形植物园ABCD ,AB =8(百米),BC =4(百米).植物园西侧有一块荒地,现计划利用该荒地扩大植物园面积,使得新的植物园为HBCEFG ,满足下列要求:E 在CD 的延长线上,H 在BA 的延长线上,DE =0.5(百米),AH =4(百米),N 为AH 的中点,FN ⊥AH ,EF 为曲线段,它上面的任意一点到AD 与AH 的距离的乘积为定值,FG ,GH 均为线段,GH ⊥HA ,GH =0.5(百米).(1)求四边形FGHN 的面积;(2)已知音乐广场M 在AB 上,AM =2(百米),若计划在EFG 的某一处P 开一个植物园大门,在原植物园ABCD 内选一点Q 为中心建一个休息区,使得QM =PM ,且∠QMP =90°,问点P 在何处时,AQ 最小.解 (1)以A 为坐标原点,AB 所在直线为x 轴,AD 所在直线为y 轴,建立平面直角坐标系如图所示.则E ⎝⎛⎭⎫-12,4,因为E 到AD 与AH 距离的乘积为2, 所以曲线EF 上的任意一点都在函数y =-2x 的图象上.由题意,N (-2,0),所以F (-2,1).四边形FGHN 的面积为12×⎝⎛⎭⎫12+1×2=32(平方百米). (2)设P (x ,y ),则MP →=(x -2,y ),MQ →=(y ,-x +2),AQ →=(y +2,-x +2),因为点Q 在原植物园内,所以⎩⎪⎨⎪⎧0≤y +2≤8,0≤2-x ≤4,即-2≤x ≤2.又点P 在曲线EFG 上,x ∈⎣⎡⎦⎤-4,-12, 所以-2≤x ≤-12,则点P 在曲线段EF 上,AQ =(y +2)2+(2-x )2, 因为y =-2x ,所以AQ =⎝⎛⎭⎫-2x +22+(2-x )2= x 2+4x 2-4x -8x+8=⎝⎛⎭⎫x +2x 2-4⎝⎛⎭⎫x +2x +4=⎝⎛⎭⎫x +2x -22=-x +2-x+2≥22+2. 当且仅当-x =-2x,即x =-2时等号成立.此时点P (-2,2),即点P 在距离AD 与AH 均为2百米时,AQ 最小.(四)解析几何1.已知点A (x 1,y 1),B (x 2,y 2)(x 1x 2≠0),O 是坐标原点,P 是线段AB 的中点,若C 是点A 关于原点的对称点,Q 是线段BC 的中点,且OP =OQ ,设圆P 的方程为x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0.(1)证明:线段AB 是圆P 的直径;(2)若存在正数p 使得2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2成立,当圆P 的圆心到直线x -2y =0的距离的最小值为255时,求p 的值.(1)证明 由题意知,点P 的坐标为⎝⎛⎭⎫x 1+x 22,y 1+y 22,点A (x 1,y 1)关于原点的对称点为C (-x 1,-y 1),那么点Q 的坐标为⎝⎛⎭⎫-x 1+x 22,-y 1+y 22,由OP =OQ ,得OP 2=OQ 2, 即⎝⎛⎭⎫x 1+x 222+⎝⎛⎭⎫y 1+y 222=⎝⎛⎭⎫-x 1+x 222+⎝⎛⎭⎫-y 1+y 222,得(x 1+x 2)2+(y 1+y 2)2=(x 1-x 2)2+(y 1-y 2)2, 从而x 1x 2+y 1y 2=0,由此得OA ⊥OB ,由方程x 2+y 2-(x 1+x 2)x -(y 1+y 2)y =0知,圆P 过原点,且点A ,B 在圆P 上, 故线段AB 是圆P 的直径.(2)解 由2p (x 1+x 2)=y 21+y 22+8p 2+2y 1y 2,得x 1+x 2=12p [(y 1+y 2)2+8p 2],又圆心P ⎝⎛⎭⎫x 1+x 22,y 1+y 22到直线x -2y =0的距离为d =⎪⎪⎪⎪x 1+x 22-(y 1+y 2)5=⎪⎪⎪⎪14p [(y 1+y 2)2+8p 2]-(y 1+y 2)5=[(y 1+y 2)-2p ]2+4p 245p ≥4p 245p,当且仅当y 1+y 2=2p 时,等号成立,所以4p 245p =255,从而得p =2.2.如图,F 是椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点,O 是坐标原点,OF =5,过点F 作OF 的垂线交椭圆C 于P 0,Q 0两点,△OP 0Q 0的面积为453.(1)求椭圆的标准方程;(2)若过点M (-5,0)的直线l 与上、下半椭圆分别交于点P ,Q ,且PM =2MQ ,求直线l 的方程.解 (1)由题设条件,P 0F =00OP Q S OF∆=4535=43.易知P 0F =b 2a ,所以b 2a =43.又c =OF =5,即a 2-b 2=5,因此a 2-43a -5=0,解得a =3或a =-53,又a >0,所以a =3,从而b =2. 故所求椭圆的标准方程为x 29+y 24=1.(2)设P (x 1,y 1),Q (x 2,y 2),由题意y 1>0,y 2<0, 并可设直线l :x =ty -5, 代入椭圆方程得(ty -5)29+y 24=1,即(4t 2+9)y 2-85ty -16=0. 从而y 1+y 2=85t 4t 2+9,y 1y 2=-164t 2+9.又由PM =2MQ ,得y 1-y 2=PMMQ=2,即y 1=-2y 2.因此y 1+y 2=-y 2,y 1y 2=-2y 22, 故-164t 2+9=-2⎝ ⎛⎭⎪⎫-85t 4t 2+92,可解得t 2=14.注意到y 2=-85t 4t 2+9且y 2<0,知t >0,因此t =12.故满足题意的直线l 的方程为2x -y +25=0.3.如图,在平面直角坐标系xOy 中,椭圆E :x 2a 2+y 2b 2=1(a >b >0)的离心率为32,直线l :y =-12x 与椭圆E 相交于A ,B 两点,AB =210,C ,D 是椭圆E 上异于A ,B 的两点,且直线AC ,BD 相交于点P ,直线AD ,BC 相交于点Q .(1)求椭圆E 的标准方程; (2)求证:直线PQ 的斜率为定值. (1)解 因为e =c a =32,所以c 2=34a 2,即a 2-b 2=34a 2,所以a =2b .所以椭圆方程为x 24b 2+y 2b2=1.由题意不妨设点A 在第二象限,点B 在第四象限,由⎩⎨⎧y =-12x ,x 24b 2+y2b 2=1,得A (-2b ,22b ). 又AB =210,所以OA =10, 则2b 2+12b 2=52b 2=10,得b =2,a =4.所以椭圆E 的标准方程为x 216+y 24=1.(2)证明 由(1)知,椭圆E 的方程为x 216+y 24=1,A (-22,2),B (22,-2).①当直线CA ,CB ,DA ,DB 的斜率都存在,且不为零时,设直线CA ,DA 的斜率分别为k 1,k 2,C (x 0,y 0),显然k 1≠k 2.从而k 1·k CB =y 0-2x 0+22·y 0+2x 0-22=y 20-2x 20-8=4⎝⎛⎭⎫1-x 2016-2x 20-8=2-x 204x 20-8=-14,所以k CB =-14k 1.同理k DB =-14k 2.所以直线AD 的方程为y -2=k 2(x +22),直线BC 的方程为y +2=-14k 1(x -22), 由⎩⎪⎨⎪⎧y +2=-14k 1(x -22),y -2=k 2(x +22), 解得⎩⎪⎨⎪⎧x =22(-4k 1k 2-4k 1+1)4k 1k 2+1,y =2(-4k 1k 2+4k 2+1)4k 1k 2+1,从而点Q 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 1+1)4k 1k 2+1,2(-4k 1k 2+4k 2+1)4k 1k 2+1.用k 2代替k 1,k 1代替k 2得点P 的坐标为⎝ ⎛⎭⎪⎫22(-4k 1k 2-4k 2+1)4k 1k 2+1,2(-4k 1k 2+4k 1+1)4k 1k 2+1.所以k PQ =2(-4k 1k 2+4k 2+1)4k 1k 2+1-2(-4k 1k 2+4k 1+1)4k 1k 2+122(-4k 1k 2-4k 1+1)4k 1k 2+1-22(-4k 1k 2-4k 2+1)4k 1k 2+1=42(k 2-k 1)82(k 2-k 1)=12.即直线PQ 的斜率为定值,其定值为12.②当直线CA ,CB ,DA ,DB 中,有直线的斜率不存在时,由题意得,至多有一条直线的斜率不存在,不妨设直线CA 的斜率不存在,从而C (-22,-2). 设DA 的斜率为k ,由①知,k DB =-14k.因为直线CA :x =-22,直线DB :y +2=-14k (x -22),得P ⎝⎛⎭⎫-22,-2+2k . 又直线BC :y =-2,直线AD :y -2=k (x +22), 得Q ⎝⎛⎭⎫-22-22k ,-2, 所以k PQ =12.由①②可知,直线PQ 的斜率为定值,其定值为12.4.(2017·江苏预测卷)平面直角坐标系xOy 中,椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率是32,右准线的方程为x =433.(1)求椭圆C 的方程;(2)已知点P ⎝⎛⎭⎫12,2,过x 轴上的一个定点M 作直线l 与椭圆C 交于A ,B 两点,若三条直线P A ,PM ,PB 的斜率成等差数列,求点M 的坐标. 解 (1)因为椭圆的离心率为32,右准线的方程为x =433, 所以e =c a =32,a 2c =433,则a =2,c =3,b =1,椭圆C 的方程为x 24+y 2=1.(2)设M (m,0),当直线l 为y =0时,A (-2,0),B (2,0), P A ,PM ,PB 的斜率分别为 k P A =45,k PM =41-2m,k PB =-43,因为直线P A ,PM ,PB 的斜率成等差数列, 所以81-2m =45-43,m =8.证明如下:当M (8,0)时,直线P A ,PM ,PB 的斜率构成等差数列, 设AB :y =k (x -8),代入椭圆方程x 2+4y 2-4=0, 得x 2+4k 2(x -8)2-4=0,即(1+4k 2)x 2-64k 2x +256k 2-4=0, 设A (x 1,y 1),B (x 2,y 2),则 x 1+x 2=64k 21+4k 2,x 1x 2=256k 2-41+4k 2,又k PM =0-28-12=-415, 所以k P A +k PB =y 1-2x 1-12+y 2-2x 2-12=kx 1-8k -2x 1-12+kx 2-8k -2x 2-12=2k +⎝⎛⎭⎫-152k -2⎝ ⎛⎭⎪⎫1x 1-12+1x 2-12 =2k +⎝⎛⎭⎫-152k -2(x 1+x 2)-1x 1x 2-12(x 1+x 2)+14=2k +⎝⎛⎭⎫-152k -264k 21+4k 2-1256k 2-41+4k 2-12×64k 21+4k 2+14=2k +⎝⎛⎭⎫-152k -260k 2-1154(60k 2-1)=-815=2k PM ,即证. (四)数 列(2)1.已知{a n },{b n },{c n }都是各项不为零的数列,且满足a 1b 1+a 2b 2+…+a n b n =c n S n ,n ∈N *,其中S n 是数列{a n }的前n 项和,{c n }是公差为d (d ≠0)的等差数列. (1)若数列{a n }是常数列,d =2,c 2=3,求数列{b n }的通项公式; (2)若a n =λn (λ是不为零的常数),求证:数列{b n }是等差数列;(3)若a 1=c 1=d =k (k 为常数,k ∈N *),b n =c n +k (n ≥2,n ∈N *),求证:对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.(1)解 因为d =2,c 2=3,所以c n =2n -1. 因为数列{a n }是各项不为零的常数列, 所以a 1=a 2=…=a n ,S n =na 1.则由c n S n =a 1b 1+a 2b 2+…+a n b n 及c n =2n -1,得 n (2n -1)=b 1+b 2+…+b n ,当n ≥2时,(n -1)(2n -3)=b 1+b 2+…+b n -1, 两式相减得b n =4n -3.当n =1时,b 1=1也满足b n =4n -3. 故b n =4n -3(n ∈N *).(2)证明 因为a 1b 1+a 2b 2+…+a n b n =c n S n , 当n ≥2时,c n -1S n -1=a 1b 1+a 2b 2+…+a n -1b n -1, 两式相减得c n S n -c n -1S n -1=a n b n , 即(S n -1+a n )c n -S n -1c n -1=a n b n , S n -1(c n -c n -1)+a n c n =a n b n , 所以S n -1d +λnc n =λnb n .又S n -1=λ+λ(n -1)2(n -1)=λn (n -1)2,所以λn (n -1)2d +λnc n =λnb n ,即(n -1)2d +c n =b n ,(*) 所以当n ≥3时,(n -2)2d +c n -1=b n -1,两式相减得b n -b n -1=32d (n ≥3),所以数列{b n }从第二项起是公差为32d 的等差数列.又当n =1时,由c 1S 1=a 1b 1,得c 1=b 1. 当n =2时,由(*)得b 2=(2-1)2d +c 2=12d +(c 1+d )=b 1+32d ,得b 2-b 1=32d .故数列{b n }是公差为32d 的等差数列.(3)证明 由(2)得当n ≥2时,S n -1(c n -c n -1)+a n c n =a n b n ,即S n -1d =a n (b n -c n ). 因为b n =c n +k ,所以b n =c n +kd , 即b n -c n =kd , 所以S n -1d =a n ·kd , 即S n -1=ka n ,所以S n =S n -1+a n =(k +1)a n . 当n ≥3时,S n -1=(k +1)a n -1, 两式相减得a n =(k +1)a n -(k +1)a n -1, 即a n =k +1k a n -1,故从第二项起数列{a n }是等比数列, 所以当n ≥2时,a n =a 2⎝⎛⎭⎫k +1k n -2,b n =c n +k =c n +kd =c 1+(n -1)k +k 2=k +(n -1)k +k 2=k (n +k ), 另外由已知条件得(a 1+a 2)c 2=a 1b 1+a 2b 2. 又c 2=2k ,b 1=k ,b 2=k (2+k ), 所以a 2=1,因而a n =⎝⎛⎭⎫k +1k n -2.令d n =b na n ,则d n +1d n =b n +1a n a n +1b n =(n +k +1)k (n +k )(k +1).因为(n +k +1)k -(n +k )(k +1)=-n <0, 所以d n +1d n<1,所以对任意的n ≥2,n ∈N *,数列⎩⎨⎧⎭⎬⎫b n a n 单调递减.2.已知数列{a n }的前n 项和为S n ,且a 1=1,a 2=2,设b n =a n +a n +1,c n =a n ·a n +1(n ∈N *). (1)若数列{b 2n -1}是公比为3的等比数列,求S 2n ; (2)若数列{b n }是公差为3的等差数列,求S n ;(3)是否存在这样的数列{a n },使得{b n }成等差数列和{c n }成等比数列同时成立,若存在,求出{a n }的通项公式;若不存在,请说明理由. 解 (1)b 1=a 1+a 2=1+2=3,S 2n =(a 1+a 2)+(a 3+a 4)+…+(a 2n -1+a 2n )=b 1+b 3+…+b 2n -1=3(1-3n )1-3=3n +1-32.(2)∵b n +1-b n =a n +2-a n =3,∴{a 2k -1},{a 2k }均是公差为3的等差数列,a 2k -1=a 1+(k -1)·3=3k -2,a 2k =a 2+(k -1)·3=3k -1,当n =2k (k ∈N *)时,S n =S 2k =(a 1+a 3+…+a 2k -1)+(a 2+a 4+…+a 2k )=k (1+3k -2)2+k (2+3k -1)2=3k 2=3n 24;当n =2k -1(k ∈N *)时,Sn =S 2k -1=S 2k -a 2k =3k 2-3k +1=3×⎝⎛⎭⎫n +122-3·n +12+1=3n 2+14.综上可知,S n=⎩⎨⎧3n 24,n =2k ,k ∈N *,3n 2+14,n =2k -1,k ∈N *.(3)∵{b n }成等差数列,∴2b 2=b 1+b 3,即2(a 2+a 3)=(a 1+a 2)+(a 3+a 4),a 2+a 3=a 1+a 4,① ∵{c n }成等比数列,∴c 22=c 1c 3. 即(a 2a 3)2=(a 1a 2)·(a 3a 4), ∵c 2=a 2a 3≠0,∴a 2a 3=a 1a 4,②由①②及a 1=1,a 2=2,得a 3=1,a 4=2,设{b n }的公差为d ,则b n +1-b n =(a n +1+a n +2)-(a n +a n +1)=d ,即a n +2-a n =d ,即数列{a n }的奇数项和偶数项都构成公差为d 的等差数列, 又d =a 3-a 1=a 4-a 2=0, ∴数列{a n }=1,2,1,2,1,2,…,即a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *.此时c n =2,{c n }是公比为1的等比数列,满足题意.∴存在数列{a n },a n =⎩⎪⎨⎪⎧1,n =2k -1,k ∈N *,2,n =2k ,k ∈N *, 使得{b n }成等差数列和{c n }成等比数列同时成立.高考附加题加分练 1.矩阵与变换1.已知矩阵M =⎣⎢⎡⎦⎥⎤a 1b 0,点A (1,0)在矩阵M 对应的变换作用下变为A ′(1,2),求矩阵M 的逆矩阵M -1. 解 ∵⎣⎢⎡⎦⎥⎤a 1b0 ⎣⎢⎡⎦⎥⎤10=⎣⎢⎡⎦⎥⎤12, ∴a =1,b =2.∴M =⎣⎢⎡⎦⎥⎤1 120,∴M -1=⎣⎢⎡⎦⎥⎤0 121 -12.2.(2017·江苏徐州一中检测)已知曲线C :y 2=12x ,在矩阵M =⎣⎢⎡⎦⎥⎤1 00 -2对应的变换作用下得到曲线C 1,C 1在矩阵N =⎣⎢⎡⎦⎥⎤0110对应的变换作用下得到曲线C 2,求曲线C 2的方程.解 设A =NM ,则A =⎣⎢⎡⎦⎥⎤0 11 0 ⎣⎢⎡⎦⎥⎤1 00 -2=⎣⎢⎡⎦⎥⎤0 -21 0, 设P (x ′,y ′)是曲线C 上任一点,在两次变换下,在曲线C 2上对应的点为P (x ,y ), 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤0 -21 0 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤-2y ′ x ′, 即⎩⎪⎨⎪⎧x =-2y ′,y =x ′,∴⎩⎪⎨⎪⎧x ′=y ,y ′=-12x .又点P (x ′,y ′)在曲线C :y 2=12x 上,∴⎝⎛⎭⎫-12x 2=12y ,即x 2=2y .3.已知矩阵M =⎣⎢⎡⎦⎥⎤1 22x 的一个特征值为3,求M 的另一个特征值及其对应的一个特征向量. 解 矩阵M 的特征多项式为f (λ)=⎣⎢⎡⎦⎥⎤λ-1 -2-2 λ-x =(λ-1)(λ-x )-4.因为λ1=3是方程f (λ)=0的一根,所以x =1. 由(λ-1)(λ-1)-4=0,得λ2=-1. 设λ2=-1对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤x y , 则⎩⎪⎨⎪⎧-2x -2y =0,-2x -2y =0,得x =-y . 令x =1,则y =-1,所以矩阵M 的另一个特征值为-1,对应的一个特征向量为α=⎣⎢⎡⎦⎥⎤ 1-1.4.(2017·江苏江阴中学质检)若点A (2,2)在矩阵M =⎣⎢⎡⎦⎥⎤cos α -sin αsin α cos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵.解 M ⎣⎢⎡⎦⎥⎤22=⎣⎢⎡⎦⎥⎤-2 2,即⎣⎢⎡⎦⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎡⎦⎥⎤-2 2, 所以⎩⎪⎨⎪⎧cos α-sin α=-1,sin α+cos α=1,解得⎩⎪⎨⎪⎧cos α=0,sin α=1.所以M =⎣⎢⎡⎦⎥⎤0 -11 0.由M -1M =⎣⎢⎡⎦⎥⎤1 001,得M -1=⎣⎢⎡⎦⎥⎤1-10. 2.坐标系与参数方程1.(2017·江苏兴化中学调研)已知曲线C 1的极坐标方程为ρcos ⎝⎛⎭⎫θ-π3=-1,曲线C 2的极坐标方程为ρ=22cos ⎝⎛⎭⎫θ-π4,判断两曲线的位置关系. 解 将曲线C 1,C 2化为直角坐标方程,得 C 1:x +3y +2=0,C 2:x 2+y 2-2x -2y =0, 即C 2:(x -1)2+(y -1)2=2. 圆心到直线的距离d =|1+3+2|12+(3)2=∴曲线C 1与C 2相离.2.(2017·江苏金坛一中期中)已知在极坐标系下,圆C :ρ=2cos ⎝⎛⎭⎫θ+π2与直线l :ρsin ⎝⎛⎭⎫θ+π4=2,点M 为圆C 上的动点,求点M 到直线l 的距离的最大值. 解 圆C 化为直角坐标方程,得x 2+(y +1)2=1. 直线l 化为直角坐标方程,得x +y =2. 圆心C 到直线l 的距离d =|-1-2|2=322,所以点M 到直线l 的距离的最大值为1+322.3.已知直线l :⎩⎪⎨⎪⎧ x =1+t ,y =-t (t 为参数)与圆C :⎩⎪⎨⎪⎧x =2cos θ,y =m +2sin θ(θ为参数)相交于A ,B 两点,m 为常数. (1)当m =0时,求线段AB 的长;(2)当圆C 上恰有三点到直线的距离为1时,求m 的值. 解 (1)直线l :x +y -1=0,曲线C :x 2+y 2=4, 圆心到直线的距离d =12, 故AB =2r 2-d 2=14.(2)圆C 的直角坐标方程为x 2+(y -m )2=4, 直线l :x +y -1=0,由题意,知圆心到直线的距离d =|m -1|2=1,∴m =1± 2.4.(2017·江苏昆山中学质检)已知极坐标系的极点在直角坐标系的原点,极轴与x 轴的正半轴重合.曲线C 的极坐标方程为ρ2cos 2θ+3ρ2sin 2θ=3,直线l 的参数方程为⎩⎨⎧x =-3t ,y =1+t(t 为参数,t ∈R ).试在曲线C 上求一点M ,使它到直线l 的距离最大. 解 曲线C 的普通方程是x 23+y 2=1,直线l 的普通方程是x +3y -3=0.设点M 的直角坐标是(3cos θ,sin θ),则点M 到直线l 的距离是d =|3cos θ+3sin θ-3|2=3⎪⎪⎪⎪2sin ⎝⎛⎭⎫θ+π4-12.因为-2≤2sin ⎝⎛⎭⎫θ+π4≤2,所以当sin ⎝⎛⎭⎫ θ+π4=-1,即θ=2k π-3π4(k ∈Z )时,d 取得最大值.此时3cos θ=-62,sin θ=-22. 设点M 的极角为φ,则⎩⎨⎧ρcos φ=-62,ρsin φ=-22,所以⎩⎪⎨⎪⎧ρ=2,φ=7π6. 综上,当点M 的极坐标为⎝⎛⎭⎫2,7π6时,该点到直线l 的距离最大. 3.空间向量与立体几何1.(2017·江苏南通中学月考)如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与AC 所成角的余弦值; (2)求二面角A -BE -C 的正弦值.解 (1)以O 为原点,分别以OB ,OC ,OA 为x 轴,y 轴,z 轴建立空间直角坐标系,则A (0,0,1),B (2,0,0),C (0,2,0),E (0,1,0). EB →=(2,-1,0),AC →=(0,2,-1), ∴cos 〈EB →,AC →〉=-25,即异面直线BE 与AC 所成角的余弦值为25.(2)AB →=(2,0,-1),AE →=(0,1,-1), 设平面ABE 的法向量为n 1=(x ,y ,z ), 则由n 1⊥AB →,n 1⊥AE →,得⎩⎪⎨⎪⎧2x -z =0,y -z =0,取n 1=(1,2,2), 平面BEC 的法向量为n 2=(0,0,1), ∴cos 〈n 1,n 2〉=23,∴二面角A -BE -C 的余弦值cos θ=23,∴sin θ=53, 即二面角A -BE -C 的正弦值为53.2.(2017·江苏宜兴中学质检)三棱柱ABC -A 1B 1C 1在如图所示的空间直角坐标系中,已知AB =2,AC =4,AA 1=3,D 是BC 的中点.(1)求直线DB 1与平面A 1C 1D 所成角的正弦值; (2)求二面角B 1-A 1D -C 1的正弦值.解 (1)由题意知,B (2,0,0),C (0,4,0),D (1,2,0),A 1(0,0,3),B 1(2,0,3),C 1(0,4,3),则A 1D →=(1,2,-3),A 1C 1→=(0,4,0),DB 1→=(1,-2,3). 设平面A 1C 1D 的一个法向量为n =(x ,y ,z ). 由n ·A 1D →=x +2y -3z =0,n ·A 1C 1→=4y =0, 得y =0,x =3z ,令z =1,得x =3,n =(3,0,1).设直线DB 1与平面A 1C 1D 所成的角为θ, 则sin θ=|cos 〈DB 1→,n 〉|=|3+3|10×14=33535.(2)设平面A 1B 1D 的一个法向量为m =(a ,b ,c ),A 1B 1→=(2,0,0). 由m ·A 1D →=a +2b -3c =0,m ·A 1B 1→=2a =0, 得a =0,2b =3c ,令c =2,得b =3,m =(0,3,2). 设二面角B 1-A 1D -C 1的大小为α, |cos α|=|cos 〈m ,n 〉|=|m ·n ||m ||n |=265, sin α=3765=345565.所以二面角B 1-A 1D -C 13.(2017·江苏运河中学质检)PCD ⊥底面ABCD ,PD ⊥CD ,底面ABCD 是直角梯形,AB ∥CD ,∠ADC =π2,AB =AD =PD =1,CD =2.设Q 为侧棱PC 上一点,PQ →=λPC →.试确定λ的值,使得二面角Q -BD -P 为π4.解 因为侧面PCD ⊥底面ABCD , 平面PCD ∩平面ABCD =CD ,PD ⊥CD , 所以PD ⊥平面ABCD ,所以PD ⊥AD , 又∠ADC =π2,故DA ,DC ,DP 两两互相垂直.如图,以D 为坐标原点,DA ,DC ,DP 分别为x 轴,y 轴,z 轴建立直角坐标系,A (1,0,0),B (1,1,0),C (0,2,0),P (0,0,1),则平面PBD 的一个法向量为n =(-1,1,0),PC →=(0,2,-1),PQ →=λPC →,λ∈(0,1), 所以Q (0,2λ,1-λ).设平面QBD 的一个法向量为m =(a ,b ,c ), 由m ·BD →=0,m ·DQ →=0,得⎩⎪⎨⎪⎧a +b =0,2λb +(1-λ)c =0, 所以取b =1,得m =⎝⎛⎭⎫-1,1,2λλ-1,所以cos π4=|m ·n ||m ||n |,即22·2+⎝⎛⎭⎫2λλ-12=22. 注意到λ∈(0,1),解得λ=2-1.4.在三棱锥S -ABC 中,底面是边长为23的正三角形,点S 在底面ABC 上的射影O 是AC 的中点,侧棱SB 和底面成45°角.(1)若D 为棱SB 上一点,当SDDB为何值时,CD ⊥AB ; (2)求二面角S -BC -A 的余弦值的大小.解 以O 点为原点,OB 为x 轴,OC 为y 轴,OS 为z 轴建立空间直角坐标系. 由题意知∠SBO =45°,SO =3.。
上海市青浦区2017届高三一模数学试卷及答案

上海市青浦区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 已知复数2z i =+(i 为虚数单位),则2z =2. 已知集合1{|216}2x A x =≤<,22{|log (9)}B x y x ==-,则AB =3. 在二项式62()x x+的展开式中,常数项是4. 等轴双曲线222x y a -=与抛物线216y x =的准线交于A 、B 两点,且||AB =则该双曲线的实轴长等于 5. 若由矩阵2222a x a a y a +⎛⎫⎛⎫⎛⎫=⎪⎪ ⎪⎝⎭⎝⎭⎝⎭表示x 、y 的二元一次方程组无解,则实数a = 6. 执行如图所示的程序框图,若输入1n =, 则输出S =7. 若圆锥侧面积为20π,且母线与底面所成 角为4arccos 5,则该圆锥的体积为8. 已知数列{}n a 的通项公式为2n a n bn =+,若数列{}n a 是单调递增数列,则实数b 的取 值范围是9. 将边长为10的正三角形ABC ,按“斜二测”画法在水平放置的平面上画出为△A B C ''',则△A B C '''中最短边的边长为 (精确到0.01) 10. 已知点A 是圆22:4O x y +=上的一个定点,点B 是圆O 上的一个动点,若满足||||AO BO AO BO +=-,则AO AB ⋅=11. 若定义域均为D 的三个函数()f x 、()g x 、()h x 满足条件:对任意x D ∈,点(,())x g x与点(,())x h x 都关于点(,())x f x 对称,则称()h x 是()g x 关于()f x 的“对称函数”,已知()g x =()2f x x b =+,()h x 是()g x 关于()f x 的“对称函数”,且()()h x g x ≥恒成立,则实数b 的取值范围是12. 已知数列{}n a 满足:对任意的*n N ∈均有133n n a ka k +=+-,其中k 为不等于0与1的常数,若{678,78,3,22,222,2222}i a ∈---,2,3,4,5i =,则满足条件的1a 所有可能值 的和为二. 选择题(本大题共4题,每题5分,共20分) 13. 已知()sin 3f x x π=,{1,2,3,4,5,6,7,8}A =,现从集合A 中任取两个不同元素s 、t ,则使得()()0f s f t ⋅=的可能情况为( )A. 12种B. 13种C. 14种D. 15种14. 已知空间两条直线m 、n ,两个平面α、β,给出下面四个命题:①m ∥n ,m n αα⊥⇒⊥;②α∥β,m α,n β⇒m ∥n ;③m ∥n ,m ∥αn ⇒∥α;④α∥β,m ∥n ,m α⊥n β⇒⊥; 其中正确的序号是( )A. ①④B. ②③C. ①②④D. ①③④ 15. 如图,有一直角坡角,两边的长度足够长,若P 处有一棵树与两坡的距离分别是4m 和am (012a <<),不考虑树的粗细,现用16m 长的篱笆,借助坡角围成一个矩形花圃ABCD ,设此矩形花圃的最大面积为M ,若将这棵树围在矩形花圃内,则函数()M f a =(单位2m )的图像大致是( )A. B. C.D.16. 已知集合{(,)|()}M x y y f x ==,若对于任意实数对11(,)x y M ∈,存在22(,)x y M ∈,使12120x x y y +=成立,则称集合M 是“垂直对点集”,给出下列四个集合:①21{(,)|}M x y y x ==; ②2{(,)|l o g }M x yyx ==;③{(,)|22}x M x y y ==-; ④{(,)|s i n M x y yx ==+;其中是“垂直对点集”的序号是( )A. ①②③B. ①②④C. ①③④D. ②③④三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 如图所示,三棱柱111ABC A B C -的侧面11ABB A 是圆柱的轴截面,C 是圆柱底面圆周 上不与A 、B 重合的一个点;(1)若圆柱的轴截面是正方形,当点C 是弧AB 的中点时,求异面直线1A C 与AB 的所成角的大小(结果用反三角函数值表示);(2)当点C 是弧AB 的中点时,求四棱锥111A BCC B -与圆柱的体积比;18. 已知函数221()cos ()42f x x x π+=+--(x R ∈); (1)求函数()f x 在区间[0,]2π上的最大值;(2)在ABC ∆中,若A B <,且1()()2f A f B ==,求BC AB的值; 19.如图,1F 、2F 分别是椭圆2222:1x y C a b+=(0a b >>)的左、右焦点,且焦距为,动弦AB 平行于x 轴,且11||||4F A F B +=; (1)求椭圆C 的方程;(2)若点P 是椭圆C 上异于点A 、B 的任意一点,且直线PA 、PB 分别与y 轴交于点M 、N ,若2MF 、2NF 的斜率分别为1k 、2k ,求证:12k k ⋅是定值;20. 如图,已知曲线12:1xC y x =+(0x >)及曲线21:3C y x=(0x >),1C 上的点1P 的横坐标为1a (1102a <<),从1C 上的点n P (*n N ∈)作直线平行于x 轴,交曲线2C 于n Q点,再从2C 上的点n Q (*n N ∈)作直线平行于y 轴,交曲线1C 于1n P +点,点n P(1,2,3,n =⋅⋅⋅)的横坐标构成数列{}n a ;(1)求曲线1C 和曲线2C 的交点坐标; (2)试求1n a +与n a 之间的关系; (3)证明:21212n n a a -<;21. 已知函数2()2f x x ax =-(0a >); (1)当2a =时,解关于x 的不等式3()5f x -<<;(2)函数()y f x =在[,2]t t +的最大值为0,最小值是4-,求实数a 和t 的值;(3)对于给定的正数a ,有一个最大的正数()M a ,使得在整个区间[0,()]M a 上,不等式|()|5f x ≤恒成立,求出()M a 的解析式;参考答案一. 填空题 1.34i -2. [1,3)-3. 1604. 45.2-6.3log 197.16π8.3b >- 9. 3.6210. 411. )+∞12.220103二. 选择题13. C 14. A 15. B 16. C三. 解答题 17.(1)arccos6(2)23π;18.(1)1;(2;19.(1)22142x y +=;(2)121k k =;20.(1)12(,)23;(2)116n n n a a a ++=;(3)略;21.(1)(1,1)(3,5)-;(2)0t =或2,2a =; (3)当0a <≤()M a a =a >,()M a a =;。
2017年上海市普陀区高三一模数学试卷和参考答案

上海市普陀区2017届高三一模数学试卷2016.12一. 填空题(本大题共12题,1-6每题4分,7-12每题5分,共54分)1. 若集合2{|,}A x y x y R ==∈,{|sin ,}B y y x x R ==∈,则A B =I 2. 若22ππα-<<,3sin 5α=,则cot 2α= 3. 函数2()1log f x x =+(1x ≥)的反函数1()fx -=4. 若550125(1)x a a x a x a x +=+++⋅⋅⋅+,则125a a a ++⋅⋅⋅+=5. 设k R ∈,2212y x k k -=-表示焦点在y 轴上的双曲线,则半焦距的取值范围是 6. 设m R ∈,若23()(1)1f x m x mx =+++是偶函数,则()f x 的单调递增区间是7. 方程22log (95)2log (32)x x-=+-的解x =8. 已知圆222:220C x y kx y k ++++=(k R ∈)和定点(1,1)P -,若过P 可以作两条直 线与圆C 相切,则k 的取值范围是9. 如图,在直三棱柱111ABC A B C -中,90ABC ∠=︒,1AB BC ==,若1A C 与平面11B BCC 所成的角为6π, 则三棱锥1A ABC -的体积为10. 掷两颗骰子得两个数,若两数的差为d ,则{2,1,0,1,2}d ∈--出现的概率的最大值 为 (结果用最简分数表示)11. 设地球半径为R ,若A 、B 两地均位于北纬45°,且两地所在纬度圈上的弧长为4R ,则A 、B 之间的球面距离是 (结果用含有R 的代数式表示) 12. 已知定义域为R 的函数()y f x =满足(2)()f x f x +=,且11x -≤<时,2()1f x x =-,函数lg ||,0()1,0x x g x x ≠⎧=⎨=⎩,若()()()F x f x g x =-,则[5,10]x ∈-,函数()F x 零点的个数是二. 选择题(本大题共4题,每题5分,共20分)13. 若0a b <<,则下列不等关系中,不能成立的是( )A. 11a b> B.11a b a >- C. 1133a b < D. 22a b >14. 设无穷等比数列{}n a 的首项为1a ,公比为q ,前n 项和为n S ,则“11a q +=”是 “lim 1n n S →∞=”成立的( )条件A. 充分非必要B. 必要非充分C. 充要D. 既非充分也非必要15. 设l αβ--是直二面角,直线a 在平面α内,直线b 在平面β内,且a 、b 与l 均不垂 直,则( )A. a 与b 可能垂直,但不可能平行B. a 与b 可能垂直,也可能平行C. a 与b 不可能垂直,但可能平行D. a 与b 不可能垂直,也不可能平行16. 设θ是两个非零向量a r 、b r 的夹角,若对任意实数t ,||a tb +r r的最小值为1,则下列判断正确的是( )A. 若||a r 确定,则θ唯一确定B. 若||b r确定,则θ唯一确定C. 若θ确定,则||b r 唯一确定D. 若θ确定,则||a r唯一确定三. 解答题(本大题共5题,共14+14+14+16+18=76分) 17. 已知a R ∈,函数1()||f x a x =+; (1)当1a =时,解不等式()2f x x ≤;(2)若关于x 的方程()20f x x -=在区间[2,1]--上有解,求实数a 的取值范围;18. 已知椭圆2222:1x y a bΓ+=(0a b >>)的左、右两个焦点分别为1F 、2F ,P 是椭圆上位于第一象限内的点,PQ x ⊥轴,垂足为Q ,且12||6F F =,12PF F ∠=12PF F ∆的面积为(1)求椭圆Γ的方程;(2)若M 是椭圆上的动点,求||MQ 的最大值, 并求出||MQ 取得最大值时M 的坐标;19. 现有一堆规格相同的正六棱柱型金属螺帽毛坯,经测定其密度为7.83/g cm ,总重量为 5.8kg ,其中一个螺帽的三视图如下图所示(单位:毫米); (1)这堆螺帽至少有多少个;(2)对上述螺帽作防腐处理,每平方米需要 耗材0.11千克,共需要多少千克防腐材料? (结果精确到0.01)20. 已知数列{}n a 的各项均为正数,且11a =,对任意的*n N ∈,均有 2114(1)n n n a a a +-=⋅+,22log (1)1n n b a =+-;(1)求证:{1}n a +是等比数列,并求出{}n a 的通项公式;(2)若数列{}n b 中去掉{}n a 的项后,余下的项组成数列{}n c ,求12100c c c ++⋅⋅⋅+; (3)设11n n n d b b +=⋅,数列{}n d 的前n 项和为n T ,是否存在正整数m (1m n <<),使得1T 、m T 、n T 成等比数列,若存在,求出m 的值,若不存在,请说明理由;21. 已知函数()y f x =,若存在实数m 、k (0m ≠),使得对于定义域内的任意实数x , 均有()()()m f x f x k f x k ⋅=++-成立,则称函数()f x 为“可平衡”函数,有序数对(,)m k 称为函数()f x 的“平衡”数对;(1)若1m =,判断()sin f x x =是否为“可平衡”函数,并说明理由;(2)若a R ∈,0a ≠,当a 变化,求证:2()f x x =与()2xg x a =+的“平衡”数对相同; (3)若1m 、2m R ∈,且1(,)2m π、2(,)4m π均为函数2()cos f x x =(04x π<≤)的“平衡”数对,求2212m m +的取值范围;上海市普陀区2017届高三一模数学试卷参考答案一. 填空题1. [0,1]2.7243. 12x -(1)x ≥4. 315. )+∞6. [0,)+∞7. 1x =8. 2k <-或0k >9. 6 10. 2311. 3R π12. 15二. 选择题13. B 14. B 15. C 16. D三. 解答题17.(1)[1,)+∞;(2)9[,3]2--;18.(1)221123x y +=;(2)(M -,max ||2MQ =+ 19.(1)252个;(2)0.05千克;20.(1)21nn a =-;(2)11202;(3)2m =,12n =;21.(1)是;(2)平衡数对(2,0);(3)(1,8]。
三角函数的图像与性质-2017年高考数学(文)备考学易黄金易错点无答案

专题06 三角函数的图像与性质2017年高考数学(文)备考学易黄金易错点1.为了得到函数y=sin错误!的图象,只需把函数y =sin2x的图象上所有的点( )A.向左平行移动π3个单位长度B.向右平行移动错误!个单位长度C.向左平行移动错误!个单位长度D.向右平行移动π6个单位长度2.若将函数y=2sin2x的图象向左平移错误!个单位长度,则平移后图象的对称轴为()A.x=错误!-错误!(k∈Z) B.x=错误!+错误!(k∈Z)3.已知函数f(x)=sin(ωx+φ)错误!,x=-错误!为f (x)的零点,x=错误!为y=f(x)图象的对称轴,且f(x)在错误!上单调,则ω的最大值为()A.11B.9C.7D.54.已知函数f(x)=sin错误!(x∈R,ω>0)图象的相邻两条对称轴之间的距离为π2。
为了得到函数g(x)=cosωx的图象,只要将y=f(x)的图象( )A.向左平移错误!个单位长度B.向右平移错误!个单位长度C.向左平移错误!个单位长度D.向右平移π5个单位长度5.如图,函数f(x)=A sin(ωx+φ)(其中A>0,ω>0,|φ|≤错误!)与坐标轴的三个交点P、Q、R满足P(2,0),∠PQR =错误!,M为QR的中点,PM=2错误!,则A的值为()A.错误!错误!B.错误!错误!C.8 D.166.义在区间0,3π]上的函数y=sin2x的图象与y=cos x 的图象的交点个数是________.7.已知函数f(x)=2a sinωx·cosωx+23cos2ωx-错误!(a>0,ω>0)的最大值为2,x1,x2是集合M={x∈R|f (x)=0}中的任意两个元素,且|x1-x2|的最小值为6。
(1)求函数f(x)的解析式及其图象的对称轴方程;(2)将函数y =f (x )的图象向右平移2个单位后得到函数y =g (x )的图象,当x ∈(-1,2]时,求函数h (x )=f (x )·g (x )的值域.易错起源1、 三角函数的概念、诱导公式及同角关系式例1、(1)点P 从(1,0)出发,沿单位圆x 2+y 2=1逆时针方向运动2π3弧长到达Q 点,则Q 点的坐标为( )A . (-错误!,错误!)B .(-错误!,-错误!)C .(-错误!,-错误!)D .(-错误!,错误!)(2)已知sin α+2cos α=0,则2sin αcos α-cos 2α的值是________.【变式探究】(1)已知点P 错误!落在角θ的终边上,且θ∈0,2π),则θ的值为( )A.π4B 。
2017年上海市虹口区高考数学一模试卷(解析版)

2017年上海市虹口区高考数学一模试卷一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B=.2.已知,则复数z的虚部为.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.6.已知角A是△ABC的内角,则“”是“的条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于.8.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是.11.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于.12.当实数x ,y 满足x 2+y 2=1时,|x +2y +a |+|3﹣x ﹣2y |的取值与x ,y 均无关,则实数a 的取范围是 .二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m ,n 表示二条直线,则下列命题中错误的是( )A .若m ∥α,m 、n 不平行,则n 与α不平行B .若m ∥α,m 、n 不垂直,则n 与α不垂直C .若m ⊥α,m 、n 不平行,则n 与α不垂直D .若m ⊥α,m 、n 不垂直,则n 与α不平行14.已知函数在区间[0,a ](其中a >0)上单调递增,则实数a 的取值范围是( )A .B .C .D .15.如图,在圆C 中,点A 、B 在圆上,则的值( )A .只与圆C 的半径有关B .既与圆C 的半径有关,又与弦AB 的长度有关 C .只与弦AB 的长度有关D .是与圆C 的半径和弦AB 的长度均无关的定值16.定义f (x )={x }(其中{x }表示不小于x 的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是( ) ①f (2x )=2f (x ); ②若f (x 1)=f (x 2),则x 1﹣x 2<1;③任意x 1,x 2∈R ,f (x 1+x 2)≤f (x 1)+f (x 2);④.A .①②B .①③C .②③D .②④三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.2017年上海市虹口区高考数学一模试卷参考答案与试题解析一、填空题(1~6题每小题4分,7~12题每小题4分,本大题满分54分)1.已知集合A={1,2,4,6,8},B={x|x=2k,k∈A},则A∩B={2,4,8} .【考点】交集及其运算.【分析】先分别求出集合A和B,由此能出A∩B.【解答】解:∵集合A={1,2,4,6,8},∴B={x|x=2k,k∈A}={2,4,8,12,19},∴A∩B={2,4,8}.故答案为:{2,4,8}.2.已知,则复数z的虚部为1.【考点】复数代数形式的乘除运算.【分析】由,得,利用复数复数代数形式的乘法运算化简,求出z,则答案可求.【解答】解:由,得=2﹣2i+i﹣i2=3﹣i,则z=3+i.∴复数z的虚部为:1.故答案为:1.3.设函数f(x)=sinx﹣cosx,且f(α)=1,则sin2α=0.【考点】二倍角的正弦.【分析】由已知可得sinα﹣cosα=1,两边平方,利用二倍角的正弦函数公式,同角三角函数基本关系式即可得解.【解答】解:∵f(x)=sinx﹣cosx,且f(α)=1,∴sinα﹣cosα=1,∴两边平方,可得:sin2α+cos2α﹣2sinαcosα=1,∴1﹣sin2α=1,可得:sin2α=0.故答案为:0.4.已知二元一次方程组的增广矩阵是,则此方程组的解是.【考点】系数矩阵的逆矩阵解方程组.【分析】先利用增广矩阵,写出相应的二元一次方程组,然后再求解即得.【解答】解:由题意,方程组解之得故答案为5.数列{a n}是首项为1,公差为2的等差数列,S n是它前n项和,则=.【考点】数列的极限.【分析】求出数列的和以及通项公式,然后求解数列的极限即可.【解答】解:数列{a n}是首项为1,公差为2的等差数列,S n==n2.a n=1+(n﹣1)×2=2n﹣1,则==故答案为:;6.已知角A是△ABC的内角,则“”是“的充分不必要条件(填“充分非必要”、“必要非充分”、“充要条件”、“既非充分又非必要”之一).【考点】必要条件、充分条件与充要条件的判断.【分析】根据充分必要条件的定义以及三角函数值判断即可.【解答】解:A为△ABC的内角,则A∈(0,180°),若命题p:cosA=成立,则A=60°,sinA=;而命题q:sinA=成立,又由A∈(0,180°),则A=60°或120°;因此由p可以推得q成立,由q推不出p,可见p是q的充分不必要条件.故答案为:充分不必要.7.若双曲线x2﹣=1的一个焦点到其渐近线的距离为2,则该双曲线的焦距等于6.【考点】双曲线的简单性质.【分析】根据焦点到其渐近线的距离求出b的值即可得到结论.【解答】解:双曲线的渐近线为y=±bx,不妨设为y=﹣bx,即bx+y=0,焦点坐标为F(c,0),则焦点到其渐近线的距离d===b=2,则c====3,则双曲线的焦距等于2c=6,故答案为:68.若正项等比数列{a n}满足:a3+a5=4,则a4的最大值为2.【考点】等比数列的性质.【分析】利用数列{a n}是各项均为正数的等比数列,可得a3a5=a42,再利用基本不等式,即可求得a4的最大值.【解答】解:∵数列{a n}是各项均为正数的等比数列,∴a3a5=a42,∵等比数列{a n}各项均为正数,∴a3+a5≥2,当且仅当a3=a5=2时,取等号,∴a3=a5=2时,a4的最大值为2.故答案是:2.9.一个底面半径为2的圆柱被与其底面所成角是60°的平面所截,截面是一个椭圆,则该椭圆的焦距等于.【考点】椭圆的简单性质.【分析】利用已知条件,求出题意的长半轴,短半轴,然后求出半焦距,即可.【解答】解:因为底面半径为R的圆柱被与底面成30°的平面所截,其截口是一个椭圆,则这个椭圆的短半轴为:R,长半轴为:=8,∵a2=b2+c2,∴c==2,∴椭圆的焦距为;故答案为:4.10.设函数f(x)=,则当x≤﹣1时,则f[f(x)]表达式的展开式中含x2项的系数是60.【考点】分段函数的应用.【分析】根据分段函数的解析式先求出f[f(x)]表达式,再根据利用二项展开式的通项公式写出第r+1项,整理成最简形式,令x的指数为2求得r,再代入系数求出结果【解答】解:由函数f(x)=,当x≤﹣1时,f(x)=﹣2x﹣1,此时f(x)min=f(﹣1)=2﹣1=1,∴f[f(x)]=(﹣2x﹣1)6=(2x+1)6,=C6r2r x r,∴T r+1当r=2时,系数为C62×22=60,故答案为:6011.点M(20,40),抛物线y2=2px(p>0)的焦点为F,若对于抛物线上的任意点P,|PM|+|PF|的最小值为41,则p的值等于42或22.【考点】抛物线的简单性质.【分析】过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,当M,P,D共线时,|PM|+|PF|的距离最小,20+=41,解得:p=42,当M(20,40)位于抛物线外,由勾股定理可知:=41,p=22或58,当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,即可求得p的值.【解答】解:由抛物线的定义可知:抛物线上的点到焦点距离=到准线的距离,过P做抛物线的准线的垂线,垂足为D,则|PF|=|PD|,当M(20,40)位于抛物线内,∴|PM|+|PF|=|PM|+|PD|,当M,P,D共线时,|PM|+|PF|的距离最小,由最小值为41,即20+=41,解得:p=42,当M(20,40)位于抛物线外,当P,M,F共线时,|PM|+|PF|取最小值,即=41,解得:p=22或58,由当p=58时,y2=116x,则点M(20,40)在抛物线内,舍去,故答案为:42或22.12.当实数x,y满足x2+y2=1时,|x+2y+a|+|3﹣x﹣2y|的取值与x,y均无关,则实数a的取范围是[,+∞).【考点】圆方程的综合应用.【分析】根据实数x,y满足x2+y2=1,设x=cosθ,y=sinθ,求出x+2y的取值范围,再讨论a的取值范围,求出|x+2y+a|+|3﹣x﹣2y|的值与x,y均无关时a的取范围.【解答】解:∵实数x,y满足x2+y2=1,可设x=cosθ,y=sinθ,则x+2y=cosθ+2sinθ=sin(θ+α),其中α=arctan2;∴﹣≤x+2y≤,∴当a≥时,|x+2y+a|+|3﹣x﹣2y|=(x+2y+a)+(3﹣x﹣2y)=a+3,其值与x,y均无关;∴实数a的取范围是[,+∞).故答案为:.二、选择题(每小题5分,满分20分)13.在空间,α表示平面,m,n表示二条直线,则下列命题中错误的是()A.若m∥α,m、n不平行,则n与α不平行B.若m∥α,m、n不垂直,则n与α不垂直C.若m⊥α,m、n不平行,则n与α不垂直D.若m⊥α,m、n不垂直,则n与α不平行【考点】空间中直线与平面之间的位置关系;平面与平面之间的位置关系.【分析】对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n⊂α,即可得出结论.【解答】解:对于A,若m∥α,m、n不平行,则n与α可能平行、相交或n ⊂α,故不正确.故选A.14.已知函数在区间[0,a](其中a>0)上单调递增,则实数a的取值范围是()A.B.C.D.【考点】正弦函数的单调性.【分析】由条件利用正弦函数的单调性,可得2a+≤,求得a的范围.【解答】解:∵函数在区间[0,a](其中a>0)上单调递增,则2a+≤,求得a≤,故有0<a≤,故选:B.15.如图,在圆C中,点A、B在圆上,则的值()A.只与圆C的半径有关B.既与圆C的半径有关,又与弦AB的长度有关C.只与弦AB的长度有关D.是与圆C的半径和弦AB的长度均无关的定值【考点】平面向量数量积的运算.【分析】展开数量积,结合向量在向量方向上投影的概念可得=.则答案可求.【解答】解:如图,过圆心C作CD⊥AB,垂足为D,则=||||•cos∠CAB=.∴的值只与弦AB的长度有关.故选:C.16.定义f(x)={x}(其中{x}表示不小于x的最小整数)为“取上整函数”,例如{2.1}=3,{4}=4.以下关于“取上整函数”性质的描述,正确的是()①f(2x)=2f(x);②若f(x1)=f(x2),则x1﹣x2<1;③任意x1,x2∈R,f(x1+x2)≤f(x1)+f(x2);④.A.①②B.①③C.②③D.②④【考点】函数与方程的综合运用.【分析】充分理解“取上整函数”的定义.如果选项不满足题意,只需要举例说明即可【解答】解:对于①,当x=1.4时,f(2x)=f(2.8)=3.2,f(1.4)=4.所以f (2x)≠2f(x);①错.对于②,若f(x1)=f(x2).当x1为整数时,f(x1)=x1,此时x2>x1﹣1,即x1﹣x2<1.当x1不是整数时,f(x1)=[x1]+1.[x1]表示不大于x1的最大整数.x2表示比x1的整数部分大1的整数或者是和x1保持相同整数的数,此时﹣x1﹣x2<1.故②正确.对于③,当x1,x2∈Z,f(x1+x2)=f(x1)+f(x2),当x1,x2∉Z,f(x1+x2)<f(x1)+f(x2),故正确;对于④,举例f(1.2)+f(1.2+0.5)=4≠f(2.4)=3.故④错误.故选:C.三、解答题(本大题满分76分)17.在正三棱锥P﹣ABC中,已知底面等边三角形的边长为6,侧棱长为4.(1)求证:PA⊥BC;(2)求此三棱锥的全面积和体积.【考点】棱柱、棱锥、棱台的体积;棱柱、棱锥、棱台的侧面积和表面积;直线与平面垂直的性质.【分析】(1)取BC的中点M,连AM、BM.由△ABC是等边三角形,可得AM ⊥BC.再由PB=PC,得PM⊥BC.利用线面垂直的判定可得BC⊥平面PAM,进一步得到PA⊥BC;(2)记O是等边三角形的中心,则PO⊥平面ABC.由已知求出高,可求三棱锥的体积.求出各面的面积可得三棱锥的全面积.【解答】(1)证明:取BC的中点M,连AM、BM.∵△ABC是等边三角形,∴AM⊥BC.又∵PB=PC,∴PM⊥BC.∵AM∩PM=M,∴BC⊥平面PAM,则PA⊥BC;(2)解:记O是等边三角形的中心,则PO⊥平面ABC.∵△ABC是边长为6的等边三角形,∴.∴,,∵,∴;.18.如图,我海监船在D岛海域例行维权巡航,某时刻航行至A处,此时测得其北偏东30°方向与它相距20海里的B处有一外国船只,且D岛位于海监船正东18海里处.(1)求此时该外国船只与D岛的距离;(2)观测中发现,此外国船只正以每小时4海里的速度沿正南方航行.为了将该船拦截在离D岛12海里的E处(E在B的正南方向),不让其进入D岛12海里内的海域,试确定海监船的航向,并求其速度的最小值(角度精确到0.1°,速度精确到0.1海里/小时).【考点】直线与圆的位置关系.【分析】(1)依题意,在△ABD中,∠DAB=60°,由余弦定理求得DB;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,求解直角三角形可得HE、AE的值,进一步得到sin∠EAH,则∠EAH可求,求出外国船只到达E处的时间t,由求得速度的最小值.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.可得A,D,B的坐标,设经过t小时外国船到达点,结合ED=12,得,列等式求得t,则,,再由求得速度的最小值.【解答】解:(1)依题意,在△ABD中,∠DAB=60°,由余弦定理得DB2=AD2+AB2﹣2AD•AB•cos60°=182+202﹣2×18×15×cos60°=364,∴,即此时该外国船只与D岛的距离为海里;(2)法一、过点B作BH⊥AD于点H,在Rt△ABH中,AH=10,∴HD=AD﹣AH=8,以D为圆心,12为半径的圆交BH于点E,连结AE、DE,在Rt△DEH中,HE=,∴,又AE=,∴sin∠EAH=,则≈41.81°.外国船只到达点E的时间(小时).∴海监船的速度(海里/小时).又90°﹣41.81°=48.2°,故海监船的航向为北偏东48.2°,速度的最小值为6.4海里/小时.法二、建立以点A为坐标原点,AD为x轴,过点A往正北作垂直的y轴.则A(0,0),D(18,0),,设经过t小时外国船到达点,又ED=12,得,此时(小时).则,,∴监测船的航向东偏北41.81°.∴海监船的速度(海里/小时).19.已知二次函数f(x)=ax2﹣4x+c的值域为[0,+∞).(1)判断此函数的奇偶性,并说明理由;(2)判断此函数在[,+∞)的单调性,并用单调性的定义证明你的结论;(3)求出f(x)在[1,+∞)上的最小值g(a),并求g(a)的值域.【考点】二次函数的性质.【分析】(1)由二次函数f(x)=ax2﹣4x+c的值域,推出ac=4,判断f(﹣1)≠f(1),f(﹣1)≠﹣f(1),得到此函数是非奇非偶函数.(2)求出函数的单调递增区间.设x1、x2是满足的任意两个数,列出不等式,推出f(x2)>f(x1),即可判断函数是单调递增.(3)f(x)=ax2﹣4x+c,当,即0<a≤2时,当,即a>2时求出最小值即可.【解答】解:(1)由二次函数f(x)=ax2﹣4x+c的值域为[0,+∞),得a>0且,解得ac=4.…∵f(1)=a+c﹣4,f(﹣1)=a+c+4,a>0且c>0,从而f(﹣1)≠f(1),f(﹣1)≠﹣f(1),∴此函数是非奇非偶函数.…(2)函数的单调递增区间是[,+∞).设x1、x2是满足的任意两个数,从而有,∴.又a>0,∴,从而,即,从而f(x2)>f(x1),∴函数在[,+∞)上是单调递增.…(3)f(x)=ax2﹣4x+c,又a>0,,x∈[1,+∞)当,即0<a≤2时,最小值g(a)=f(x0)=0当,即a>2时,最小值综上,最小值…当0<a≤2时,最小值g(a)=0当a>2时,最小值综上y=g(a)的值域为[0,+∞)…20.椭圆C:过点M(2,0),且右焦点为F(1,0),过F 的直线l与椭圆C相交于A、B两点.设点P(4,3),记PA、PB的斜率分别为k1和k2.(1)求椭圆C的方程;(2)如果直线l的斜率等于﹣1,求出k1•k2的值;(3)探讨k1+k2是否为定值?如果是,求出该定值;如果不是,求出k1+k2的取值范围.【考点】直线与椭圆的位置关系.【分析】(1)利用已知条件求出b,即可求解椭圆方程.(2)直线l:y=﹣x+1,设AB坐标,联立利用韦达定理以及斜率公式求解即可.(3)当直线AB的斜率不存在时,不妨设A,B,求出斜率,即可;当直线AB 的斜率存在时,设其为k,求直线AB:y=k(x﹣1),联立直线与椭圆的方程组,利用韦达定理以及斜率公式化简求解即可.【解答】解:(1)∵a=2,又c=1,∴,∴椭圆方程为…(2)直线l:y=﹣x+1,设A(x1,y1)B(x2,y2),由消y得7x2﹣8x﹣8=0,有,.……(3)当直线AB的斜率不存在时,不妨设A(1,),B(1,﹣),则,,故k1+k2=2.…当直线AB的斜率存在时,设其为k,则直线AB:y=k(x﹣1),设A(x1,y1)B (x2,y2),由消y得(4k2+3)x2﹣8k2x+(4k2﹣12)=0,有,.…=…21.已知函数f(x)=2|x+2|﹣|x+1|,无穷数列{a n}的首项a1=a.(1)如果a n=f(n)(n∈N*),写出数列{a n}的通项公式;(2)如果a n=f(a n﹣1)(n∈N*且n≥2),要使得数列{a n}是等差数列,求首项a 的取值范围;(3)如果a n=f(a n﹣1)(n∈N*且n≥2),求出数列{a n}的前n项和S n.【考点】数列与函数的综合.【分析】(1)化简函数f(x)为分段函数,然后求出a n=f(n)=n+3.(2)如果{a n}是等差数列,求出公差d,首项,然后求解a的范围.(3)当a≥﹣1时,求出前n项和,当﹣2≤a≤﹣1时,当a≤﹣2时,分别求出n项和即可.【解答】解:(1)∵函数f(x)=2|x+2|﹣|x+1|=,…又n≥1且n∈N*,∴a n=f(n)=n+3.…(2)如果{a n}是等差数列,则a n﹣a n﹣1=d,a n=a n﹣1+d,由f(x)知一定有a n=a n﹣1+3,公差d=3.当a1≥﹣1时,符合题意.当﹣2≤a1≤﹣1时,a2=3a1+5,由a2﹣a1=3得3a1+5﹣a1=3,得a1=﹣1,a2=2.当a1≤﹣2时,a2=﹣a1﹣3,由a2﹣a1=3得﹣a1﹣3﹣a1=3,得a1=﹣3,此时a2=0.综上所述,可得a的取值范围是a≥﹣1或a=﹣3.…(3)当a≥﹣1时,a n=f(a n﹣1)=a n﹣1+3,∴数列{a n}是以a为首项,公差为3的等差数列,.…当﹣2≤a≤﹣1时,a2=3a1+5=3a+5≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*)…当a≤﹣2时,a2=﹣a1﹣3=﹣a﹣3≥﹣1,∴n≥3时,a n=a n﹣1+3.∴n=1时,S1=a.n≥2时,又S1=a也满足上式,∴(n∈N*).综上所述:S n=.….。
江西省赣中南五校2017届高三下第一次模拟数学理试卷(解析版)

2017年江西省赣中南五校高考数学二模试卷(理科) 、选择题:本大题共 12小题,每小题5分,共60分•在每个小题给出的四个选项中,有 且只有一项符合题目要求1.已知集合 A={x|2x 2+x - 3=0},集合 B={i|i 2 > 4}} , ?R C={4 .已知双曲线C 的中心在原点,焦点在y 轴上,若双曲线C 的一条渐近线与直线.“宀 上一 平行,则双曲线 c 的离心率为( 2^3 Vc 兀4C . ; +: ----L-. _|:L. / :'的最大值为A ,若存在实数X 1, x 2使得对任意实数X 总有f (xj w f ( X ) < f K A ----------.=•(x 2 )成立,贝U A|x 1 - x 2|的最小值为(兀D . U// BC , AD=AB ,/ BCD=45,/ BAD=90°,将△ BCD ,构成四面体 A - BCD ,则在四面体中,下列 说法正确的是( 5. A /1-X 2^ 诋[T , [1, 2] 1),则 「2 I ■ f (x ) dx 的值为( —},则 A n BU ?R C=3A . {1,- 1,豆}B . { - 2, 1, ,-1}C . {1}D . {2 , 1 , - 1, :}2.设方程2X |lnx|=1有两个不等的实根 X 1和 乂2,则( )A . X 1X 2V 0B . X 1X 2=1C . X 1X 2> 1D . 0 v X 1X 2V 1 3.已知点P 的坐标(x ,k+y<4y )满足二 r I Qi .. 2 2 ,过点P 的直线I 与圆c : x 2+y 2=16相交于A ,B 两点,则|AB|的最小值为(A . 5B .匚 c . D .:一.+3 +37.如图所示,在四边形 ABCD 中,ADABD 沿BD 折起,使得平面 ABD 丄平面6.已知.'.■: 1: ;。
四川省泸州市2016-2017学年高三数学一诊试卷(文科)Word版含解析

四川省泸州市2016-2017学年高三一诊试卷(文科数学)一、选择题(每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|x2﹣x≤0},B={0,1,2},则A∩B=()A.∅B.{0} C.{0,1} D.{0,1,2}2.复数z=(i是虚数单位),则|z|=()A.1 B.C.D.23.函数f(x)=sin(x+)图象的一条对称轴方程为()A.x=﹣B.x=C.x=D.x=π4.某程序框图如图所示,若运行该程序后输出S=()A.B.C.D.5.某校高三年级共1500人,在某次数学测验后分析学生试卷情况,需从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,则该次测验中90分以下的人数是()A.600 B.450 C.300 D.1506.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是()A.108 B.72 C.36 D.97.,为单位向量,且|+2|=,则向量,夹角为()A.30° B.45° C.60° D.90°8.实数x、y满足,这Z=3x+4y,则Z的取值范围是()A .[1,25]B .[4,25]C .[1,4]D .[5,24]9.下列命题正确的是( )A .“b 2=ac”是“a,b ,c 成等比数列”的充要条件B .“∀x ∈R ,x 2>0”的否定是“∃x 0∈R ,x 02>0”C .“若a=﹣4,则函数f (x )=ax 2+4x ﹣1只有唯一一个零点”的逆命题为真命题D .“函数f (x )=lnx 2与函数g (x )=的图象相同”10.已知关于x 的方程x 2+(1+a )x+1+a+b=0(a ,b ∈R )的两根分别为x 1、x 2,且0<x 1<1<x 2,则的取值范围是( )A .B .C .D .二、填空题(共5小题,每小题5分,共25分)11.计算2lg2+lg25+()0=______.12.设a 、b 为实数,且a+b=1,则2a +2b 的最小值为______.13.在棱长为2的正方体A 1B 1C 1D 1﹣ABCD 中,则点B 到平面A 1B 1CD 的距离是______.14.设向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,则cos2x=______.15.设数列{a n },{b n },{a n +b n }都是等比数列,且满足a 1=b 1=1,a 2=2,则数列{a n +b n }的前n 项和S n =______.三、解答题(共6个小题,共75分)16.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间(1)求上表中m 、n 的值;(2)求该校学生上课时间使用手机的概率.17.在三棱柱ABC ﹣A 1B 1C 1中,面BB 1C 1C 是边长为2的正方形,点A 1在平面BB 1C 1C 上的射影H 是BC 1的中点,且A 1H=,G 是CC 1的中点.(1)求证:BB 1⊥A 1G ;(2)求C 到平面A 1B 1C 1的距离.18.函数f (x )=x 3+ax 2+bx+c (a ,b ,c ∈R )的导函数的图象如图所示:(1)求a ,b 的值并写出f (x )的单调区间;(2)函数y=f (x )有三个零点,求c 的取值范围.19.在数列{a n }中,满足点P (a n ,a n+1)是函数f (x )=3x 图象上的点,且a 1=3.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和S n .20.设函数f (x )=x 2+alnx+1(x >0).(1)若f (3)=5,求f ()的值;(2)若x >0时,f (x )≥1成立,求a 的取值范围.21.如图,有一段长为18米的屏风ABCD (其中AB=BC=CD=6米),靠墙l 围成一个四边形,设∠DAB=α.(1)当α=60°,且BC ⊥CD 时,求AD 的长;(2)当BC ∥l ,且AD >BC 时,求所围成的等腰梯形ABCD 面积的最大值.四川省泸州市2016-2017学年高三一诊试卷(文科数学)参考答案与试题解析一、选择题(每小题5分,共50分.每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合A={x|x 2﹣x ≤0},B={0,1,2},则A∩B=( )A .∅B .{0}C .{0,1}D .{0,1,2}【考点】交集及其运算.【分析】先化简集合A ,再求A∩B.【解答】解:集合A={x|x 2﹣x ≤0}={x|x (x ﹣1)≤0}={x|0≤x ≤1}=[0,1]B={0,1,2},∴A∩B={0,1}.故选:C .2.复数z=(i 是虚数单位),则|z|=( )A .1B .C .D .2【考点】复数求模.【分析】分别求出分子、分母的模,即可得出结论.【解答】解:∵复数z=,∴|z|=||==, 故选:B .3.函数f (x )=sin (x+)图象的一条对称轴方程为( )A .x=﹣B .x=C .x=D .x=π 【考点】正弦函数的对称性.【分析】由条件利用余弦函数的图象的对称性,求得f (x )的图象的一条对称轴方程.【解答】解:对于函数f (x )=sin (x+),令x+=k π+,求得 x=k π+,k ∈Z ,可得它的图象的一条对称轴为 x=, 故选:B .4.某程序框图如图所示,若运行该程序后输出S=( )A.B.C.D.【考点】循环结构.【分析】模拟执行程序框图,依次写出每次循环得到的S,n的值,当n>5时退出循环,输出S的值.【解答】解:模拟执行程序框图,可得S=1,n=1不满足条件n>5,S=1+,n=2不满足条件n>5,S=1++,n=3不满足条件n>5,S=1+++,n=4不满足条件n>5,S=1++++,n=5不满足条件n>5,S=1+++++,n=6满足条件n>5,退出循环,输出S的值.由于S=1+++++=.故选:D.5.某校高三年级共1500人,在某次数学测验后分析学生试卷情况,需从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,则该次测验中90分以下的人数是()A.600 B.450 C.300 D.150【考点】分层抽样方法.【分析】根据从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,即可得出结论.【解答】解:∵从中抽取一个容量为500的样本,按分层抽样,120分以上抽取100人,90~120分抽取250人,∴该次测验中90分以下抽取的人数是500﹣100﹣250=150.∴该次测验中90分以下的人数是150.即抽样比k=,则该次测验中90分以下的人数是1500×=450.故选:B.6.若某四面体的三视图是全等的等腰直角三角形,且其直角边的长为6,则该四面体的体积是()A.108 B.72 C.36 D.9【考点】棱柱、棱锥、棱台的体积.【分析】四面体为边长为6的正方体沿着共点三面的对角线截出的三棱锥.【解答】解:四面体的底面为直角边为6的等腰直角三角形,高为6.∴四面体的体积V==36.故选C.7.,为单位向量,且|+2|=,则向量,夹角为()A.30° B.45° C.60° D.90°【考点】数量积表示两个向量的夹角.【分析】对|+2|=两边平方,计算出数量积,代入夹角公式计算.【解答】解:∵|+2|=,∴(+2)2=7,即+4+4=7,∵==1,∴=,∴cos<>==,∴向量,夹角为60°.故选:C.8.实数x、y满足,这Z=3x+4y,则Z的取值范围是()A.[1,25] B.[4,25] C.[1,4] D.[5,24]【考点】简单线性规划.【分析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【解答】解:由约束条件作出可行域如图,联立,解得A(3,﹣2),联立,解得B(3,4),化目标函数Z=3x+4y为y=.由图可知,当直线y=过A时,直线在y轴上的截距最小,Z有最小值为1;当直线y=过B时,直线在y轴上的截距最大,Z有最小值为25.故选:A.9.下列命题正确的是()A.“b2=ac”是“a,b,c成等比数列”的充要条件B.“∀x∈R,x2>0”的否定是“∃x0∈R,x2>0”C.“若a=﹣4,则函数f(x)=ax2+4x﹣1只有唯一一个零点”的逆命题为真命题D.“函数f(x)=lnx2与函数g(x)=的图象相同”【考点】命题的真假判断与应用.【分析】举例说明A错误;直接写出全称命题的否定判断B;举例说明C错误;写出分段函数说明D正确.【解答】解:A错误,如a=0,b=0,c=1满足b2=ac,但a,b,c不成等比数列;B错误,“∀x∈R,x2>0”的否定是“∃x0∈R,x2≤0”C错误,“若a=﹣4,则函数f(x)=ax2+4x﹣1只有唯一一个零点”的逆命题是:“若函数f(x)=ax2+4x ﹣1只有唯一一个零点,则a=﹣4”,为假命题,比如a=0,f(x)=0的根是;D 正确,函数f (x )=lnx 2是分段函数,分x >0和x <0分段可得函数g (x )=.故选:D .10.已知关于x 的方程x 2+(1+a )x+1+a+b=0(a ,b ∈R )的两根分别为x 1、x 2,且0<x 1<1<x 2,则的取值范围是( )A .B .C .D .【考点】简单线性规划的应用.【分析】由方程x 2+(1+a )x+1+a+b=0的两根满足0<x 1<1<x 2,结合对应二次函数性质得到,然后在平面直角坐标系中,做出满足条件的可行域,分析的几何意义,然后数形结合即可得到结论.【解答】解:由程x 2+(1+a )x+1+a+b=0的二次项系数为1>0故函数f (x )=x 2+(1+a )x+1+a+b 图象开口方向朝上又∵方程x 2+(1+a )x+1+a+b=0的两根满足0<x 1<1<x 2则即即其对应的平面区域如下图阴影示:∵=表示阴影区域上一点与原点边线的斜率由图可知∈故答案:二、填空题(共5小题,每小题5分,共25分)11.计算2lg2+lg25+()0= 3 .【考点】对数的运算性质.【分析】直接利用对数运算法则以及有理指数幂的运算法则化简求解即可.【解答】解:2lg2+lg25+()0=lg4+lg25+1=lg100+1=2+1=3.故答案为:3.12.设a 、b 为实数,且a+b=1,则2a +2b 的最小值为 2 .【考点】基本不等式.【分析】因为2a 与2b 均大于0,所以直接运用基本不等式求最小值.【解答】解:∵a+b=1,∴,当且仅当2a =2b ,即时“=”成立.所以2a +2b 的最小值为.故答案为.13.在棱长为2的正方体A 1B 1C 1D 1﹣ABCD 中,则点B 到平面A 1B 1CD 的距离是 .【考点】棱柱的结构特征.【分析】以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,利用向量法能求出点B 到平面A 1B 1CD 的距离.【解答】解:以D 为原点,DA 为x 轴,DC 为y 轴,DD 1为z 轴,建立空间直角坐标系,则B (2,2,0),D (0,0,0),A 1(2,0,2),C (0,2,0),=(2,2,0),=(2,0,2),=(0,2,0),设平面A 1B 1CD 的法向量=(x ,y ,z ),则,取x=1,得,∴点B 到平面A 1B 1CD 的距离是:d===.∴点B 到平面A 1B 1CD 的距离是.故答案为:.14.设向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,则cos2x= .【考点】二倍角的余弦;平面向量共线(平行)的坐标表示.【分析】由条件利用两个向量平行的条件求得sinx 的值,再利用二倍角的余弦公式求得cos2x 的值.【解答】解:∵向量=(3cosx ,1),=(5sinx+1,cosx ),且∥,∴3cos 2x ﹣5sinx ﹣1=0,即 3sin 2x+5sinx+2=0,求得sinx=﹣2(舍去),或 sinx=,则cos2x=1﹣2sin 2x=1﹣2×=,故答案为:.15.设数列{a n },{b n },{a n +b n }都是等比数列,且满足a 1=b 1=1,a 2=2,则数列{a n +b n }的前n 项和S n = 2n+1﹣2 .【考点】等比数列的性质.【分析】由题意,数列{a n +b n }的首项为2,公比为2,利用等比数列的求和公式,即可得出结论.【解答】解:由题意,数列{a n }a 1=1,a 2=2,公比为2,设数列{b n }的公比为q′,{a n +b n }的公比为q ,则2+q′=2q,4+q′2=2q 2,∴q 2﹣4q+4=0∴q=2,∴数列{a n +b n }的首项为2,公比为2,∴S n ==2n+1﹣2.故答案为:2n+1﹣2.三、解答题(共6个小题,共75分)16.信息时代,学生广泛使用手机,从某校学生中随机抽取200名,这200名学生中上课时间和不上时间(1)求上表中m 、n 的值;(2)求该校学生上课时间使用手机的概率.【考点】列举法计算基本事件数及事件发生的概率.【分析】(1)根据表格的合计数据计算,(2)求出上课时间使用手机的学生人数,除以数据总数得出频率,利用频率代替概率.【解答】解:(1)m=98﹣23﹣55=20,n=m+17=37.(2)上课时间使用手机的人数为23+55=78.∴该校学生上课时间使用手机的概率P==0.39.17.在三棱柱ABC ﹣A 1B 1C 1中,面BB 1C 1C 是边长为2的正方形,点A 1在平面BB 1C 1C 上的射影H 是BC 1的中点,且A 1H=,G 是CC 1的中点.(1)求证:BB 1⊥A 1G ;(2)求C 到平面A 1B 1C 1的距离.【考点】直线与平面垂直的性质;点、线、面间的距离计算.【分析】(1)连接GH ,由已知得A 1H ⊥平面BB 1C 1C ,可得A 1H ⊥BB 1,由中位线和条件得BB 1⊥HG ,由线面垂直的判定定理可证结论成立;(2)取B 1C 1的中点E ,连接HE 、A 1E ,由题意和线面垂直的判定定理、定义得B 1C 1⊥A 1E ,求出△A 1B 1C 1的面积,由等体积法求出C 到平面A 1B 1C 1的距离.【解答】证明:(1)如图连接GH ,∵点A 1在平面BB 1C 1C 上的射影H ,∴A 1H ⊥平面BB 1C 1C ,∵BB 1BC ⊂平面BB 1C 1C ,∴A 1H ⊥BB 1,∵H 是BC 1的中点,G 是CC 1的中点,∴HG ∥BC ,由∠B 1BC =90°知,BB 1⊥B C ,∴BB 1⊥HG∵A 1H∩HG =H ,∴BB 1⊥平面A 1HG ,∴BB 1⊥A 1G ;解:(2)取B 1C 1的中点E ,连接HE 、A 1E ,由∠BB 1C 1=90°得,HE ⊥B 1C 1,∵A 1H ⊥平面BB 1C 1C ,∴A 1H ⊥B 1C 1,∵A 1H∩HE =H ,∴B 1C 1⊥平面A 1HE ,∴B 1C 1⊥A 1E ,∵H 是BC 1的中点,E 是B 1C 1的中点,∴HE ∥BB 1,且HE=1,在△A 1HE 中,A 1E==2,∴=•B 1C 1AB•A 1EBC==2,设C 到平面A 1B 1C 1的距离为h ,由=V A 得,×A 1E ×=×h ×,则2×2=h ×2,解得h=,∴C 到平面A 1B 1C 1的距离是.18.函数f (x )=x 3+ax 2+bx+c (a ,b ,c ∈R )的导函数的图象如图所示:(1)求a ,b 的值并写出f (x )的单调区间;(2)函数y=f (x )有三个零点,求c 的取值范围.【考点】利用导数研究函数的单调性.【分析】(1)求出原函数的图象可知,f'(x )=0的两个根为﹣1,2,根据根与系数的关系即可求出a ,b 的值,并由图象得到单调区间;(2)求出函数f (x )的极大值和极小值,由函数f (x )恰有三个零点,则函数的极大值大于0,且同时满足极小值小于0,联立可求c 的取值范围.【解答】解:(1)∵f (x )=x 3+ax 2+bx+c ,∴f′(x )=x 2+2ax+b ,∵f′(x )=0的两个根为﹣1,2,∴,解得a=﹣,b=﹣2,由导函数的图象可知,当﹣1<x <2时,f′(x )<0,函数单调递减,当x <﹣1或x >2时,f′(x )>0,函数单调递增,故函数f (x )在(﹣∞,﹣1)和(2,+∞)上单调递增,在(﹣1,2)上单调递减.(2)由(1)得f (x )=x 3﹣x 2﹣2x+c ,函数f (x )在(﹣∞,﹣1),(2,+∞)上是增函数,在(﹣1,2)上是减函数,∴函数f (x )的极大值为f (﹣1)=+c ,极小值为f (2)=c ﹣.而函数f (x )恰有三个零点,故必有,解得:﹣<c <.∴使函数f (x )恰有三个零点的实数c 的取值范围是(﹣,)19.在数列{a n }中,满足点P (a n ,a n+1)是函数f (x )=3x 图象上的点,且a 1=3.(1)求{a n }的通项公式;(2)若b n =na n ,求数列{b n }的前n 项和S n .【考点】数列的求和;数列递推式.【分析】(1)通过将点P (a n ,a n+1)代入函数方程f (x )=3x 化简可知a n+1=3a n ,进而可知数列{a n }是首项为3、公比为3的等比数列,进而计算可得结论;(2)通过(1)可知b n =n3n ,进而利用错位相减法计算即得结论.【解答】解:(1)∵点P (a n ,a n+1)是函数f (x )=3x 图象上的点,∴a n+1=3a n ,又∵a 1=3,∴数列{a n }是首项为3、公比为3的等比数列,∴其通项公式a n =3n ;(2)由(1)可知b n =na n =n3n ,∴S n =1×3+2×32+…+n3n ,3S n =1×32+2×33+…+(n ﹣1)3n +n ×3n+1,错位相减得:﹣2S n =3+32+…+3n ﹣n ×3n+1=3×﹣n ×3n+1=×3n+1﹣,∴S n =×3n+1+.20.设函数f (x )=x 2+alnx+1(x >0).(1)若f (3)=5,求f ()的值;(2)若x >0时,f (x )≥1成立,求a 的取值范围.【考点】函数的值;函数恒成立问题.【分析】(1)由f (3)=5得出aln3=﹣5,再求出f ()的值.(2)alnx≥﹣x2.然后讨论lnx的符号分离参数,转化为求﹣得最大值或最小值问题.【解答】解:(1)∵f(3)=10+aln3=5,∴aln3=﹣5.∴f()=+aln=﹣aln3==.(2)∵x2+alnx+1≥1,∴alnx≥﹣x2.①若lnx=0,即x=1时,显然上式恒成立.②若lnx>0,即x>1时,a≥﹣.令g(x)=﹣.则g′(x)=,∴当1<x时,g′(x)>0,当x时,g′(x)<0,∴当x=时,g(x)取得最大值g()=﹣2e.∴a≥﹣2e.③若lnx<0,即0<x<1时,a≤﹣,由②讨论可知g(x)在(0,1)上是增函数,且g(x)>0,∴a≤0.综上,a的取值范围是[﹣2e,0].21.如图,有一段长为18米的屏风ABCD(其中AB=BC=CD=6米),靠墙l围成一个四边形,设∠DAB=α.(1)当α=60°,且BC⊥CD时,求AD的长;(2)当BC∥l,且AD>BC时,求所围成的等腰梯形ABCD面积的最大值.【考点】基本不等式在最值问题中的应用.【分析】(1)连接BD,作BO⊥AD,垂足为O,利用三角函数,结合勾股定理,求AD的长;(2)由题意,梯形的高为6sinα,AD=6+12cosα,所围成的等腰梯形ABCD面积S==36sinα(1+cosα),利用导数确定单调性,即可求出所围成的等腰梯形ABCD 面积的最大值.【解答】解:(1)连接BD,作BO⊥AD,垂足为O,则AO=3,BO=3,BD=6,∴OD==3,∴AD=AO+OD=3+3;(2)由题意,梯形的高为6sinα,AD=6+12cosα,∴所围成的等腰梯形ABCD面积S==36sinα(1+cosα),S′=36(2cosα﹣1)(cosα+1),∴0<α<,S′>0,,<α<π,S′<0,∴α=,S取得最大值27.。
2017年高三数学(理)最新模拟调研试题精选分项汇编 专题06 数列(第01期) 含解析

一.基础题组1。
【湖南省长沙市长郡中学2017届高三摸底考试数学(理)试题】已知等差数列{}na 的前n 项和nS 满足350,5SS ==,数列21211{}n n a a -+的前2016项的和为 。
【答案】20164031-考点:等差数列的通项公式,裂项相消法求和.2. 【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】已知等比数列{}na 中,262,8a a ==,则345a a a =( )A .64±B .64C .32D .16 【答案】B 【解析】试题分析:由等比数列的性质可知226416a a a ⋅==,而246,,a a a 同号,故44a =,所以3345464a a a a ==. 考点:等比数列的性质.3。
【江西省新余市第一中学2017届高三上学期调研考试(一)(开学考试)】 数列{}na 满足()121112n n an N a a *+=+=∈,记212n n n b a =,则数列{}nb 的前n 项和nS = .【答案】2332nn +-【解析】 试题分析:11n a +=得221112n n a a +-=,且2111a =,所以数列21n a ⎧⎫⎨⎬⎩⎭构成以1为首项,2为公差的等差数列,所以211(1)221nn n a =+-⨯=-,从而得到2121n a n =-,则212nnn b-=, 所以21321222nn n S-=+++,231113232122222nn n n n S +--=++++, 两式相减,得2111111121222222n n n n S -+-=++++-1111121323122222n n n n n -++-+=+--=- 所以2332nnn S+=-. 考点:错位相减法求和.【名师点睛】利用错位相减法求数列的前n 项和时,应注意两边乘公比后,对应项的幂指数会发生变化,为避免出错,应将相同幂指数的项对齐,这样有一个式子前面空出一项,另外一个式子后面就会多了一项,两式相减,除第一项和最后一项外,剩下的1n -项是一个等比数列.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
05510'='⨯)
1、若复数112
m i z i -=
+-是纯虚数,则实数等于 ( ) A. 1 B. C.12 D.1
2
-
2、“101a b ><<且
”是“0log <b a ”的
( )
A .充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3、已知6||=a ,3||=b ,12-=⋅,则向量在向量方向上的投影是 ( ) A . B .4 C . D .2
4、为得到函数πcos 23y x ⎛
⎫
=+ ⎪⎝
⎭
的图像,只需将函数sin 2y x =的图像 ( ) A .向右平移
5π12个长度单位 B .向左平移5π12个长度单位
C .向右平移5π6个长度单位
D .向左平移5π
6
个长度单位
5、形如45123这样的数称为“波浪数”,即十位数字,千位数字均比与它们各自相邻的数字
大,则由1,2,3,4,5可构成数字不重复的五位“波浪数”个数为 ( )
A .20
B .18
C .16
D .11
6、从A B A C ⋂=⋂能够推出 ( ) A .B C = B .A B A C ⋃=⋃
C .U U A C B A C C ⋃=⋃
D .()()U U C A B C A C ⋃=⋃
7、设,,a b c 分别是ABC ∆的三个内角,,A B C 所对的边,则()2
a b b c =+是2A B =的( )
A .充要条件
B .必要而不充分条件
C .充分而不必要条件
D .既不充分又不必要条件
8、已知函数()()sin (0,0)f x A x A ωϕω=+>>的图象与直线()0y b b A =<<的三个相邻交点的横坐标分别是2,4,8,则()f x 的单调递增区间是 ( ) (A )[6,63],k k k Z ππ+∈(B )[63,6],k k k Z -∈(C )[6,63],k k k Z +∈ (D )无法确定
9
、已知函数31
()ln(1
x x
e f x x e +=+++,若()f x 在区间[](),0k k k ->上的最大值、最小值分别为,M m ,则M m +的值为 ( ) (A )2(B )4(C )6(D )与有关的值
10、设)0(25)(,1
2)(2
>-+=+=
a a ax x g x x x f ,若对于任意]1,0[1∈x ,总存在]1,0[0∈x ,使得)()(10x f x g =成立,则的取值范围是 ( )
A .]4,2
5[
B .[)+∞,4
C .⎥⎦
⎤ ⎝
⎛2
5,0
D .⎪⎭
⎫⎢⎣⎡+∞,25
二、填空题(8247'='⨯)
11、已知()tan cos()f x x x m =++为奇函数,且满足不等式2
3100m m --<,则的值为____________ 。
12、已知θθ2cos 32sin 1-=+,且)2
,
0(π
θ∈,则=θtan .
13、等比数列{}的前n 项和为, 已知对任意的n N +
∈ ,点(,)n n S ,均在函数3x
y r =+的图像上,则实数=.
14、在边长为1的正三角形ABC 中,设2,3BC BD CA CE ==,则________AD BE ⋅=。
15、如果实数,x y 满足条件10
1010
x y y x y -+≥⎧⎪
+≥⎨⎪++≤⎩
,则3251x y x +--的取值范围是
16、已知等差数列{}n a ,若24236132135,n n a a a a a a a a a a -+++=+++=,
且 2100n
S =,则公差=___。
17、
在多项式6
10(1)x 的展开式中,其常数项为__________。
三.解答题:(本大题共6小题,共72分)
18、已知函数()sin cos ,'()f x x x f x =+是()f x 的导函数. (I )求函数2
()()'()()F x f x f x f x =+的最大值和最小正周期;。