高三数学练习册拓展2答案.doc
2021年高三强化训练(二)文科数学试题 含答案

2021年高三强化训练(二)文科数学试题 含答案一.选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个是符合题目要求的. 1.已知集合,,则 ( )A .(1,4)B .(2,4)C .(1,2)D . 2.已知,若复数为纯虚数,则( )A .B .C .D . 5 3. 等差数列的前n 项和为,若,则的值是 ( )A .130B .260C .20D .1504.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据,根据下表提供的数据,求出关于的线性回归程为,则下列结论A .线性回归直线一定过点B .产品的生产能耗与产量呈正相关C .的取值是D .产品每多生产1吨,则相应的生产能耗约增加吨 5. 若抛物线(其中角为的一个内角)的准线过点,则的值为 ( ) A . B . C . D .6.已知函数,若是周期为的偶函数,则的一个可能值( )A .B .C .D . 7.已知数列中,,若利用右面程序框图计算该数列的第xx 判断框内的条件是( ) A . B . C . D . 8. 已知P 是所在平面内一点且,现将一粒黄豆随机撒在内,落在内的概率是 ( )A . B . C . D .9. 某几何体的三视图如图所示,则其表面积为 ( )A . B. C. D.10.双曲线的左右焦点分别是,过作倾斜角为的直线交双曲线右支于M 点,若垂直于轴,则双曲线的离心率为( )A .B .C .D . 11.如图,正方体ABCD-A 1B 1C 1D 1棱长为1, 点M 在棱AB 上,且AM ,点P 是平面ABCD 上的动点,且动点P 到直线A 1D 1的距离C C 1与点P到点M的距离的平方差为1,则动点P的轨迹是()A.圆B.抛物线C.双曲线D.椭圆12. 若关于的方程在内有两个不同的实数解,则实数的取值范围为()A. 或B.C.D.或第Ⅱ卷(非选择题共90分)二、填空题:本大题共4小题,每小题5分,共20分.将答案填在机读卡上相应的位置13.如果圆上总存在两个点到原点的距离为,则实数a的取值范围是_______________;14.已知点的坐标满足,,点O为坐标原点,则的最大值为.15.四棱锥的底面是边长为6的正方形,若,则三棱锥的体积的最大值是___________;16. 已知集合,若对于任意,存在,使得成立,则称集合M是“垂直对点集”.给出下列四个集合:①;②;③;④.其中是“垂直对点集”的序号是.三、解答题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程.17.(本小题满分12分)已知数列的前项和为,,.(1)求证:数列为等比数列;(2)设,且数列的前项和为,求.18.(本小题满分12分)城市公交车的数量太多容易造成资源的浪费,太少难以满足乘客需求,为此,唐山市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,若右表所示(单位:)(1)估计这60名乘客中候车时间小于10分钟的人数;(2)若从右表第三、四组的6人中选2人作进一步的问卷调查,求抽到的两人恰好来自同一组的概率。
人教A版高中数学必修第二册强化练习题 第八章 立体几何初步 复习提升(含答案)

人教A版高中数学必修第二册本章复习提升易混易错练易错点1 对几何体的结构分析不当致错1.(2024安徽皖中名校联盟联考)粮食是关系国计民生的重要物资.下图为储备水稻的粮仓,中间部分可近似看作圆柱,圆柱的底面直径为10 m,上、下两部分可以近似看作完全相同 D.250π t圆锥的底面直径和高均是以该截面为底面挖去一个圆柱,则剩下的几何体的表面积为5π D.5+2解决点、线、面位置关系问题时不严谨致错3.(不重合的平面α,β,则下列说法错误的是D.a∥α,a∥β,则α∥β4.(2024湖北华中师范大学第一附属中学模拟)在正方体ABCD-A1B1C1D1中,点E是线段BB1上靠近B1的三等分点,点F是线段D1C1上靠近D1的三等分点,则平面AEF截正方体ABCD-A1B1C1D1形成的截面图形为( )A.三角形B.四边形C.五边形D.六边形5.(2024四川雅安模拟)如图,在正方体ABCD-A1B1C1D1中,已知点O为底面ABCD的中心,M为棱BB1的中点,则下列结论中错误的是( )A.D1O∥平面A1BC1B.MO⊥平面A1BC1C.异面直线BC1与AC所成的角为60°D.直线OM与平面ABCD所成的角为45°易错点3 对空间角的概念理解不透彻致错6.(2024上海同济大学第二附属中学期中)如图,在四面体ABCD中,AB=CD=6,M,N分别是AC,BD的中点,若异面直线AB,CD所成角的大小为60°,则MN的长为 .7.(2022湖北十堰月考)如图,在四棱锥P-ABCD中,底面ABCD是边长为2的菱形,∠DAB=60°,∠ADP=90°,平面ADP⊥平面ABCD,点F为棱PD的中点.(1)证明:平面FAC⊥平面PBD;(2)当二面角D-FC-B的余弦值为2时,求直线PB与平面ABCD所成的角.4易错点4 对展开、折叠问题认识不清致错8.(多选题)(2024云南昆明模拟)在△ABC中,∠ACB=π,AC=BC=22,D是AB的中点.将2△ACD沿着CD翻折,得到三棱锥A'-BCD,则( )A.CD⊥A'BB.当A'D⊥BD时,三棱锥A'-BCD的体积为4C.D.1中思想方法练一、分类讨论思想在立体几何中的应用1.(多选题)(2024安徽安庆第二中学期中)已知圆柱的侧面展开图是长为6 cm,宽为4 cm的矩形,则这个圆柱的体积可能是( )cm3 B.24π cm3 A.24πC.36cm3 D.36π cm3π2.(2024湖南九校联盟联考)有两个如图所示的直三棱柱,高为2(a>0),底面三角形的三边长a分别为3a,4a,5a,用它们拼成一个三棱柱或四棱柱,在所有可能的情形中,表面积最小的是一个四棱柱,则a的取值范围是 .二、转化与化归思想在立体几何中的应用3.(2024辽宁沈阳期末)如图,已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是棱AA1,A1D1的中点,点P为底面四边形ABCD内(包括边界)一动点,若直线D1P与平面BEF 无公共点,则点P在四边形ABCD内运动所形成轨迹的长度为 .4.如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面AD=2,CD=3.ABCD,Q为AD的中点,M是棱PC的中点,PA=PD=4,BC=12(1)证明:平面BQM⊥平面PAD;(2)求四面体P-BQM的体积.为2由7.的棱长为2,E,F分别是棱(2)当三棱锥B1-BEF的体积最大时,求二面角B1-EF-B的正切值;(3)求异面直线A1E与B1F所成角的取值范围.答案与分层梯度式解析本章复习提升易混易错练1.A 2.B 3.ABD 4.C 5.D 8.ACD1.A 设圆锥的高为h m,则6h=12,解得h=2,所以圆柱的体积V 1×4h=200π(m 3),两个圆锥的体积之和V 2=2×13π××h=100π3(m 3),所以该粮仓最多可装水稻0.75V=34×700π3=175π(t).故选A.2.B 由题意知,剩下的几何体是一个圆锥挖去一个圆柱后的几何体.设圆柱的底面半径为r,高为h,则r=12×1=12,h=12×2=1,所以圆柱的侧面积为2π×12×1=π,因为圆锥的母线长为22+12=5,所以圆锥的侧面积为π×1×5=5π,又圆锥的底面积为π×12=π,所以剩下的几何体的表面积为π+5π+π=(2+5)π.故选B.易错警示 求组合体的表面积、体积时,要正确分析几何体的结构特征,若是拼接而成的,则要注意衔接部分的处理;若是挖去一个几何体,则要注意中空部分的处理.3.ABD 如图1,AB ∥平面A 1B 1C 1D 1,BB 1⊥平面ABCD,AB ⊥BB 1,平面ABCD ∥平面A 1B 1C 1D 1,故A 中说法错误;A 1B 1⊥BC,A 1B 1⊂平面A 1B 1C 1D 1,BC ⊂平面ABCD,但平面ABCD ∥平面A 1B 1C 1D 1,故B 中说法错误;A 1B 1∥平面ABCD,A 1B 1∥平面DCC 1D 1,但是平面ABCD∩平面DCC 1D 1=CD,故D 中说法错误;对于C,如图2,设α∩γ=c,β∩γ=b,因为b∥α,所以根据线面平行的性质定理可得b∥c,因为c⊂α,c⊄β,所以c∥β,由a,b异面可得a,c必相交,又a⊂α,c⊂α,a∥β,c∥β,所以α∥β,故C中说法正确.故选ABD.易错警示 判断空间位置关系的基本思路有两个:一是逐个寻找反例作出否定的判断或逐个进行逻辑证明作出肯定的判断;二是结合长方体(正方体)模型或实际空间位置(如课桌、不能只通过直观感知进行构造另一方面要熟练应用点、线、面位置关系的相关定理严谨判断E,连接BD,易知O∴D1O∥平面A1BC1,故A中结论正确;对于B,连接B1D,B1C,∵O为BD的中点,M为BB1的中点,∴MO∥B1D,∵CD⊥平面B1C1CB,C1B⊂平面B1C1CB,∴C1B⊥CD,又B1C⊥C1B,CD∩B1C=C易错点,B1C,CD⊂平面CDB1,∴BC1⊥平面CDB1,又∵DB1⊂平面CDB1,∴DB1⊥BC1,同理可得DB 1⊥BA 1,又∵C 1B∩BA 1=B,C 1B,BA 1⊂平面A 1BC 1,∴B 1D ⊥平面A 1BC 1,∴MO ⊥平面A 1BC 1,B 中结论正确;对于C,∵AC ∥A 1C 1,∴∠A 1C 1B(或其补角)为异面直线BC 1与AC 所成的角,易知△A 1C 1B 为等边三角形,∴∠A 1C 1B=60°,故C 中结论正确;对于D,∵MB ⊥平面ABCD,∴∠MOB 为直线OM 与平面ABCD 所成的角,易知MB=12AB,OB=22AB,∴tan ∠MOB=MB OB =22,故∠MOB 不等于45°,故D 中结论错误.故选D.易错警示 在证明线面平行时要注意判定定理中是平面外一条直线与平面内一条直线平行,在证明线面垂直时要注意判定定理中是一条直线与一个平面内的两条相交直线都垂直,尤其是“相交”这一条件不可缺少.解这类问题时要注意推理严谨,使用定理时保证条件的完整性,书写规范等.6.答案 3或33解析 取AD 的中点E,连接NE,ME,如图所示,因为M,N,E 分别是AC,BD,AD 的中点,所以ME ∥CD,NE ∥AB,且ME=12CD=3,NE=12AB=3,所以∠MEN 为直线AB,CD 所成的角或其补角,又异面直线AB,CD 所成角的大小为60°,当∠MEN=60°时,△MEN 为等边三角形,所以MN=3;当∠MEN=120°时,在△MEN 中,由余弦定理可得MN 2=ME 2+NE 2-2×ME×NEcos 120°=32+32+2×3×3×12=27,所以MN=33.综上所述,MN=3或MN=33.易错分析 通过立体图形无法直接判断∠MEN 是锐角还是钝角,则∠MEN 可能是异面直线AB,CD 所成的角,也可能是其补角,在求异面直线所成的角时要注意这点.7.解析 (1)证明:因为∠ADP=90°,所以PD ⊥AD,又平面ADP ⊥平面ABCD,PD ⊂平面ADP,平面ADP∩平面ABCD=AD,所以PD ⊥平面ABCD,ABCD,所以PD ⊥BH,CF ⊥BG,故∠BGH 就是二面角则cos ∠BGH=24,所以tan ∠BGH=7,易得BH=3,所以GH=217.因为sin ∠GCH=GH HC =FD FC ,所以2171=a 2所以a=23,所以tan ∠PBD=PD BD =232=3,所以∠PBD=60°,即直线PB 与平面ABCD 所成的角为60°.易错警示 对于异面直线所成的角、线面角、二面角问题,一定要紧扣概念,注意角的范围,异面直线所成角的范围为0,直线与平面所成角的范围为0,二面角的范围为[0,π].此外,用平移法构造出来的角有可能是异面直线所成的角,也有可能是其补角,要注意分类讨论.8.ACD 对于A,由题意得CD ⊥AB,且AB=4,CD=AD=BD=12AB=2,则在三棱锥A'-BCD 中,CD ⊥A'D,CD ⊥BD 易错点,又因为A'D∩BD=D,A'D,BD ⊂平面A'BD,所以CD ⊥平面A'BD,又A'B ⊂平面A'BD,所以CD ⊥A'B,故A 正确;对于B,当A'D ⊥BD 时,因为A'D=BD=2易错点,所以S △A'BD =12×A'D×BD=12×2×2=2,故V A'-BCD =V C-A'BD =13S △A'BD ·CD=13×2×2=43,故B 错误;对于C,因为CD ⊥A'D,CD ⊥BD,所以∠A'DB 即为二面角A'-CD-B 的平面角,当A'B=23时,在△A'DB 中,由余弦定理的推论得cos ∠A'DB=A 'D 2+B D 2-A'B22×A 'D ×BD =4+4−122×2×2=-12,又∠A'DB ∈(0,π),所以∠A'DB=2π3,故二面角A'-CD-B 的大小为2π3,故C 正确;对于D,当∠A'DB=2π3时,A'B=A 'D 2+B D 2-2A'D·BDcos∠A 'DB =4+4+4=23,设△A'DB 的外接圆圆心为O',半径为r,则2r=A 'Bsin∠A 'DB =2332=4,解得r=2,设三棱锥A'-BCD 的外接球球心为O,连接OO',则OO'⊥平面A'BD,所以OO'∥CD,取CD 的中点E,连接OE,则OE ⊥CD,则四边形OO'DE 为矩形,故OO'=ED=12CD=1,设棱锥A'-BCD 的外接球的半径为R,连接OD,则R 2=OD 2=OO'2+O'D 2=1+4=5,解得R=5,故三棱锥A'-BCD 的外接球的表面积为4πR 2=20π,故D 正确.故选ACD.易错警示 在折叠过程中注意平面图形与空间图形中变与不变的量,在变化的量中不仅9.S△是A1B的中点,又A1所以A1C∥平面AB1置于同一平面内,如图1,B1由B1·A1C1B1C1=8×682+62=11111111·B1C1=5,则DF=CD-CF=CD-OC1=5-5=5,因此A1D=A1F2+D F2=5935.把正方形ACC1A1与△ABC置于同一平面内,如图2,显然B,A,A1共线,连接A1D,取AB的中点G,连接DG,则DG∥AC,DG=12AC=3,DG⊥AB,又A1G=AA1+AG=10,所以A1D=A1G2+D G2=102+32=109.把正方形ACC1A1与矩形BCC1B1置于同一平面内,如图3,连接A1D,AD=AC+CD=11,则A1D=A1A2+A D2=62+112=157.把矩形ABB1A1与△ABC置于同一平面内,如图4,显然C,A,A1共线,连接A1D,取AC的中点H,连接DH,则DH∥AB,DH=12AB=4,DH⊥AC,又A1H=AA1+AH=9,所以A1D=A1H2+D H2=92+42=97.把矩形ABB1A1与矩形BCC1B1置于同一平面内,如图5,连接A1D,AD=AB+BD=13,A1D= A1A2+A D2=62+132=205.因为97<109<5935<157<205,所以小虫爬行的最短距离为97.易错警示 求多面体表面上的最短距离一般是把多面体表面展开到一个平面上,利用平面上两点之间的最短距离是连接两点的线段的长度求解,但要注意多面体的展开方式可能有多种.思想方法练1.AC 圆柱的侧面展开图是长为6 cm,宽为4 cm的矩形,有两种情况:①圆柱的高为4 cm,则底面周长为6 cm,设底面半径为r1 cm,则2πr1=6,得r1=3π,此时圆柱的体积为×4=36π(cm3).②圆柱的高为6 cm,则底面周长为4 cm,设底面半径为r2 cm,则2πr2=4,得r2=2π,此时圆柱的体积为×6=24π(cm3).综上,圆柱的体积为24πcm3或36πcm3,故选AC.2.答案 0,解析 当拼成一个三棱柱时,有三种情况,如图①②③所示: 2×1×3a×4a+(3a+4a+5a)×4=12a22×2×12×3a×4a=24a2,=28,2(5a+4a)×2a =36,2(3a+4a)×2a=28,2(5a+3a)×四种情况中表面积最小是24a2+28(在四棱柱中找到表面积最小的几何问题中,注意分类讨论思想的应用,主要是对点、线、面相对位置关系,角相等或互补等进行分类讨论.3.答案 5解析 取BC的中点G,连接AG,D1G,AD1,如图所示,由E,F 分别是AA 1,A 1D 1的中点,得EF ∥AD 1,又因为EF ⊂平面BEF,AD 1⊄平面BEF,所以AD 1∥平面BEF.因为FD 1∥BG,FD 1=BG,所以四边形FBGD 1为平行四边形,所以FB ∥GD 1.又因为FB ⊂平面BEF,GD 1⊄平面BEF,所以GD 1∥平面BEF.又因为GD 1∩AD 1=D 1,GD 1,AD 1⊂平面AD 1G,所以平面AD 1G ∥平面BEF.直线D 1P 与平面BEF 没有交点,转化为寻找过直线D 1P 且与平面BEF 平行的平面AD 1G.因为点P 为底面四边形ABCD 内(包括边界)一动点,且D 1P 与平面BEF 无公共点,所以P 的轨迹为线段AG,AG=22+12=5.4.解析 (1)证明:∵AD ∥BC,BC=12AD,Q 是AD 的中点,∴DQ BC,∴四边形BCDQ 为平行四边形,∴CD ∥BQ.∵∠ADC=90°,∴∠AQB=90°,即BQ ⊥AD.∵平面PAD ⊥平面ABCD,且平面PAD∩平面ABCD=AD,BQ ⊂平面ABCD,∴BQ ⊥平面PAD.将证明面面垂直转化为证明线面垂直.又BQ ⊂平面BQM,∴平面BQM ⊥平面PAD.(2)连接CQ.由题可得V P-BQM =V C-BQM =V M-BCQ =12V P-BCQ .利用等体积法转化为易求解的几何体的体积.由(1)可知,四边形BCDQ 为矩形,∴S △BCQ =12QB·BC=3.∵PA=PD,Q 为AD 的中点,∴PQ ⊥AD.∵平面PAD ⊥平面ABCD,且平面PAD∩平面ABCD=AD,PQ ⊂平面PAD,∴PQ ⊥平面ABCD.在Rt △PDQ 中,PQ=PD 2-D Q 2=23,∴V P-BQM =12V P-BCQ =12×13×3×23=1.思想方法 转化与化归思想在证明平行和垂直时应用最为广泛,通过平行的判定定理和性质定理实现线线平行、线面平行、面面平行的相互转化;通过垂直的判定定理和性质定理实现线线垂直、线面垂直、面面垂直的相互转化.在求三棱锥的体积时,等体积法也充分体现了转化与化归思想.此外,在研究立体几何问题时,可以合理选择补形法,转化为长方体等规则几何体进行求解.5.答案 32解析 如图所示,设平面α∩平面PAB=DM,因为AP ∥平面α,AP ⊂平面PAB,所以DM ∥AP,设平面α∩平面PAC=NE,同理可得NE ∥AP,所以DM ∥NE.2−x2,即DM=NE=所以DN ∥ME,所以DN ∥平面ABC,平面ABC=BC,连接AC,交BD 于点O,连接OE,∵底面ABCD 是正方形,∴O 是AC 的中点.∵PA ∥平面EBD,PA ⊂平面PAC,平面PAC∩平面BDE=OE,∴PA ∥OE,又∵O 是AC 的中点,∴E 是PC 的中点.(2)由(1)知E 为PC 的中点,∴V E-BPD =12V C-BPD =12V P-DBC .若V E-BPD =43,则V P-DBC =83,∵PD ⊥底面ABCD,PD=λCD=2λ,S △BCD =12×2×2=2,∴V P-DBC =13S △BCD ·2λ=13×2×2λ=83,解得λ=2.利用三棱锥的体积公式构建关于λ的方程.∴存在λ=2,使三棱锥E-BPD 的体积为43.7.解析 (1)在正方体ABCD-A 1B 1C 1D 1中,BB 1⊥平面ABCD,故V B 1-BEF =13S △BEF ·BB 1=13×12(2-x)x×2=13(-x 2+2x)=-13(x-1)2+13,0<x<2,将三棱锥B 1-BEF 的体积表示成关于x 的二次函数,体现了函数思想.故当x=1时,三棱锥B 1-BEF 的体积取得最大值,为13.(2)由(1)知,当E,F 分别为AB,BC 的中点时,三棱锥B 1-BEF 的体积最大,取EF 的中点O,连接OB,OB 1,如图,则BO ⊥EF,易得B 1E=B 1F,所以B 1O ⊥EF,则∠B 1OB 是二面角B 1-EF-B 的平面角.在Rt △BEF 中,BO=12EF=22,在Rt △BB 1O 中,tan ∠B 1OB=BB1BO =22,即三棱锥B 1-BEF 的体积最大时,二面角B 1-EF-B 的正切值为22.(3)在AD 上取点H,使AH=BF=AE,连接A 1H,EH,FH,如图,易知HF=AB=A 1B 1,HF ∥AB ∥A 1B 1,故四边形A 1B 1FH 是平行四边形,则A 1H ∥B 1F,故∠HA1E(或其补角)即为异面直线A1E与B1F所成的角.在Rt△A1AH中,A1H=4+x2,在Rt△A1AE中,A1E=4+x2,在Rt△HAE中,EH=x2+x2=2x,在△HA1E中,由余弦定理的推论得cos∠HA1E=A1H2+A1E2-E H22A1H·A1E =44+x2,将异面直线所成角的余弦值表示成关于x的函数,通过变量x的范围求异面直线所成角的E。
高三数学能力拓展题2

高三数学能力拓展题〔2〕2013/8/17一:选择题〔5分一题,每题只有一个正确选项〕1.函数()f x 的定义域是R ,其图象关于直线1x =和点<2,0>都对称,1()22f -=,则12009()()22f f += ________.A .6B .8C .10D .-4 2.已知点A<0,2>,B<2,0>,若点C 在函数2y x =的图象上,则使得△ABC 的面积为2的点C 的个数为________.A .6B .8C .10D .43.已知定义在R 上的奇函数()f x ,满足(4)()f x f x -=-且在区间[0,2]上是增函数,若方程()(0)f x m m =>在区间[-8,8]上有四个不同的根1x ,2x ,3x ,4x ,则123x x x +++4x =________.A .6B .-8C .10D .-4 4.定义域为R 的函数f <x >=错误!若关于x 的函数h <x >=f 2<x >+bf <x >+错误!有5个不同的零点x 1,x 2,x 3,x 4,x 5,则x 12+x 22+x 32+x 42+x 52等于________.A .5B .15C .10D .245.当0≤x ≤1时,不等式sin 错误!≥kx 恒成立,则实数k 的取值X 围是________.A .k ≤1B .k ≤-1C .0<k ≤1D .-1<k ≤0 6.设α∈<错误!,错误!>,β∈<0,错误!>,cos<α-错误!>=错误!,sin<错误!+β>=错误!,则sin<α+β>=________. A .B .C .错误!D .二.填空题〔每题5分〕7.函数f <x >的定义域为R ,若f <x +1>与f <x -1>都是奇函数,则下列结论正确的是________.①f <x >是偶函数 ②f <x >是奇函数 ③f <x >=f <x +2>④f <x +3>是奇函数 8.若cos2θ+cos θ=0,则sin2θ+sin θ=________. 三.解答题〔每题12分〕9.已知函数2()21(0,1)g x ax ax b a b =-++≠<,在区间[2,3]上有最大值4, 最小值1,设()()g x f x x=. 〔1〕求a ,b 的值;〔2〕不等式(2)20xxf k -⋅≥在x ∈[-1,1]上恒成立,##数k 的取值X 围;〔3〕方程2(21)3021xxf k ⎛⎫⎪-+-= ⎪-⎝⎭有三个不同的实数解,##数k 的取值X 围. 10.已知函数2()8f x x x =-+,()6ln g x x m =+.〔1〕求()f x 在区间[t ,1t +]上的最大值()h t ; 〔2〕是否存在实数m ,使得()y f x =的图象与()y g x =的图象有且只有三个不同的交点?若存在,求出m 的取值X 围;若不存在,说明理由.11.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列{}n S 是公差为d 的等差数列.〔1〕求数列{}n a 的通项公式<用n ,d 表示>;〔2〕设c 为实数,对满足3m n k +=且m n ≠的任意正整数m ,n ,k ,不等式 m n k S S cS +>都成立.求证:c 的最大值为错误!.12.已知在数列{}n a 中,n n n n a a qa a a 212,1221,1===+-+d <q R d q ,、∈>0>.〔1〕若,1,2-==d q 求43,a a 并猜测2006a ;〔2〕若{}12-n a 是等比数列,且{}n a 2是等差数列,求d q ,满足的条件.高三数学能力拓展题〔2〕答案解析2013/8/17一:选择题〔5分一题,每题只有一个正确选项〕1.[答案] D 解析:函数图象关于直线1x =对称,则()(2)f x f x =-,函数图象关于点<2,0>对称,则()(4)f x f x =--,∴(2)()f x f x +=-,∴(4)()f x f x +=,∴200911()(1004)()222f f f =+=,又111()(4)()222f f f -=-+=- ,1200911()()2()2()42222f f f f +==--=- 2.[答案]D 解析:AB =2错误!,直线AB 的方程为2x y +=,在2y x =上取点C 〔x ,y 〕,点C 到直线AB 的距离为错误!222x y +-=222x x +-=,此方程有四个解.3.[答案]B 解析:因为定义在R 上的奇函数,满足(4)()f x f x -=-,所以(4)f x -=()f x -,对()f x 是奇函数,函数图象关于直线2x =对称且(0)0f =,由(4)()f x f x -=-知(8)()f x f x -=,所以函数是以8为周期的周期函数,又因为()f x 在区间[0,2]上是增函数,所以()f x 在区间[-2,0]上也是增函数.如图所示,那么方程()(0)f x m m =>在区间[-8,8]上有四个不同的根1x ,2x ,3x ,4x ,不妨设1234x x x x <<<.由对称性知1212x x +=-,344x x +=,所以12341248x x x x +++=-+=-4.[答案]B 解析:假设关于t 的方程t 2+bt +错误!=0不存在t =1的根,则使h <x >=0的f <x >的值也不为1,而显然方程f <x >=k 且k ≠1的根最多有两个,而h <x >是关于f <x >的二次函数,因此方程h <x >=0的零点最多有四个,与已知矛盾,可见t =1时t 2+bt +错误!=0,即得b =-错误!,所以h <x >=f 2<x >-错误!f <x >+错误!=错误!<f <x >-1><2f <x >-1>,而方程f <x >-1=0的解为x =0,1,2,方程2f <x >-1=0的解为x =-1,3,由此可见五根分别为-1,0,1,2,3,因此直接计算得上述五数的平方和为15.答案:155.[答案]A 解析:当0≤x ≤1时,y =sin 错误!的图象如图所示,y =kx 的图象在[0,1]之间的部分应位于此图象下方,当k ≤0时,y =kx 在[0,1]上的图象恒在x 轴下方,原不等式成立. 当k >0,kx ≤sin 错误!时,在x ∈[0,1]上恒成立,k ≤1即可.故k ≤1时,x ∈[0,1]上恒有sin 错误!≥kx .答案:k ≤16.[答案]C 解析:α∈<错误!,错误!>,α-错误!∈<0,错误!>,又cos<α-错误!>=错误!,∴sin<α-错误!>=错误!.∵β∈<0,错误!>,∴错误!+β∈<错误!,π>.∵sin<错误!+β>=错误!,∴cos<错误!+β>=-错误!,∴sin<α+β>=-cos[<α-错误!>+<错误!+β>]=-cos<α-错误!>·cos<错误!+β>+sin<α-错误!>·sin<错误!+β>=-错误!×<-错误!>+错误!×错误!=错误!,即sin<α+β>=错误!. 二.填空题〔每题5分〕7.解析:∵f <x +1>与f <x -1>都是奇函数,∴f <-x +1>=-f <x +1>,f <-x -1>=-f <x -1>,∴函数f <x >关于点<1,0>,与点<-1,0>对称,函数f <x >是周期T =2[1-<-1>]=4的周期函数.∴f <-x -1+4>=-f <x -1+4>,f <-x +3>=-f <x +3>,即f <x +3>是奇函数.答案:④8.解析:由cos2θ+cos θ=0,得2cos 2θ-1+cos θ=0,所以cos θ=-1或cos θ=错误!,当cos θ=-1时,有sin θ=0,当cos θ=错误!时,有sin θ=±错误!.于是sin2θ+sin θ=sin θ<2cos θ+1>=0或错误!或-错误!.答案:0或错误!或-错误! 三.解答题〔每题12分〕9.解:〔1〕2()(1)1g x a x b a =-++-,当a >0时,()g x 在[2,3]上为增函数,故(3)4(2)1g g =⎧⎨=⎩,∴96144411a a b a a b -++=⎧⎨-++=⎩,∴10a b =⎧⎨=⎩.当0a <时,()g x 在[2,3]上为减函数.故(3)1(2)4g g =⎧⎨=⎩,96114414a a b a a b -++=⎧⎨-++=⎩,13a b =-⎧⎨=⎩.∵1b <∴1a =,0b =即2()21g x x x =-+.1()2f x x x=+-. 〔2〕方程(2)20x xf k -⋅≥化为12222xx x k +-≥⋅, 即:2111222x x k ⎛⎫+-⋅≥ ⎪⎝⎭,令12x t =,则221k t t ≤-+,∵x ∈[-1,1],∴t ∈错误!.记2()21t t t ϕ=-+, ∴min ()0t ϕ=,∴0k ≤.<3>由2(21)3021xxf k ⎛⎫⎪-+-= ⎪-⎝⎭得1221(23)021x x kk +-+-+=-,21(23)21(12)0x x k k --+-++=,210x -≠,令21x t -=,则方程化为2(23)(12)0(0)t k t k t -+++=≠, ∵方程1221(23)021x xkk +-+-+=-有三个不同的实数解, ∴由21x t =-的图象<如右图>知,2(23)(12)0t k t k -+++=有两个根1t 、2t ,且1201t t <<<或01t <<,21t =,记2()(23)(12)t t k t k ϕ=-+++,则{(0)120(1)0k k ϕϕ=+>=-<或(0)120(1)023012k k k ϕϕ⎧⎪=+>⎪=-=⎨+⎪<<⎪⎩,∴0k >. 10.解:〔1〕22()8(4)16f x x x x =-+=--+.当14t +<,即3t <时,()f x 在[t,t +1]上单调递增. 22()(1)(1)8(1)67h t f t t t t t =+=-+++=-++; 当41t t ≤≤+,即34t ≤≤时,()(4)16h t f ==;当4t >时,()f x 在[t,t +1]上单调递减,2()()8h t f t t t ==-+.综上,2267,3()16,348,4t t t h t t t t t ⎧-++<⎪≤≤⎨⎪-+>⎩〔2〕函数()y f x =的图象与()y g x =的图象有且只有三个不同的交点,即函数()()()x g x f x ϕ=-的图象与x 轴的正半轴有且只有三个不同的交点.∵2()86ln x x x x m ϕ=-++,∴262862(1)(3)()28(0)x x x x x x x x x xϕ-+--'=-+==>, 当x ∈<0,1>时,()0x ϕ'>,()x ϕ是增函数;当x ∈<1,3>时,()0x ϕ'<,()x ϕ是减函数;当x ∈<3,+∞>时,()0x ϕ'>,()x ϕ是增函数;当1x =或3x =时,()0x ϕ'=.∴()70x m ϕ=->最大值,()=(3)6ln 315x m ϕϕ=+-最小值. ∵当x 充分接近0时,()0x ϕ<,当x 充分大时,()0x ϕ>.∴要使()x ϕ的图象与x 轴正半轴有三个不同的交点,必须且只须max min ()7()6ln 315x m x m ϕϕ=-⎧⎨=+-⎩,即7156ln3m <<-. 所以存在实数m ,使得函数()y f x =与()y g x =的图象有且只有三个不同的交点,m 的取值X 围为<7,15-6ln3>.11.设各项均为正数的数列{}n a 的前n 项和为n S ,已知2132a a a =+,数列是公差为d 的等差数列.〔1〕求数列{}n a 的通项公式<用n ,d 表示>;〔2〕设c 为实数,对满足3m n k +=且m n ≠的任意正整数m ,n ,k ,不等式 m n k S S cS +>都成立.求证:c 的最大值为错误!.解:〔1〕由题意知:0d >(1)(1)n d n d -=-,2132a a a =+,233a S =,2133()S S S -=,2213)2)d a d ⎡⎤-=⎣⎦,,化简得:210a d d -+=d =,21a d =,(1)d n d nd =+-=,22n S n d =,当2n ≥时,222221(1)(21)n n n a S S n d n d n d -=-=--=-,适合1n =情形.故所求2(21)()n a n d n N *=-∈.<2> 证明:m n k S S cS +>,222222m d n d ck d +>,222m n ck +>,222m n c k +<恒成立.又3m n k +=且m n ≠,22222()()9m n m n k +>+=∴22292m n k +>, 故92c =,即c 的最大值为错误!.12.已知在数列{}n a 中,n n n n a a qa a a 212,1221,1===+-+d <q R d q ,、∈>0>.〔1〕若,1,2-==d q 求43,a a 并猜测2006a ;〔2〕若{}12-n a 是等比数列,且{}n a 2是等差数列,求d q ,满足的条件. 解:〔1〕∴===-===,22,11,2,1342321a a a a a a 猜测22006=a . 〔2〕由nn n n a a qa a 212,122==+-,,0d q dR q,得d qa a n n +=-+1212.当0=d 时,显然1212-+=n n qa a ,{}12-n a 是等比数列.当0≠d 时,因为,11=a 只有112=-n a 时,{}12-n a 才是等比数列. 由d qa a n n +=-+1212,得,1=+d q 即0,0≠=q d ,或1q d.由d a a qa a n n n n +==---2212,122得)2(222≥+=-n qd qa a n n .当)2(,1222≥+==-n d a a q n n ,显然{}n a 2是等差数列, 当1≠q 时,q qa a ==12,只有q a n =2时,{}n a 2才是等差数列.由)(222d a q a n n +=+,得,1=+d q 即1,1=+=d q q . 综上所述:1qd.。
高三数学强化训练卷2与答案[最新版]
![高三数学强化训练卷2与答案[最新版]](https://img.taocdn.com/s3/m/d3bd72e06edb6f1afe001f84.png)
注:尊敬的各位读者,本文是笔者教育资料系列文章的一篇,由于时间关系,如有相关问题,望各位雅正。
希望本文能对有需要的朋友有所帮助。
如果您需要其它类型的教育资料,可以关注笔者知识店铺。
由于部分内容来源网络,如有部分内容侵权请联系笔者。
20高三数学强化训练卷2高 班 姓名 得分一 选择题:1.(安徽卷)设0a >,对于函数()sin (0)sin x af x x xπ+=<<,下列结论正确的是( )A .有最大值而无最小值B .有最小值而无最大值C .有最大值且有最小值D .既无最大值又无最小值 2.(北京卷)函数y =1+cos x 的图象( )(A )关于x 轴对称 (B )关于y 轴对称(C )关于原点对称(D )关于直线x =2π对称 3.(福建卷)已知函数f (x )=2sin ϖx(ϖ>0)在区间[3π-,4π]上的最小值是-2,则ϖ的最小值等于( )A.32B.23C.2D.3 4.(湖南卷)设点P 是函数x x f ωsin )(=的图象C 的一个对称中心,若点P 到图象C 的对称轴上的距离的最小值4π,则)(x f 的最小正周期是( ) A .2π B. π C.2π D. 4π 5.(江苏卷)已知R a ∈,函数R x a x x f ∈-=|,|sin )(为奇函数,则a =( )(A )0 (B )1 (C )-1 (D )±1 6.(安徽卷)将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( ) A .sin()6y x π=+ B .sin()6y x π=-C .sin(2)3y x π=+ D .sin(2)3y x π=-7.(江苏卷)为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)8.(辽宁卷)已知函数11()(sin cos )sin cos 22f x x x x x =+--,则()f x 的值域是( ) (A)[]1,1-(B) ⎡⎤⎢⎥⎣⎦(C) ⎡-⎢⎣⎦(D) 1,⎡-⎢⎣⎦ 9.(全国卷I )函数()tan 4f x x π⎛⎫=+⎪⎝⎭的单调增区间为( ) A .,,22k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭B .()(),1,k k k Z ππ+∈C .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭ D .3,,44k k k Z ππππ⎛⎫-+∈ ⎪⎝⎭10.(天津卷)已知函数x b x a x f cos sin )(-=(a 、b 为常数,0≠a ,R x ∈)在4π=x 处取得最小值,则函数)43(x f y -=π是( ) A .偶函数且它的图象关于点)0,(π对称 B .偶函数且它的图象关于点)0,23(π对称 C .奇函数且它的图象关于点)0,23(π对称 D .奇函数且它的图象关于点)0,(π对称 二、填空题11.(福建卷)已知函数()2sin (0)f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是2-,则ω的最小值是____。
高教版中职数学拓展模块上练习册答案

第1章充要条件参考答案1.1充分条件和必要条件【要点梳理】1.充分条件,p q.2.如果q,那么p.3.必要条件,p q.【闯关训练】1.1充分条件和必要条件一、选择题1.D.2.C.3.A.4.B.*5.C.提示:判断p是不是结论q的充分条件,只需要判断由p能不能推出q.*6.A.提示:判断p是不是结论q的必要条件,只需要判断由q能不能推出p.二、填空题1.假命题2.日取其半,万世不竭3.如果己所不欲,那么勿施于人三、解答题充分条件:x=10;x>8;必要条件:x-5>0;x>0.1.2 充要条件【要点梳理】1.充要条件,p q.2.充分条件,必要条件.【闯关训练】1.2充要条件一、选择题1.B.*2.C.提示:要想p是q的充分不必要条件,那么,不但由p能推出q,而且由q不能推出p.*3.A.提示:要想p是q的必要不充分条件,那么,不但由q能推出p,而且由p不能推出q.4.C.二、填空题*1.(2)(3)(4).提示:由“且”联结的两个命题,如果都是真命题,那么整个命题为真,只要有一个是假命题,整个命题就是假命题,即所谓:真真才为真;由“或”联结的两个命题,如果都是假命题,那么整个命题为假,只要有一个是真命题,整个命题就是真命题,即所谓:假假才为假.2.(1)(2)(3)(4)(5)(6)第一章自我检测一、选择题(每小题10分,共60分)1.D.2.A.3.B.4.A.5.C.6.D.二、填空题(每小题10分,共30分)1.必要不充分.*2.充要.提示:本题是学生比较熟悉的关联情境问题,在“A、B是 ABC内角”的前提下,A、B中最多只有一个钝角或都是锐角;如果sin A=sin B,那么A 与B只可能相等且都为锐角,不可能互补;同时,如果A=B,那么必有sin A=sin B.*3.(1)(3).提示:命题(1)中由a+b+c=0可知1是方程ax2+bx+c=0的一个实数根;可以用特殊值法,例举小于或等于0的x,不满足1x>1;命题(4)可以结合图示法判断;命题(5)可以采用特殊值法,当“x≠1且y≠2”时,如x =0且y=3,照样有x+y=3,“x≠1且y≠2”不是“x+y≠3”的充分条件.三、解答题(10分)必要不充分条件.因为:A B C D,即A D,也就是说D A,所以D 是A的必要不充分条件.第2章平面向量参考答案2.1 向量的概念【要点梳理】1.大小,方向.2.大小,|a|.3.模为1.4.模为0,0或0,任意的.5.模相等,方向相同.6.模相等,方向相反,零向量.7.方向相同,相反,共线向量.【闯关训练】2.1 向量的概念一、选择题1.B.2.D.3.A.4.D.5.D.6.C.7.A.8.B.二、填空题1.任意的.2.−.3.充分不必要.4.AD,DA,CD,DC,BD,DB,BC,CB.三、解答题1.如图,其中向量AB 是单位向量.2.(1)=KJ DC ,模为2; (2)=HG UV;(3)AB ∥MN,模分别为,HG ∥UV ,模为10DC ∥KJ ∥ST ,模分别为2、2和1, FE ∥PQ ,模分别为3和1.3.(1)GC ∥CG ∥AE ∥EA ∥EB ∥BE ∥AB ∥BA ; (2)=AG EC .2.2 向量的线性运算【要点梳理】1.加法,减法,数乘. 2.AC ,CB . 3.a ,0. 4.AC . 5.b +a ,(a +b )+c . 6.|λ||a |.7.相同,相反,0,是任意的. 8.λ(μa ),μ(λa ),λa +μa ,λa +λb . 9.存在实数λ,使得b =λa .xy OA BC1 2-3110.e=λa +μb (λ、μ均为实数).【闯关训练】2.2.1 向量的加法运算一、选择题1.B . 2.A . 3.D .4.C.提示:向量同向时和向量的模为4,向量反向时和向量的模为2. 5.C . 二、填空题1. AD .提示:原式==AB BC CD AD ++. 2.水平向西,2.3.(1)DE .提示:原式==DB BE DE +; (2)ED .提示:原式=++=+=EA AB BD EB BD ED . 三、解答题1.=AD AO OD +,=AD AB BD +,=AD AC CD +;由于=AD BC ,因此=AD BO OC +,=AD BD DC +,=AD BA AC +;由于=AO OC ,=BO OD ,因此==AD AO BO OC OD ++.2.图略.2.2.2 向量的减法运算一、选择题1.A. 2.B. 3.A.4.B.提示:==AC AB BD DC BC -+.*5.D.提示:=OA OB BA -,因为=AC CA -,所以==BA AC BA CA BC +-. 二、填空题1. DC . 2.(1)DB ; (2)DC .3.2或4.提示:两个向量同向时差向量的模是2,反向时差向量的模是4. 三、解答题1.原式===CB CD DE DB DE EB ---. 2.图略.2.2.3 向量的数乘运算一、选择题1.C. 2.A. 3.C. 4.D. 5.B. 二、填空题1. -a . 2.相反,2. 3.OD . 三、解答题1.原式=5a -6a -4b +3a -3b =2a -7b .2.(1)根据题意,“A 队”在静水中的速度大小为11 km/h 、方向正北,所以实际速度为9 km/h 、方向正北;(2)由AC =-4AB 得到“B 队”的实际速度大小为8 km/h 、方向正北. 【学海探津】平行四边形.提示:==+AB AD DB +a b ,==+DC DA AC +a b ,即=AB DC .2.3 向量的内积【要点梳理】1.最小正角,<a ,b >. 2.0,π,0≤<a ,b >≤π. 3.|a ||b |cos <a ,b >,0. 4.(1)a ⋅b =0;(2;(3)⋅a ba b.【闯关训练】2.3 向量的内积一、选择题1.C . 2.B . 3.A . 4.A . 5.D . 6.B . 7.B .*8.C.提示:由0AB AC ⋅<知cos A <0,所以三角形中角A 为钝角,即三角形是钝角三角形. 二、填空题1.2. 2.135°.3.120°.提示:向量AB 与向量CA 起点不相同,需要将向量平移至同一起点再确定夹角. 4.3 600.三、解答题1.a ⋅(a -b )= a ⋅a -a ⋅b =|a |2-|a ||b |cos <a ,b >=4-⎛ ⎝⎭=7. 2.当向量a 与b 同向,即a 与b 的夹角<a ,b >=0时,a ⋅b =|a ||b |cos0=2;当向量a 与b 反向,即a 与b 的夹角<a ,b >=π时,a ⋅b =|a ||b |cosπ=-2.3.根据平面几何知识=2DB ,并且DC DB ,=45°,所以=12=12DC DB ⋅⨯.2.4 向量的坐标表示【要点梳理】1.a =x i +y j ,a =(x ,y ).2.(0,0),(1,0),(0,1),(x ,y ),2121(,)x x y y --.3.1212(+,+)x x y y ,1212(,)x x y y --,11(λ,λ)x y ,1212+x x y y . 4.(1)21x x =21y y ,1221=x y x y ;(2)1212+=0x x y y ;(3);(4.【闯关训练】2.4.1 向量的坐标表示一、选择题1.D. 2.B. 3.C. 4.A. 5.B. 二、填空题1.(5,-4),(5,-4). 2.(5,3).3.(10,2),(-2,-3). 三、解答题1.OA =(-3,1),OA =-3i +j ,在坐标系中如图所示:2.设点C 的坐标是(x ,y ),因为四边形是平行四边形,所以=OB DC .根据已知条件,OB =(4,0),DC =(x -2, y -3),所以应满足2=43=0x y -⎧⎨-⎩,,解得 x =6,y =3,即点C 的坐标是(6,3).2.4.2 向量线性运算的坐标表示一、选择题1.A.2.D.3.D.4.C.5.B.二、填空题1.(7,9).2.-5.*3.(-4,1)或(-12,3).提示:应分类讨论两种情况.如果点C在线段OB上,那么点C 坐标是(4,-1),此时=BC(-4,1);如果点C在线段BO延长线上,那么点C坐标是(-4,1),此时=BC(-12,3).三、解答题1.(1)a-2b=(-2-2×2,2-2×4)=(-6,-6),3a+b=(3×(-2)+2, 3×2+4)=(-4,10);(2)a-2b=(3-2×(-1),1-2×0)=(5,1),3a+b=(3×3+(-1), 3×1+0)=(8,3).2.设点D的坐标是(x,y),根据已知得到,AB=(6,6),DC=(-1-x,2-y),所以(6,6)=2(-1- x,2- y)=(-2-2x,4-2y),得到方程组22=642=6xy--⎧⎨-⎩,,解得:x=-4,y=-1,所以点D的坐标是(-4,-1).2.4.3 向量内积的坐标表示一、选择题1.B.2.D.3.C.4.A.5.A.6.D.7.C.*8.B.提示:AB AC⋅=0 ,所以∠A=90°.二、填空题1.0. 2.5. 3.2.4.(42,-28),(-34,-85).提示:a ⋅b =2×(-3)+5×4=14,所以(a ⋅b )c =14c =(42,-28);b ⋅c =(-3)×3+4×(-2)=-17,所以a (b ⋅c )=-17a =(-34,-85). 三、解答题1.a ⋅b =4×2+(-3)×2 =2;|a ;|b ;cos ,=⋅a b a b a b 2.由题意得 a +λb =(4,-2)+ λ(1,-3)=(4+λ,-2-3λ),因为a +λb 与b 垂直,所以 (4+λ,-2-3λ)⋅(1,-3)=4+λ+(-3)×(-2-3λ)=10+10λ=0,所以λ=-1.3.由题意得cos <a ,b >=cos60°=1212,解得=k ±【学海探津】约为5 kg .第二章 自我检测一、选择题(每小题8分,共40分)1.D. 2.B. 3.A. 4.C. 5.B.二、填空题(每小题8分,共40分)1.b .提示:原式=5a -2a +4b -3a -3b =b . 2.10. 3.(1,1). 4.18.5.-7.提示:原式=(-1+2×1,3+2×(-2))⋅(-1-1,3-(-2))=( 1,-1)⋅(-2,5)=-7. 三、解答题(每小题10分,共20分)*1.由题意知i ⋅j =0,a ⋅b <0. ——————————————————4分 因为a ⋅b =(3i -m j )⋅(i +2j )=3-2m <0. ————————————————8分解得32m>,即m的取值范围是3+2∞⎛⎫⎪⎝⎭,.——————————————10分2.(1)如图所示:——————3分(2)根据题意建立直角坐标系时,应有|f1|=|f2|=60,——————5分所以f1=(30-,,f2=(30,,———————7分f1+f2=(0,. ———————9分(3)f1+f2是与物体重力方向相反,大小相同的力,因此垃圾所受重力是N.———————10分第3章 圆锥曲线 参考答案3.1 椭圆【要点梳理】1.两个定点12,F F ;常数. 2.焦点;焦点;焦距.3.()222210y x a b a b+=>>;,a x a b y b --;()()()(),0,,0,0,,0,a a b b --;()()()(),0,,0,0,,0,b b a a --;()(),0,,0c c -;2c ;2a ;2b ;ca. 【闯关训练】3.1.1椭圆的标准方程一、选择题 1.C.2.B.3.C.4.B.5.C.6.D.7.A.8.A.二、填空题1. 2.20. 3.6. 4.1. 三、解答题1.解:由题意设所求的椭圆标准方程为)0(12222>>=+b a by a x .因为2c =,所以32=c ,即1222=-b a,又因为点P 在椭圆上,因此22821a b +=,即222212,82 1.a b a b ⎧-=⎪⎨+=⎪⎩解得2216,4.a b ⎧=⎪⎨=⎪⎩故椭圆标准方程为221164x y +=. 2.解:由题意得,Sab π=,即S ab π==,得ab =.又因为21212432F AB C AF AF BF BF a =+++==△,得8a =,所以b =,故椭圆的标准方程为221364x y +=. 3.解:由题意得,2c =,12=4F F . 又因为112122PF F F F F PF -=-,因此1212282PF PF F F a +===,即4a =, 则22216412b a c =-=-=,故椭圆的标准方程为2211612x y +=.3.1.2椭圆的几何性质一、选择题 1.A. 2.D. 3.D. 4.A. 5.B. 6.C. 7.D.*8.B.二、填空题1.()()()()2,0,2,0,0,1,0,1--;2. 2.221169x y +=. 3.22198x y +=.*. 三、解答题1.解:由椭圆方程得,22124x y +=,焦点在y 轴上, 则2242a ,b ==,因此2222c a b =-=,即2a ,b ===因此椭圆的长轴长为4,短轴长为,焦距为,焦点坐标为((00,,,顶点坐标为()()())020200,,,,,-,离心率2c e a ==. 2.解:由题意得,椭圆焦点可能在x 轴上或y 轴上, (1)当椭圆焦点在x 轴上时,228a ,b m ==,且8m <,则2228c a b m =-=-,而12e =,因此2221848c m e a -===,解得6m =.(2)当椭圆焦点在y 轴上时,228a m,b ==,且8m >,则2228c a b m =-=-,而12e =,因此222184c m e a m -===,解得323m =.综上所述,m 的值为6或323. *3.解:在Rt OFA ∆中,,,AF a OA b OF c ===,由题意得26a =,得3a =,2cos 3OF c OFA AFa ∠===,可解得2c =, 因此222945b a c =-=-=,故椭圆的标准方程为22195x y +=.【学海探津】解:设椭圆的长轴长为2a ,焦距为2c ,由题意得200174086001740a c a c -=+⎧⎨+=+⎩,解得61404200a c =⎧⎨=⎩,所以离心率42000.686140c e a ==≈.3.2 双曲线【要点梳理】1.两个定点12,F F ;绝对值. 2.焦点;焦距.3. y 2a 2−x 2b 2=1;,x a x a y R -∈或;()(),0,,0a a -;()()0,,0,a a -;()(),0,,0c c -;()()0,,0,c c -;2c ;2a ;2b ,c a ;b y x a=±;a y x b =±.【闯关训练】3.2.1双曲线的标准方程一、选择题 1.B. 2.D. 3.A. 4.A. 5.C.7.A. 8.C. 二、填空题1.2.((0,,. 3.()(),14,-∞+∞.*4.1.三、解答题1. 解:由题意得,6b =,10c =,且焦点在x 轴上,则2221003664a c b =-=-=,故双曲线的标准方程为2216436x y -=. 2. 解:由2120m +>知双曲线的焦点在x 轴上, 因此2212a m =+,224b m =-,且240m -<, 又因为2222212416c a b m m =+=++-=,所以4c =, 故双曲线的焦点坐标为()()4,0,4,0-,焦距为*3. 解:由双曲线定义得,216AF AF -=,216BF BF -=,因此216AF AF =+,216BF BF =+,而22211ABF C AB AF BF AB AF BF =++=++△3.2.2双曲线的几何性质一、选择题2.B.3.C.4.D.5.A.6.C.7.B.8.C.9.A.*10.B.二、填空题1.45y x =±.2.6.3.221412x y -=. 4. 3∶1.5.221416x y -=或22141y x -=. *6. 4.三、解答题1. 解 将双曲线的方程22169144x y -=化为标准方程221916x y -=, 由此可得双曲线的焦点在x 轴上,229,16a b ==,22291625c a b =+=+= 从而,3,4a b ==,5c =.故双曲线的焦点坐标为()()5,0,5,0-,顶点坐标为为()()3,0,3,0-,实轴长为6,虚轴长为8,离心率53c e a ==,渐近线方程为43b y x x a =±=±.2. 解 ⑴由题意得,5210,5,4c c c e a ====, 则2224,9a b c a ==-=, 又因为焦点在x 轴上,故双曲线的标准方程是221169x y -=; ⑵由题意得1b =,又因为2e =,则22222514c a e a a +===,解得24a =,由于焦点在y 轴上,故双曲线的标准方程为22141y x -=.3. 解 由于22126x y k k +=--是双曲线方程,且26k k ->-, 因此2060.k k ->⎧⎨-<⎩,解得26k <<.即222,6a k b k =-=-,则222264c a b k k =+=-+-=,2c =, 而2ce a==,得到1a =,因此23b =,b = 故21k -=,3k =,故双曲线的焦点坐标为()()2,0,2,0-,渐近线方程为y =. *4. 解 由题意得双曲线的焦点在x 轴上,焦点坐标为()()5,0,5,0-,5c =.方法一:设双曲线方程为()222210,0x y a b a b -=>>,则224,325.b a a b ⎧=⎪⎨⎪+=⎩解得229,16.a b ⎧=⎨=⎩ 故双曲线的标准方程为221916x y -=.*方法二:根据渐近线方程x y 34±=,可设双曲线方程为()220916x y λλ-=≠, 因此229,16a b λλ==,则2229162525c a b λλλ=+=+==,得=1λ,故双曲线的标准方程为221916x y -=.3.3 抛物线【要点梳理】 1.定点,相等. 2.焦点,准线.3. 22y px =-;22x py =;22x py =-;0,x y R ∈;0,y x R ∈;0,y x R ∈;x 轴;y 轴;y 轴;,02p F ⎛⎫- ⎪⎝⎭;0,2p F ⎛⎫⎪⎝⎭;0,2p F ⎛⎫- ⎪⎝⎭;2p x =;2p y =-;2py =;()0,0;1.【闯关训练】3.3.1抛物线的标准方程一、选择题 1.D. 2.D. 3.C. 4.A. 5.A. 6.C. 7.B. 8.B. 二、填空题 1. ()1,0.2. 28y x =-.3. 3.4. 4. 三、解答题1. 解:(1)由焦点坐标可知22p=,4p =,焦点在y 轴负半轴上, 故抛物线的标准方程为28x y =-. (2)由准线方程可知122p =,1p =,焦点在y 轴正半轴上, 故抛物线的标准方程为22x y =.(3)由题意可知4p =,故抛物线的标准方程为28y x =或28y x =-.2. 解:(1)将抛物线的方程化为标准方程22y x =-可知,抛物线的焦点在x 轴负半轴上,且22p =,1p =,122p =, 故抛物线的焦点坐标为1,02F ⎛⎫- ⎪⎝⎭,准线方程12x =.(2)将抛物线的方程化为标准方程26x y =可知,抛物线的焦点在y 轴正半轴上,且26p =,3p =,322p =, 故抛物线的焦点坐标为30,2F ⎛⎫⎪⎝⎭,准线方程32y =-.3. 解:由题意可得,动点P 到定点(4,0)F 的距离与它到定直线4x =-的距离相等,动点P 的轨迹是焦点为(4,0)F ,准线方程为4x =-的抛物线.因此42p=,8p =,216p =.动点P 的轨迹方程为216y x =.【学海探津】如图建立平面直角坐标系,则有()16,8A -,设抛物线方程为()220x py p =->,将()16,8A -代入得,16p =,即抛物线方程为232x y =-, 当2x =时,18y =-,而1638788-=>,则竹排能够安全通过桥孔.3.3.2抛物线的几何性质一、选择题 1.D. 2.C. 3.B. 4.A. 5.A. 6.C. 7.B. *8.D. 二、填空题 1. 28y x =. 2. 2±. 3. 16.*4. ()()1,1,4,2-. 三、解答题1. 解:(1)因为抛物线的对称轴为x 轴,点()2,1-是第二象限内的点,故抛物线的焦点在x 轴的负半轴上,设抛物线方程为22y px =-, 将点()2,1-代入方程得,41p =,14p =,122p =.故抛物线的标准方程为212y x =-.(2)由双曲线方程22142x y -=可知双曲线的右顶点为()2,0, 因此抛物线的焦点为()2,0,则22p=,4p =,28p = 故抛物线的标准方程为28y x =.2. 解:因为抛物线的对称轴为y 轴,点(),3P m 是第一或第二象限内的点,故抛物线的焦点在y 轴的正半轴上,如图所示, 由抛物线的定义可知3522p p pPF y =+=+=, 因此4p =,28p =,故抛物线的标准方程为28x y =.*3. 解:如图所示,由抛物线和正三角形的图形特征可得直线AB 的倾斜角为6π,直线BC 垂直于x 轴,且,B C 关于x 轴对称.直线AB方程为y x =,代入抛物线方程22y x =,解得6,x y =⎧⎪⎨=⎪⎩或0,0.x y =⎧⎨=⎩因此(6,(6,B C -, 故△ABC 的边长BC =. 【学海探津】解:以拱桥的桥顶为原点,如图所示,建立平面直角坐标系.CBAyx可设抛物线的标准方程为22x py =-, 由题意得,点()16,8-在抛物线上,将点()16,8-代入方程22x py =-得,16p =,232p =,因此抛物线的标准方程为232x y =-.解法一:因为木箱的宽为4m ,则2x =±,代入方程得,18y =-,那么此时的最高限度为16387.875788-==>, 所以此时竹排能够安全通过桥孔.解法二:因为木箱的高为7m ,则871-=,1y =-,代入方程得,x =±,那么此时的最大宽度为4>,所以此时竹排能够安全通过桥孔.第三章 自我检测一、选择题 (每小题6分,共48分)1.B.提示:由题意可得,,2ab b π⎧=⎪⎨⎪=⎩即可解得2,a b =⎧⎪⎨=⎪⎩ 2. B.提示:由题意可得,2a =,b =5a y x xb =±=±. 3. D.提示:由题意可得,抛物线的焦点在y 轴的负半轴上,52p=,10p =. 4. D.提示:由题意可得,28a =,4a =,又因为34c e a ==,可得3c =,图3-11Oy x因此2221697b a c =-=-=,而椭圆的焦点可能在x 轴或y 轴上,因此椭圆方程有两种可能.5. C.提示:可结合图像得到,13p y +=,2p y =.6. B.提示:由题意可得,2516,160.m m m ->+⎧⎨+>⎩求解即可得到m 的取值范围.*7. B.提示:由题意可得,12222322AF AF AF AF AF a -=-==,因此2AF a =,13AF a =,又因为1290F AF ∠=︒,可得2221212AF AF F F +=,即22294a a c +=,化简得,22104a c =,2252c a =,即2c e a ==.*8. B.提示:由已知得81.5010a =⨯,离心率0.02ce a==,因此,80.0310c =⨯,则地球到太阳的最远距离为8881.50100.0310 1.5310a c km +=⨯+⨯=⨯,最近距离为8881.50100.0310 1.4710a c km -=⨯-⨯=⨯. 二、填空题(每小题8分,共32分) 1.提示:由题意可得,221m +=,解得m =.2. 212y x =-.提示:由题意可得,椭圆的左顶点为()3,0-,因此抛物线的焦点即为()3,0-,则32p=,6p =. 3. 1.提示:由题意可得,24a =,24b m =-,所以2a =,222c a b m =-=,而12c e a ==,则1c =. *4. ()2,2.提示:从图像中可知,要使PA PF +最小,则过点A 作AQ l ⊥,垂足为Q ,交抛物线于点P ,此时点P 的纵坐标为2,代入抛物线方程可得横坐标为2.三、解答题(每小题10分,共20分)1. 解:由题意可设抛物线的标准方程为22x py =,---------------2分当水面宽度为40m 时,水面最深处为2m , 即当20x =时,2y =,---------------1分将点()20,2代入抛物线方程得,4004p =,100p =,---------------2分 则抛物线的标准方程为2200x y =,---------------2分当水面宽度为36m 时,即18x =时,得 1.62 1.8y =<,---------------2分 因此这艘吃水深度为1.8m 的货船不能安全通过.---------------1分*2. 解:方法一:由题意得,双曲线141622=-y x 渐近线为12y x =±,---------------2分当x =时,12y =±⨯=而2<<,因此所求的双曲线焦点在x 轴上,---------------2分设双曲线方程为()222210,0x y a b a b-=>>,则221,2244 1.b a a b ⎧=⎪⎪⎨⎪-=⎪⎩解得228,2.a b ⎧=⎨=⎩---------------4分 故双曲线的标准方程为22182x y -=.---------------2分 *方法二:设双曲线方程为()220164x y λλ-=≠,---------------4分将点2)代入方程得,12λ=,---------------2分 故双曲线的标准方程为2211642x y -=即22182x y -=.---------------4分第4章立体几何参考答案4.1 平面【要点梳理】1. 无限延伸;平行四边形;α、β、γ….2.同一直线上;A∈α,B∈α,C∈α;所有点;m α;该直线外一点;相交直线;平行直线;公共直线;α∩β=l.【闯关训练】4.1.1平面的特征和表示一、选择题1.C.2.B.3.D.4.D.5.D.二、填空题1.平面BD、平面DB、平面CA、平面ABCD(答案不唯一).2.A∈m且A β.三、解答题1.解:连接BD′和AC′,则BD′与AC′的交点就是点P,如图所示.4.1.2平面的基本性质一、选择题1.D.2.D.3.D.4.C.A BC DB′C′D′A′P(1) (2) (3)二、填空题 1.相交.2.1或 3. 3.l ∩α=A .三、解答题1.答:A ∈AB ,AB 平面AB ′,AB ∩BC =B (答案不唯一).2.解:如图 (1)(2)(3).4.2直线与直线的位置关系【要点梳理】1.异面直线;共面直线.2.3;平行;相交;异面.3.同一条直线.4.1;最小正角.5.0;02π⎡⎤⎢⎥⎣⎦,;02π⎛⎤⎥⎝⎦,.6.相等.7.不经过.8.公垂线;公垂线段;距离.【闯关训练】4.2.1共面直线一、选择题 1.C.2.D.3.B.4.D.αBCAαPmnαmn二、填空题1.AB 与BC ,AB ′与BB ′.(答案不唯一)2.AB 与CD ,BB ′与CC ′.(答案不唯一)3.AA ′与AB ,BC 与B ′C ′.(答案不唯一) 三、解答题1.(1)平行;(2)相交.*2.证明:在长方体 ABCD -A′B′C′D′中,∵点O 是AC 与BD 的交点,点O′是A′C′与B′D′的交点. ∴OD =12BD ,O′D′=12B′D′,且OD ∥O′D′ 又∵BD = B′D′ ∴OD O′D ′∴四边形OO′D′D 是平行四边形.4.2.2异面直线一、选择题 1.C.2.C.3.D.4.B.5.C.6.C.7.D.8.B.二、填空题1.AB 与CD 、BC 与AD 和AC 与BD .2.异面.*3.3π.提示:将 A D′平移至 BC′,则∠A′C′B 是 AD′与 A′C′所成的角. 连接 A′B ,则△A′BC′是等边三角形,故AD′与A′C′所成的角为3π.*4.125.提示:因为DD ′⊥平面AC ,AC 平面AC ,所以DD ′⊥AC ,故点D 到AC 的距离就是DD ′与AC 的距离,设为h.在△ACD 中,AB=4cm ,BC=3cm,由AD ×DC=AC ×h 知,h=125. 三、解答题1.解:与直线EH 异面的直线有SC 、AC 、BC.2.解:(1)∵长方体ABCD-A ′B ′C ′D ′中,D′C′⊥DD′且D′C′⊥BC′∴D ′C ′是直线DD′与BC′的公垂线段 又∵D′C′=AB=8∴DD′与BC′的距离为8.(2)平移DD ′至CC ′,则∠CC ′B 是直线DD ′与BC ′所成的角.在RT △BCC ′中,BC=CC′=6∴∠CC ′B=4π,即直线DD ′与BC ′所成角的大小为4π. 3.证明:假设PC 与AB 共面.∵点A 、B 、C 同在平面α内则PC α,与直线PC 与平面相交于点C 矛盾 ∴PC 与AB 是异面直线.4.3 直线与平面的位置关系【要点梳理】 1.无数;相交;平行.2.直线在平面外.3.平行.4.平行.5.垂直.【闯关训练】4.3.1 直线与平面平行一、选择题 1. D. 2. C.3.A.4.D.5.C.二、填空题1.平行或在平面内.2.平行、相交、异面.3.无数.三、解答题1.证明:连接AC交BD于点O,连接MO.由□ABCD知,点O为AC的中点.∵点M为P A中点,∴在△P AC中,MO为中位线,有MO∥PC.又∵MO 平面MBD ,PC 平面MBD,∴PC∥平面MBD.2.证明:连接MO.由□ABCD知,点O为中点,∵点M为PB的中点,∴在三角形PBD中,MO为中位线,有MO∥PD.又∵PD 平面MAC,MO 平面MAC,∴PD∥平面MAC.4.3.2 直线与平面垂直一、选择题1.C.2.A.3.B.4.D.5.C.6.C.7.C.8.B.二、填空题 1.1.2.2. 3.60°.4.2a . 三、解答题1.l l l l l 设△ABC 在平面 α内,直线⊥AB ,⊥BC ,求证:⊥AC 证明:∵ ⊥AB , ⊥BC ,AB 平面 α,BC 平面 α且 AB ∩BC =B ,l ∴ ⊥平面 ABC .又∵AC 平面 ABC ,∴l ⊥AC ,即与三角形两边垂直的直线也和三角形的第三边垂直.2.证明:∵点O 是正方形ABCD 对角线的交点,∴点O 是AC 和BD 的中点. ∵P A=PC ,∴在等腰三角形P AC 中, PO ⊥AC. 同理:PO ⊥BD .又∵AC 平面ABCD ,BD 平面ABCD 且AC ∩BD =O , ∴PO ⊥平面ABCD.*3. 证明:(1)∵点O 为□ABCD 对角线交点,∴点O 为AC 的中点. 又∵点M 是PC 的中点,在△P AC 中,由中位线定理知,MO ∥P A . ∵P A ⊥平面ABCD , ∴MO ⊥平面ABCD .(2)∵AD=AC=2,在等腰 ACD 中,过A 作AE ⊥CD ,∴点E 为CD 的中点,连接ME 、PD . 由ME 为中位线知,ME12PD .∵P A ⊥平面ABCD ,AD 平面ABCD , ∴P A ⊥AD .在Rt P AD 中,P A=AD=2,PD =.∴ME .4.3.3 直线与平面所成角一、选择题*1. D. 提示:直角在平面的射影当摆放角度不同时可得到直角、锐角和钝角的情况. 2.B.3.A.4.D.5.D.*6. C.提示:设平面 α 内的等腰 RT △ABC 的腰长为 1,则可得 AB =RT △PBC 中,∠PBC =60°,BC=1,可得PB =2,因此在RT △P AB 中,cos ∠PBA =AB PB=2,所以,∠PBA =45°. *7. D.提示:由点 P 到四条边的距离相等,则其射影也相等,即点 P 在四边形ABCD 的射影到四条边的距离都相等,因此,四边形即为圆的外切四边形. 8. D.二、填空题 1.90°、0°.2.90°.3.垂足与斜足.4.45°.三、解答题1.解:(1)由题知在正方体中,1A B 与平面所成角为∠1A BA =45°(2)连接11B C BC 与交于点O ,连接1A O 可证∠1BA O 即为直线1A B 与平面11A B CD 所成角,设正方体边长为1,可得12A B BO ==,则在直角三角形1A BO 中,∠1BA O =30°.2.解:(1)正方体ABCD- A 1B 1C 1D 1中,B 1 D 1 ∥BD ,∴∠OBD 是BO 与B 1 D 1所成的角. ∵正方体棱长为2,∴BD=,.在RT △ABO 中,∵222BD =OD +BO ,∴△BOD 是直角三角形,∠BOD =90°. 又∵OD =12BO , ∴∠OBD =30°.(2)过O 做OE ⊥AD ,连接BE ,则∠OBE 为BO 与平面ABCD 所成的角.由正方体棱长为2,可得OE =1,BE则tan ∠OBE =5*3. 提示:本题主要考查正棱锥顶点在底面射影在底面高线上,且分高所成比例为2∶1 .解:过点 P 做 PO ⊥面 ABC ,AD ⊥BC ,则点 O 在 AD 上且 AO:OD =2∶1在△PBC 中,可得PD =2,在△ABC 中,可得AD =2,因此OD ,在RT △POD 中,由勾股定理可得PO =34.4 平面与平面的位置关系【要点梳理】1.相交;平行.2.相交.3.半平面;二面角.4.垂直.【闯关训练】4.4.1 两平面平行一、选择题1.D.2.A.3.A.4.D.5.B.二、填空题1.平行或异面.2.平行.3.0或1.三、解答题1.证明:在正方体ABCD- A1B1C1D1中,A1B∥D1C.∵A1B 平面CB1D1,D1C 平面CB1D1,∴A1B∥平面CB1D1.同理可得A1D∥平面CB1D1.又∵A1B与A1D相交于平面A1BD内一点A1,∴平面CB1D1∥平面A1BD.*2. 如图所示,已知平面α∥平面β,AB∥CD,A、C∈平面α,B、D∈平面β.求证:AB=CD.图4-47 证明:连接AC 、BD .如图所示,平面ABDC ∩α=AC ,平面ABDC ∩β=BD,∵α∥β, ∴AC ∥BD . 又∵AB ∥CD , ∴ABDC 为平行四边形∴AB=CD .4.4.2 二面角一、选择题 1.C.2.C.*3. B.提示:在长方体中,二面角的平面角为∠1A BA ,在RT △1A BA 中,AB=1,13AA =,则∠1A BA =60°.*4. D.提示: 连接AC 、BD 和MO ,由题知∠MOC 为二面角的平面角,可先算出其互补角∠MOA =60°. 5.B.二、填空题 1.82. 2.532. *3. 30°.提示:在长方体中可得二面角的平面角为∠11D AA ,在RT △11D AA 中,边长1113,1AA A D BC ===,可得∠11D AA =30°. 三、解答题1.解:设上升到点P ,过P 做PO ⊥底面,由直道与水平线成45°且长度为200米,可得点P 到坡脚距离为1002,又山坡斜度为60°,6则可得,PO =50.*2.提示:分别利用直线和平面所成角求出 MD 和 MA ,在 RT △MAD 中可求αCAβBD解:(1)由题知∠CMD为MC与平面MAD所成角,∠MCA为MC与平面ABC 所成角,由MC=4,可得MD=MA=2,在RT△MAD中,可得AD=2(2)过点D作DE⊥MC,过A做AN⊥MC,做EH∥AN,在等腰RT△MDC中,可得DE=2,在△MAC中,可得AN,EH,,又在△ACD与△AHD中,利用余弦定理可得DH=3.在△DEH中,利用余弦定理可得cos∠DEH=34.4.3 两平面垂直一、选择题1.A.2.C.3.B.4.A.5.A.6.B.7.D.8.D.二、填空题1. .2.垂直.3. .4.互相平行.三、解答题1.证明:∵MB=MC,D为中点,∴在等腰△MBC中,MD⊥BC.同理,在等腰△ABC中,AD⊥BC.∵MD交AD于平面MAD内一点D,∴BC⊥平面MAD.又∵MA 平面MAD,∴BC⊥MA.∵MA⊥AD,且AD交BC于平面ABC内一点D,∴MA⊥平面ABC.又∵MA 平面MAB,∴平面ABC⊥平面MAB.*2. 证明:(1)由MA⊥平面ABC,NC⊥平面ABC知MA∥NC,又∵MA=NC∴四边形MACN为平行四边形,则MN∥AC.∵MN 平面ABC,AC 平面ABC,∴MN∥平面ABC.(2)由(1)知MACN为平行四边形,又MA⊥平面ABC,∴MA⊥AC.因此,MACN为矩形,有MN⊥MA.又∵AC⊥AB,∴MN⊥AB.由于AB交PB于平面MAB内一点A∴MN⊥平面MAB,又∵MN 平面MBN,∴平面MAB⊥平面MBN.3.证明:∵MA⊥平面ABC,∴MA⊥BC.又∵点C在圆上,AB为直径,∴∠ACB=90°,即BC⊥AC.又AC∩MA=A,∴BC⊥平面MAC.∵BC 平面PBC,∴平面MAC⊥平面PBC.第四章自我检测一、选择题(每小题10分,共60分)1.D.2.D.3.C.4.C.5.C.*6.C. 提示:连接AC、 EC,则1AE=DE=2a,在Rt∆EDC中,2a,在Rt∆AEC中,2a.二、填空题(每小题6分,共18分)1.293. 提示:连接PD、PB、BD,作AE⊥BD交BD于E,连接PE,因为PA⊥平面ABCD,AB=3,BC=4,PA=6,在△ABD中,AE=125,在Rt△PAE中,,所以,PBD1S=BD2⨯⨯.2.相交、平行或在α内.*3.1010. 提示:由BH∥AE,则AE与FG所成的角就是∠BGF.在∆BGF中,BG=BF=5,FG=2,可求得cos∠BGF=225=1010.三、解答题(第10题10分,第*11题12分,共22分)1.证明:由题知,在三角形ABC中,EF为底边AC中位线,∴EF∥AC,且EF=12AC.————————————2分同理HG∥AC,且HG=12AC. ————————————4分∴EF∥GH,且EF=GH. ————————————5分因此,EFGH为平行四边形. ————————————6分同理EH=GF=12 BD,————————————7分又∵AC=BD,∴EF=EH,————————————8分即四边形EFGH为菱形. ————————————9分因此,对角线EG⊥FH. ————————————10分*2.(1)由PC⊥平面ABC知,PB为斜线,∴BC为PB在平面ABC内的射影. ————————————2分∵∠ABC=90°,即AB⊥BC,则PB⊥AB.即PB为点P到直线AB的距离. ————————4分又∵在RT△PBC中,PC=6,BC=33∴=————————6分(2)由(1)知AC为斜线P A在平面ABC内的射影,则∠P AC为P A与平面ABC 所成的角.————————8分在RT△ABC中,AB=3,BC=∴AC————————10分又∵PC=6,∴三角形P AC为等腰直角三角形.因此∠P AC=45°,即直线P A与平面ABC所成的角为45°.———12分第5章 复数 参考答案 5.1 复数的概念和意义【要点梳理】1.(1)虚数单位,-1. (2)实部,虚部,C .(3)虚数,a =0.(4)虚轴,虚数.(5)a 2+ b 2.2.a =c 且b =d ,a =0且b =0,a -b i . 【闯关训练】5.1.1 复数的概念一、1.C. 2.B . 3.C . 4.A . 5.B . 二、填空题 1.b ≠0.2.-1. 3.14. 三、解答题*(1)若z 是实数,则m 2-2m -3=0,解得m =-1或3.(2)若z 是纯虚数,则m 2-2m -3≠0且m 2+m -12=0,解得m =-4.(3)z 对应的点在第二象限,则m 2+m -12<0且m 2-2m -3>0,解得-4<m <-1.5.1.2 复数的几何意义一、选择题1.B .2.C .3.A .4.B .5.D .二、填空题1.8+6i 或-8+6i .2.z =2.*3.m =4.由0z <知z 是实数,所以m 2+3m -28=0且m 2-m +15<0,解得m =4.三、解答题(1)如图,复数65i +对应的向量为OA =(6,5),复数34i -+对应的向量为OB =(-3,4).(2)由AB =OB -OA =(-3,4)-(6,5)=(-9,-1)知,AB 表示的复数为-9-i ;由BA =-AB =(9,1)知,BA 表示的复数为9+i .5.2 复数的运算【要点梳理】(a +c )+(b +d )i ; (a -c )+(b -d )i ; (ac -bd)+(ad +bc)i .【闯关训练】5.2.1 复数的加法与减法一、选择题 x y O AB -3 6 4 51. A.2. A.3. D.4. C.5. D.二、填空题1.2.2-3i.三、解答题解:(1)由题知AB =(a ,1)-(1,2)=(a -1,-1),所以1z =(a -1)-i. 同理CD =(-1,b )-(2,3)=(-3,b -3),所以2z =-3+(b -3)i.又121z z i +=+,即(a -1)-i -3+(b -3)i =1+i ,所以 a -4=1,a =5;b -4=1,b =5.因此1z =4-i ,2z =-3+2i.(2)由题知1z +2z =(a -4)+(b -4)I 2=又1z -2z =(a -1)-i +3-(b -3)i =(a +2)+(-b +2)i 为实数,即b =2代入得a =4.5.2.2 复数的乘法一、选择题1.C.2.A.3.D.4.A.二、填空题1.2.7.三、解答题*1.(1)设1z =a +b i ,则(a +b i ).i =-b +a i =1+i ,所以b =-1,a=1. 因此1z =1-i .(2)12z z ⋅=(1-i )(m +2i )=(m +2)+(2-m )i 为纯虚数,因此m =-2. 2.(1)由题知1z =2-3i. (2)当m =1时,2z =1-i .因此12z z =(2+3i )(1-i )=5+i .5.3 实系数一元二次方程的解法【要点梳理】(1)aac b a b x 242221-±-=,. (2)ab x 221-=,. (3)i ab ac a b x 22221-±-=4,.【闯关训练】5.3 实系数一元二次方程的解法一、选择题1. B .2. B .3. A .4. C .二、填空题1.(x +22i )(x -22i ).2. -4+3i .3. 1-2i .4. a =-12,b =20.三、解答题将方程化为()22+210()x x m x i ++--=,因为m 与x 都是实数,所以220x x m ++=且210x --=,解得x =-12,m =0.第五章 自我检测题一、选择题(每小题6分,共48分)1.B.2.C.3. C.4.D.5.B.6.C.7.D.8.A.二、填空题(每小题8分,共32分)1.z =1+i.2.=a 2.3.c =3.4.2+4i .三、解答题(每小题10分,共20分)1.图形是半径大于3小于等于5的圆环(不含内圈),如图所示.2.(1)当2m =时,z=2+5i ,————————————————1分 x y O -5 -3 3 5 -5-335因此z=2-5i.————————————————2分所以z z⋅=(2+5i)(2-5i)=29.————————————————4分=上,即该复数实部和虚部相等,———————6分(2)若点Z在直线y x因此2-=m+3,——————————8分m m即2230--=,所以m=3或-1.——————————10分m m。
2018年高考理科数学通用版三维二轮复习训练2解析及答案

寒假作业(二) 函数的图象与性质(注意速度和准度)一、“12+4”提速练1.已知函数y =2x +1,x ∈{x ∈Z|0≤x <3},则该函数的值域为( ) A .{y |1≤y <7} B .{y |1≤y ≤7} C .{1,3,5,7}D .{1,3,5}解析:选D 由题意可知,函数的定义域为{0,1,2},把x =0,1,2代入函数解析式可得y =1,3,5,所以该函数的值域为{1,3,5}.2.函数f (x )=ln ⎝ ⎛⎭⎪⎫1+1x +1-x 2的定义域为( )A .(-1,1]B .(0,1]C .[0,1]D .[1,+∞)解析:选B由条件知⎩⎪⎨⎪⎧1+1x>0,x ≠0,1-x 2≥0.即⎩⎪⎨⎪⎧x <-1或x >0,x ≠0,-1≤x ≤1.则x ∈(0,1].∴原函数的定义域为(0,1].3.(2017·成都第一次诊断性检测)已知定义在R 上的奇函数f (x )满足f (x +3)=f (x ),且当x ∈⎣⎢⎡⎭⎪⎫0,32时,f (x )=-x 3,则f ⎝ ⎛⎭⎪⎫112=( )A .-18 B.18C .-1258 D.1258解析:选B 由f (x +3)=f (x )知,函数f (x )的周期为3,又函数f (x )为奇函数,所以f ⎝ ⎛⎭⎪⎫112=f ⎝ ⎛⎭⎪⎫-12=-f ⎝ ⎛⎭⎪⎫12=⎝ ⎛⎭⎪⎫12 3=18. 4.(2018届高三·长沙四校联考)函数y =ln|x |-x 2的图象大致为( )解析:选A 令f (x )=ln|x |-x 2,定义域为(-∞,0)∪(0,+∞)且f (-x )=ln|x |-x 2=f (x ),故函数y =ln|x |-x 2为偶函数,其图象关于y 轴对称,排除B 、D ;当x >0时,y =ln x -x 2,则y ′=1x-2x ,当x ∈⎝⎛⎭⎪⎪⎫0,22时,y ′=1x-2x >0,y =ln x -x 2单调递增,排除C.故A 符合.5.已知函数f (x )=⎩⎪⎨⎪⎧2x -2,x ≤0,-log 3x ,x >0,且f (a )=-2,则f (7-a )=( )A .-log 37B .-34C .-54D .-74解析:选D 当a ≤0时,2a -2=-2无解;当a >0时,由-log 3a =-2,解得a =9,所以f (7-a )=f (-2)=2-2-2=-74. 6.(2017·全国卷Ⅰ)函数f (x )在(-∞,+∞)单调递减,且为奇函数.若f (1)=-1,则满足-1≤f (x -2)≤1的x 的取值范围是( )A .[-2,2]B .[-1,1]C .[0,4]D .[1,3]解析:选D ∵f (x )为奇函数,∴f (-x )=-f (x ). ∵f (1)=-1,∴f (-1)=-f (1)=1.故由-1≤f (x -2)≤1,得f (1)≤f (x -2)≤f (-1). 又f (x )在(-∞,+∞)单调递减,∴-1≤x -2≤1, ∴1≤x ≤3.7.(2017·衡阳四中月考)函数y =f (x )在区间[0,2]上单调递增,且函数f (x +2)是偶函数,则下列结论成立的是( )A .f (1)<f ⎝ ⎛⎭⎪⎫52<f ⎝ ⎛⎭⎪⎫72B .f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52C .f ⎝ ⎛⎭⎪⎫72<f ⎝ ⎛⎭⎪⎫52<f (1)D .f ⎝ ⎛⎭⎪⎫52<f (1)<f ⎝ ⎛⎭⎪⎫72解析:选B 因为函数f (x +2)是偶函数,所以f (x +2)=f (-x +2),即函数f (x )的图象关于x =2对称,又因为函数y =f (x )在区间[0,2]上单调递增,所以函数y =f (x )在区间[2,4]上单调递减.因为f (1)=f (3),72>3>52,所以f ⎝ ⎛⎭⎪⎫72<f (3)<f ⎝ ⎛⎭⎪⎫52,即f ⎝ ⎛⎭⎪⎫72<f (1)<f ⎝ ⎛⎭⎪⎫52.8.设函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,则实数m 的值为( ) A .-1 B .1 C .2D .-2解析:选A 法一:因为函数f (x )=x 3(a x +m ·a -x )(x ∈R ,a >0且a ≠1)是偶函数,所以f (-x )=f (x )对任意的x ∈R 恒成立,所以-x 3(a -x +m ·a x )=x 3(a x +m ·a -x ),即x 3(1+m )(a x+a -x )=0对任意的x ∈R 恒成立,所以1+m =0,即m =-1.法二:因为f (x )=x 3(a x +m ·a -x )是偶函数,所以g (x )=a x +m ·a -x 是奇函数,且g (x )在x =0处有意义,所以g (0)=0,即1+m =0,所以m =-1.9.若函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,则函数g (x )=f x x在区间(1,+∞)上一定( )A .有最小值B .有最大值C .是减函数D .是增函数解析:选D ∵函数f (x )=x 2-2ax +a 在区间(-∞,1)上有最小值,图象开口向上,对称轴为x =a ,∴a <1.∴g (x )=f x x=x +a x-2a .若a ≤0,则g (x )=x +a x-2a 在(-∞,0),(0,+∞)上单调递增.若0<a <1,则g (x )=x +a x-2a 在(a ,+∞)上单调递增,故g (x )在(1,+∞)上单调递增.综上可得g (x )=x +a x-2a 在(1,+∞)一定是增函数.10.已知f (x )=⎩⎪⎨⎪⎧-ln x -x ,x >0,-ln -x +x ,x <0,则关于m 的不等式f ⎝ ⎛⎭⎪⎫1m <ln 12-2的解集为( )A.⎝ ⎛⎭⎪⎫0,12 B .(0,2)C.⎝ ⎛⎭⎪⎫-12,0∪⎝ ⎛⎭⎪⎫0,12 D .(-2,0)∪(0,2)解析:选C 因为函数f (x )的定义域(-∞,0)∪(0,+∞)关于原点对称,又当x >0时,-x <0,f (-x )=-ln x -x =f (x ),同理,当x <0时,也有f (-x )=f (x ),所以f (x )为偶函数.因为f (x )在(0,+∞)上为减函数,且f (2)=-ln 2-2=ln 12-2,所以由偶函数的性质知f ⎝ ⎛⎭⎪⎫⎪⎪⎪⎪⎪⎪1m <f (2),且m ≠0,所以⎪⎪⎪⎪⎪⎪1m >2,且m ≠0,解得0<m <12或-12<m <0.11.若函数f (x )=x 2+ln(x +a )与g (x )=x 2+e x -12(x <0)的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .(-∞,e)B .(e ,+∞)C .(0,e) D .(0,e ]解析:选C 若函数f (x )与g (x )的图象上存在关于y 轴对称的点,则f (x )与g (-x )=x 2+e -x -12(x >0)的图象有交点,也就是方程ln(x +a )=e -x -12有正数解,即函数y =e -x -12与函数y =ln(x +a )的图象在(0,+∞)上有交点,结合图象可知,只需ln a <e 0-12,∴ln a <12,∴0<a <e.12.已知函数f (x )的定义域为D ,若对任意x 1,x 2∈D ,当x 1<x 2时,都有f (x 1)≤f (x 2),则称函数f (x )在D 上为非减函数.设函数f (x )在[0,1]上为非减函数,且满足以下三个条件:①f (0)=0;②f ⎝ ⎛⎭⎪⎫x 3=12f (x );③f (1-x )=2-f (x ),则f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=( )A.32 B .1C .2 D.52解析:选A 令x =1,可得f (1)=2,那么f ⎝ ⎛⎭⎪⎫13=12f (1)=1,令x =12,可得f ⎝ ⎛⎭⎪⎫12=1,f ⎝ ⎛⎭⎪⎫16=12f ⎝ ⎛⎭⎪⎫12=12,令x =13,可得f ⎝ ⎛⎭⎪⎫19=12f ⎝ ⎛⎭⎪⎫13=12,因为函数是非减函数,所以12=f ⎝ ⎛⎭⎪⎫19≤f ⎝ ⎛⎭⎪⎫18≤f ⎝ ⎛⎭⎪⎫17≤f ⎝ ⎛⎭⎪⎫16=12,所以f ⎝ ⎛⎭⎪⎫18=f ⎝ ⎛⎭⎪⎫17=12,所以f ⎝ ⎛⎭⎪⎫13+f ⎝ ⎛⎭⎪⎫18=1+12=32.13.设f (x )是周期为2的奇函数,当0≤x ≤1时,f (x )=2x (1-x ),则f ⎝ ⎛⎭⎪⎫-52=________.解析:因为f (x )是奇函数,且当0≤x ≤1时,f (x )=2x (1-x ),所以当-1≤x <0时,0<-x ≤1,f (-x )=-2x (1+x )=-f (x ),即f (x )=2x (1+x )(-1≤x <0).又f (x )的周期为2,所以f ⎝ ⎛⎭⎪⎫-52=f ⎝ ⎛⎭⎪⎫-2-12=f ⎝ ⎛⎭⎪⎫-12=2×⎝ ⎛⎭⎪⎫-12×12=-12.答案:-1214.已知函数f (x )=4+x 2ln1+x1-x 在区间⎣⎢⎡⎦⎥⎤-12,12上的最大值与最小值分别为M 和m ,则M +m =________.解析:令g (x )=x 2ln1+x 1-x, 则g (-x )=(-x )2ln1-x 1+x =-x 2ln 1+x1-x=-g (x ),所以函数g (x )为奇函数,其图象关于原点对称,则函数g (x )=f (x )-4的最大值M -4和最小值m -4之和为0,即M -4+m -4=0,∴M +m =8.答案:815.(2018届高三·江西师大附中月考)已知函数f (x )=⎪⎪⎪⎪⎪⎪2x -a 2x 在[0,1]上单调递增,则a 的取值范围为________.解析:令2x =t ,t ∈[1,2],则y =⎪⎪⎪⎪⎪⎪t -a t 在[1,2]上单调递增.当a =0时,y =|t |=t 在[1,2]上单调递增显然成立;当a >0时,函数y =⎪⎪⎪⎪⎪⎪t -a t ,t ∈(0,+∞)的单调递增区间是[a ,+∞),此时a ≤1,即0<a ≤1时成立;当a <0时,函数y =⎪⎪⎪⎪⎪⎪t -a t =t -at ,t ∈(0,+∞)的单调递增区间是[-a ,+∞),此时-a ≤1,即-1≤a <0时成立.综上可得a 的取值范围是[-1,1].答案:[-1,1]16.已知函数f (x )的定义域为A ,若x 1,x 2∈A 且f (x 1)=f (x 2)时总有x 1=x 2,则称f (x )为单函数.例如:函数f (x )=2x +1(x ∈R)是单函数.给出下列命题:①函数f (x )=x 2(x ∈R)是单函数; ②指数函数f (x )=2x (x ∈R)是单函数;③若f (x )为单函数,x 1,x 2∈A 且x 1≠x 2,则f (x 1)≠f (x 2); ④在定义域上具有单调性的函数一定是单函数. 其中真命题的序号是________.解析:对于①,当x 1=2,x 2=-2时,f (x 1)=4=f (x 2),故①错;对于②,f (x )=2x 为单调递增函数,故②正确;而③④显然正确.答案:②③④二、能力拔高练1.当a >0时,函数f (x )=(x 2+2ax )e x 的图象大致是( )解析:选B 由f (x )=0,得x 2+2ax =0,解得x =0或x =-2a ,∵a >0,∴x =-2a <0,故排除A 、C ;当x 趋近于-∞时,e x 趋近于0,故f (x )趋近于0,排除D.2.设曲线y =f (x )与曲线y =x 2+a (x >0)关于直线y =-x 对称,且f (-2)=2f (-1),则a =( )A .0 B.13 C.23D .1解析:选C 依题意得,曲线y =f (x ),即为-x =(-y )2+a (y <0),化简后得y =--x -a ,即f (x )=--x -a ,于是有-2-a =-21-a ,解得a =23.3.已知定义在D =[-4,4]上的函数f (x )=⎩⎪⎨⎪⎧|x 2+5x +4|,-4≤x ≤0,2|x -2|,0<x ≤4,对任意x ∈D ,存在x 1,x 2∈D ,使得f (x 1)≤f (x )≤f (x 2),则|x 1-x 2|的最大值与最小值之和为( )A .7B .8C .9D .10解析:选C 作出函数f (x )的图象如图所示,由任意x ∈D ,f (x 1)≤f (x )≤f (x 2)知,f (x 1),f (x 2)分别为f (x )的最小值和最大值,由图可知|x 1-x 2|max =8,|x 1-x 2|min =1,所以|x 1-x 2|的最大值与最小值之和为9,故选C.4.已知定义在R 上的偶函数f (x )在[0,+∞)上单调递减,若不等式f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立,则实数a 的取值范围为( )A.⎣⎢⎡⎦⎥⎤2327,1 B.⎣⎢⎡⎦⎥⎤-2327,1 C .[1,3]D .(-∞,1]解析:选B ∵函数f (x )是定义域在R 上的偶函数,且-x 3+x 2-a =-(x 3-x 2+a ),∴f (x 3-x 2+a )+f (-x 3+x 2-a )≥2f (1)对x ∈[0,1]恒成立等价于2f (x 3-x 2+a )≥2f (1)对x ∈[0,1]恒成立,又∵f (x )在[0,+∞)上单调递减,∴-1≤x 3-x 2+a ≤1对x ∈[0,1]恒成立.设g (x )=x 3-x 2,则g ′(x )=x (3x -2),则g (x )在⎣⎢⎡⎭⎪⎫0,23上单调递减,在⎝ ⎛⎦⎥⎤23,1上单调递增,又g (0)=g (1)=0,g ⎝ ⎛⎭⎪⎫23=-427,∴g (x )∈⎣⎢⎡⎦⎥⎤-427,0. ∴⎩⎪⎨⎪⎧a ≤1,a -427≥-1,∴a ∈⎣⎢⎡⎦⎥⎤-2327,1.5.已知函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,若f (a )+f (g (2))=0,则实数a 的值为________.解析:因为函数f (x )=⎩⎪⎨⎪⎧x 2,x >0,x +1,x ≤0,g (x )=log 2x ,所以g (2)=log 22=1,f (g (2))=f (1)=1, 由f (a )+f (g (2))=0,得f (a )=-1.当a >0时,因为f (a )=a 2>0,所以此时不符合题意; 当a ≤0时,f (a )=a +1=-1,解得a =-2. 答案:-26.如图放置的边长为1的正方形PABC 沿x 轴滚动,点B 恰好经过原点,设顶点P (x ,y )的轨迹方程是y =f (x ),则对函数y =f (x )有下列判断:①函数y =f (x )是偶函数;②对任意的x ∈R ,都有f (x +2)=f (x -2);③函数y =f (x )在区间[2,3]上单调递减;④函数y =f (x )在区间[4,6]上是减函数.其中判断正确的序号是________.解析:如图,从函数y =f (x )的图象可以判断出,图象关于y 轴对称,每4个单位图象重复出现一次,在区间[2,3]上,随x 增大,图象是往上的,在区间[4,6)上图象是往下的,所以①②④正确,③错误.答案:①②④。
2021-2022年高三第二次综合练习 理科数学 含解析

2021年高三第二次综合练习理科数学含解析一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.(1)已知集合,集合,则=A. B. C. D.【答案】D【解析】,所以,选D.(2)若,则实数的值为A. B. C. D.【答案】B【解析】123211111()d()03232x mx x x mx m+=+=+=⎰,解得,选B.(3)执行如图所示的程序框图.若输出的结果是,则判断框内的条件是A. ?B. ?C. ?D. ?【答案】C【解析】第一次循环,,不满足条件,循环。
第二次循环,,不满足条件,循环。
第三次循环,,不满足条件,循环。
第四次循环,,满足条件,输出。
所以判断框内的条件是,选C.(4)若双曲线的渐近线与抛物线有公共点,则此双曲线的离心率的取值范围是A.B.C.D.【答案】A【解析】双曲线的渐近线为,不妨取,代入抛物线得,即,要使渐近线与抛物线有公共点,则,即,又,所以,所以。
所以此双曲线的离心率的取值范围是,选A.(5)某三棱锥的三视图如图所示,则该三棱锥的体积为A.B.C.D.【答案】A【解析】由题设条件,此几何几何体为一个三棱锥,如图红色的部分.其中高为1,底面是直角边长为1的等腰直角三角形,所以底面积为,所以三棱锥的体积为,选A.(6)某岗位安排3名职工从周一到周五值班,每天只安排一名职工值班,每人至少安排一天,至多安排两天,且这两天必须相邻,那么不同的安排方法有A.种B.种C.种D.种【答案】C【解析】由题意可知,3名职工中只有一人值班一天,此时有种,把另外2人,排好有3个空,将值班一天的这个工人,从3个空中,选一个,另外2人,全排有.所以不同的安排方法共有,选C.(7)已知函数,定义函数给出下列命题:①;②函数是奇函数;③当时,若,,总有成立,其中所有正确命题的序号是当A.②B.①②C.③D.②③【答案】D【解析】①因为,而,两个函数的定义域不同,所以①不成立。
人教版高中数学必修第二册 专题强化训练二 解三角形综合问题 同步精练(含解析)

人教版高中数学必修第二册专题强化训练二解三角形综合问题同步精练一、单选题1.(2021·河南·)在ABC 中,22223sin a b c ab C ++=,则ABC 的形状是()A .等腰直角三角形B .直角三角形C .钝角三角形D .等边三角形2.(2021·新疆昌吉·(理))在ABC 中,75,45,3BAC ABC AC ∠=︒∠=︒=,则AB =()A .362B .463C .564D .6653.(2022·全国·)《易经》中记载着一种几何图形一一八封图,图中正八边形代表八卦,中间的圆代表阴阳太极图,图中八块面积相等的曲边梯形代表八卦田.某中学开展劳动实习,去测量当地八卦田的面积如图,现测得正八边形的边长为8m ,代表阴阳太极图的圆的半径为2m ,则每块八卦田的面积为()2m .A .162162π+-B .1622π-C .16282π+-D .16216π+-4.(2021·河南信阳·(理))在ABC 中,已知1AC =,3BC =,6B π=,则角C 为()A .34πB .4πC .2π或6πD .6π或56π5.(2021·江西·贵溪市实验中学)在ABC 中,根据下列条件解三角形,则其中有二个解的是()A .10,45,70b A C ===B .60,48,60a c B ===C .5,7,8a b c ===D .14,16,45a b A ===6.(2021·全国·)如图所示,有四座城市A ,B ,C ,D ,其中B 在A 的正东方向,且与A 相距120km ,D 在A 的北偏东30°方向,且与A 相距60km ,C 在B 的北偏东30°方向,且与B 相距6013km ,一架飞机从城市D 出发,以360km/h 的速度向城市C 飞行,飞行了15min ,接到命令改变航向,飞向城市B ,此时飞机距离城市B 有()A .120kmB .606kmC .605kmD .603km7.(2021·全国·)满足条件4a =,32b =,45A =︒的三角形的个数是()A .1个B .2个C .3个D .不存在8.(2021·贵州·黔西南州赛文高级中学(理))在ABC 中,若60A ∠=︒,2BC =,且ABC 的面积为2,则ABC 的解数为()A .0B .1C .2D .49.(2021·江苏江苏·)在ABC 中,最大角A ∠是最小角C ∠两倍,且7,8AB AC ==,则BC =()A .72B .10C .105D .7310.(2021·云南红河·(文))ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若1cos 3A =,3b =,2c =,则ABC的面积为()A .1B .2C .22D .22311.(2021·四川达州·(理))ABC 中,1cos 4A =,2AB =,4BC =,则BC 边上的高为()A .153B .154C .152D .15512.(2021·全国全国·)在ABC 中,D 为边BC 上的一点,H 为ABC 的垂心,2021AB AC ⋅=,则AD AH ⋅=()A .2019B .2020C .2021D .2022二、多选题13.(2021·全国·)人民英雄纪念碑位于北京天安门广场中心,是中华人民共和国政府为纪念中国近现代史上的革命烈士而修建的纪念碑.正面镌刻着毛泽东同志所题写的“人民英雄永垂不朽”八个金箔大字.在中国共产党百年华诞到来之际,某学校计划组织学生去瞻仰人民英雄纪念碑,并用学到的数学知识测量其高度.现准备了三种工具:测角仪(可测量仰角与俯角)、米尺(可测量长度)、量角器(可测量平面角度)(工具不一定都要使用),不同小组设计了如下不同的测量方案,其中一定能测量出纪念碑高度的方案有()A .在水平地面上任意寻找两点A ,B 分别测量纪念碑顶端的仰角α,β,再测量A ,B 两点间距离B .在水平地面上寻找两点A ,B 分别测量纪念碑顶端的仰角α,β,再测量A ,B 两点间距离和两点相对于纪念碑底部的张角θC .在纪念碑正东方向找到一座建筑物AB (低于纪念碑),测得建筑物AB 的高度为h ,在该建筑物顶部和底部分别测得纪念碑顶端的仰角α和βD .在纪念碑的正前方A 处测得纪念碑顶端的仰角α,正对纪念碑前行5米到达B 处再次测量纪念碑顶端的仰角β14.(2021·河北·石家庄市第一中学东校区)在ABC 中,a b c 、、分别为A B C ∠∠∠、、的对边,下列叙述正确的是()A .若sin cos AB =,则ABC 为直角三角形B .若cos cos a bB A=则ABC 为等腰三角形C .若cos sin cos A B Ca b c==,则ABC 为等腰直角三角形D .若sin cos a b C c B =+,则4C π=15.(2020·江苏·南通市海门实验学校)设0a >,0b >,称2ab a b +为,a b 的调和平均数,称222a b+为,a b 的加权平均数如图,C 为线段AB 上的点,且AC a =,CB b =,O 为AB 中点,以AB 为直径作半圆,过点C 作AB 的垂线交半圆于D ,连接OD ,AD ,BD ,过点C 作OD 的垂线,垂足为E ,取弧AB 的中点F ,连接FC ,则()A .OD 的长度是a ,b 的几何平均数B .DE 的长度是a ,b 的调和平均数C .CD 的长度是a ,b 的算术平均数D .FC 的长度是a ,b 的加权平均数16.(2021·吉林·汪清县汪清第四中学)ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,则下列说法正确的是()A .若A B >,则sin sin A B>B .若30A =,4b =,3a =,则ABC 有两解C .若ABC 为钝角三角形,则222a b c +>D .若60A =,2a =,则ABC 面积的最大值为317.(2021·黑龙江·哈尔滨市教育局)如图,设ABC 的内角A ,B ,C ,所对的边分别为a ,b ,c ,若3sin cos sin cos 2a B C c B Ab +=,且3CAB π∠=.点D 是ABC 外一点,1,3DC DA ==,下列说法中,正确的命题是()A .ABC 的内角3B π=B .ABC 的内角3C π=C .四边形ABCD 的面积最大值为5332+D .四边形ABCD 的面积无最大值.18.(2021·江苏·南京二十七中)在ABC 中,给出下列4个命题,其中正确的命题是()A .若AB >,则sin sin A B >B .A B <,则cos cos A B >C .若A B >,则tan tan A B>D .A B <,则22cos cos A B>三、填空题19.(2021·宁夏·石嘴山市第三中学(文))ABC 中,D 是BC 上的点,AD 平分BAC ∠,ABD △面积是ADC 面积的2倍,1AD =,22DC =,则AC =___________.20.(2021·山东泰安·)在相距1000米的A ,B 两点处测量目标点C ,若60CAB ∠=︒,75CBA ∠=︒,则B ,C 两点之间的距离为___________米.21.(2021·江苏江苏·)已知四边形ABCD 的面积为2022,E 为AD 边上一点,ABE △,BCE ,CDE △的重心分别为1G ,2G ,3G ,那么123G G G 的面积为___________.22.(2021·四川成都·(理))在ABC 中,已知角2π3A =,角A 的平分线AD 与边BC 相交于点D ,AD =2.则AB +2AC 的最小值为___________.23.(2021·河南信阳·(理))在三角形ABC 中,已知a ,b ,c 分别为角A ,B ,C 的对边,3A π=,1b c -=,2213b c +=,D 在BC 上,且ABDACDbScS=,则BD 的长为________.24.(2021·河南·永城高中(文))在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若22223sin a b c ab C ++=,则C =______.四、解答题25.(2021·全国全国·)如图,在ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边且是三个连续的正整数,其中a b c <<,2C A =.(1)求b ;(2)将线段AB 绕点A 顺时针旋转02πθθ⎛⎫<< ⎪⎝⎭到AD ,且7cos 3θ=,求CAD 的面积.26.(2021·上海·高一课时练习)在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c.已知sin cos 6b A a B π⎛⎫=- ⎪⎝⎭.(1)求角B 的大小;(2)设a =2,c =3,求b 和()sin 2A B -的值.27.(2020·黑龙江·双鸭山一中高一期末(理))已知a ,b ,c 分别为ABC 三个内角A ,B ,C 的对边,且3cos 2sin a A c C+=.(1)求角A 的大小;(2)若5b c +=,且ABC 的面积为3,求a 的值.28.(2021·江西省铜鼓中学高一阶段练习(文))ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知A 为锐角,22sin cos 2c a B C ab--=.(1)求A ;(2)若34b c =,且BC 边上的高为23,求ABC 的面积.29.(2019·浙江省宁波市鄞州中学高一期中)在ABC 中,内角A,B,C 的对边分别为a,b,c,已知2222sin sin sin b c a B Abc C+--=.(1)求角C 的值;(2)若4a b +=,当边c 取最小值时,求ABC 的面积.30.(2021·广东·东莞四中高一阶段练习)在ABC 中,角,,A B C 的对边分别为,,a b c ,若1sin cos sin cos 2a B C c B Ab +=,且c b >.(1)求角B 的值;(2)若6A π=,且ABC 的面积为43,求BC 边上的中线AM 的长.31.(2021·广东·深圳市龙岗区布吉中学高一期中)ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知()2cos cos b a C c A -=.(1)求角C 的大小;(2)若2a =,()2cos cos c a B b A b -=,求ABC 的面积.32.(2018·上海大学市北附属中学高一期中)已知函数()()221cos sin ,0,2f x x x x π=-+∈.(1)求()f x 的单调递增区间;(2)设ABC 为锐角三角形,角A 所对边19a =,角B 所对边5b =,若()0f A =,求ABC 的面积.33.(2021·浙江浙江·高一期末)在锐角ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,若cos 3sin 2B B +=,cos cos 2sin 3sin B C Ab c C+=.(1)求角B 的大小和边长b 的值;(2)求ABC 面积的最大值.参考答案1.D 【分析】在ABC 中,22223sin a b c bc C ++=,由余弦定理知,2222cos b a c ab C +-=,两式相加,利用基本不等式及正弦函数的有界性即可判断出该ABC 的形状.【详解】在ABC 中,22223sin a b c ab C ++=,又由余弦定理知,2222cos b a c ab C +-=,两式相加得:222()2(3sin cos )4sin()6a b ab C C ab C π+=+=+,222sin()1622b a C a bab abπ+∴+== (当且仅当c b =时取“=”),又sin()16C π+ ,sin()16C π∴+=(当且仅当a b =时成立),C 为ABC ∆的内角,62C ππ∴+=,3C π=,又a b =,ABC ∴的形状为等边△.故选:D .2.A 【分析】由条件结合内角和定理可求ACB ∠,再由正弦定理求AB .【详解】∵75,45BAC ABC ∠=︒∠=︒,++180BAC ABC ACB ∠∠∠=∴60ACB ∠=︒,由正弦定理得,sin 6036sin 452AC AB ︒=︒=.故选:A .3.A 【分析】根据正八边形分割成8个全等的等腰三角形,顶角为360458=,设等腰三角形的腰长为a ,由正弦定理求得a 的值,求得三角形的面积S ,进而求得每块八卦田的面积.【详解】由图可知,正八边形分割成8个全等的等腰三角形,顶角为360458=,设等腰三角形的腰长为a ,由正弦定理可得8135sin 45sin 2a =,解得13582sin2a =,所以三角形的面积为211351cos135(82sin )sin 4532216(21)222S -=⋅=⨯=+,则每块八卦田的面积为22116(21)216216()82m ππ+-⨯=+-.故选:A.4.C 【分析】由正弦定理可得3sin 2A =,根据三角形的性质确定角A 的大小,进而求角C .【详解】由正弦定理知:sin sin AC BCB A =,可得:3sin 2A =,∴3A π=或23A π=,又AC BC <,∴6B A π=<,则有3A π=或23A π=,∴2C π=或6π.故选:C .5.D 【分析】已知两角和一边,三角形确定,可判断A ;已知两边及夹角用余弦定理,可判断B ;已知三边三角形确定可判断C ;正弦定理与大边对大角可判断D 【详解】A :10,45,70b A C ===,已知两角和一边,三角形确定,只有一解;B :60,48,60a c B ===,已知两边及夹角用余弦定理,只有一解;C :5,7,8a b c ===已知三边三角形确定,只有一解;D :因为216sin 422sin 1147b AB a⨯===<,且b a >,故B A >,故有两解.故选:D.6.D 【分析】设15min 后飞机到了E 处,求出DE ,ABD △中由余弦定理求得BD ,由勾股定理逆定理知90ADB ∠=︒,这样易得,ABD DBC ∠∠,从而得出cos BDC ∠,然后在BDE 中由余弦定理得出BE .【详解】设15min 后飞机到了E 处,则136090km 4DE =⨯=,由题意60DAB ∠=︒,//DA BC ,60AD =,120AB =,221601202601206032BD =+-⨯⨯⨯=,所以222AD BD AB +=,所以90DB ∠=︒,从而30ABD ∠=︒,于是90DBC ∠=︒2222(603)(6013)240DC BD BC =+=+=,6033cos 2404BD BDC CD ∠===,DBE 中,2222232cos (603)90260390360034BE BD DE BD DE BDE =+-⋅∠=+-⨯⨯⨯=⨯,603BE =.故选:D .7.B 【分析】由正弦定理求得sin 3sin 4b A B a ==,得到B 有两解,即可得到答案.B 【详解】在ABC 中,因为4a =,32b =,45A =︒,由正弦定理sin sin a b A B =,可得sin 32sin 453sin 44b A B a ===,因为432<,即a b <,则0135B ︒︒<<有两解,所以三角形的个数是2个.故选:B .8.C 【分析】结合圆的几何性质判断A 点的轨迹,结合三角形ABC 的面积确定三角形ABC 的解的个数.【详解】同弧所对的圆周角相等,如图,满足条件的A 点在一段优弧CDB 上运动(不包括B ,C ),三角形ABC 的高的最大时,A 在D 点位置,此时三角形ABC 为等边三角形,边长为2,高为3,此时三角形ABC 面积为12332⨯⨯=.若ABC 的面积为2,则此时的高为2,所以此时A 点可以在如图的1A ,2A 处.故选:C9.C 【分析】根据正弦定理,结合余弦定理、二倍角的正弦公式进行求解即可.【详解】设7,8,c AB b AC a BC =====,由正弦定理可知:77cos sin sin sin 2sin 2sin cos sin 14a c a a aC A C C C C C C =⇒=⇒=⇒=,由余弦定理可知:222222cos 49641610510514ac b a ab C a a a a =+-⇒=+-⋅⇒=⇒=,或105a =-(舍去),故选:C 10.C 【分析】利用平方关系求得sin A ,再利用三角形的面积公式即可得解.【详解】解:因为1cos 3A =,所以22sin 3A =,所以1sin 222ABC S bc A ==△.故选:C .11.C 【分析】先根据余弦定理求出4b =,然后利用等面积法即可求出BC 边上的高.【详解】在ABC 中,设AB c =,BC a =,AC b =,则2c =,4a =,1cos 4A =,且222cos 2b c a A bc +-=,21416422b b +-∴=⨯,2120b b ∴--=,()()430b b ∴-+=,4b ∴=,1cos 4A =,2115sin 144BAC ⎛⎫∴∠=-= ⎪⎝⎭,设BC 边上的高为h ,在ABC 中利用等面积法,则11sin 22ABCSBC h AB AC BAC =⨯=⨯∠,1115424224h ∴⨯⨯=⨯⨯⨯,152h ∴=.故选:C 12.C 【分析】令BC ,AB 边上的高分别为AE ,CF ,利用向量共线及向量数量积可得||||AD AH AE AH ⋅=,再借助面积法及正弦定理计算可得||||AE AH AB AC =⋅即可得解.【详解】设BC ,AB 边上的高分别为AE ,CF ,则AE 与CF 交点为H ,如图,由B ,C ,D 三点共线可得:(01)CD tCB t =≤≤,于是有(1)AD t AC t AB =-+,则(1)(1)||||cos ||||cos AH t AC AH t AB AD AH t AC AH CAE t AB AH BAE =-⋅+⋅=-∠∠⋅+(1)||||||||||||t AE AH t AE AH AE AH =-+=,在ABC 中,1|||||si 1|2n 2||ABCSAE AB AC BC BAC =∠=,则||||sin ||||AB AC BAC AE BC ∠=,在ACH 中,由正弦定理得||||sin sin AH AC ACH AHC=∠∠,则||||||sin()sin sin()2AH AC AC ABC ABC BAC ππ==-∠∠-∠,在ABC 中,由正弦定理有||||sin sin AC BC ABC BAC =∠∠,于是得||cos ||sin BC BACAH BAC∠=∠,因此,||||sin ||cos ||||||||cos sin ||AB AC BAC BC BACAD AH AE AH AB AC BACBAC BC ∠∠⋅==⋅=∠∠2021AB AC =⋅=,所以AD AH ⋅=2021.故选:C 13.BCD 【分析】根据各选项的描述,结合正余定理的边角关系判断所测数据是否可以确定纪念碑高度即可.【详解】A :如果A ,B 两点与纪念碑底部不在一条直线上时,就不能测量出纪念碑高度,故不正确.B :在直角三角形△ADC 和△BDC 中用CD 来表示AC ,BC ,在△ABC 中用余弦定理就可以计算出纪念碑高度,故正确.C :如下图,△ABD 中由正弦定理求AD ,则纪念碑高sin CD h AD α=+,正确;D :如下图,△ABD 中由正弦定理求AD ,则纪念碑高sin CD AD α=,正确;故选:BCD.14.CD 【分析】利用诱导公式和正弦函数的性质判断A ,利用正弦定理结合正弦函数的性质两角和的正弦公式,判断B ,C ,D.【详解】∵sin cos A B=∴sin sin()2A B π=-∴22A B k ππ-+=或22A B k πππ+-=+,∴2+2A B k ππ+=或22A B k ππ-=+,又0A B π<+<,A B ππ-<-<,∴2A B π+=或2A B π-=,A 错,∵cos cos a b B A=∴sin sin cos cos A BB A=∴sin 2sin 2A B =,∴222+A B k ππ+=或222A B k π-=,又0A B π<+<,A B ππ-<-<,∴2A B π+=或0A B -=,∴ABC 为等腰三角形或直角三角形,B 错,∵cos sin cos A B Ca b c ==∴s c i os sin n sin cos sin A B CA B C ==∴tan tan 1A C ==,又0A π<<,0C π<<∴4A C π==,∴ABC 为等腰直角三角形,C 对,∵sin cos a b C c B =+,∴sin sin sin sin cos A B C C B=+∴sin()sin sin sin cos B C B C C B+=+∴sin cos sin sin B C B C =,又sin 0B ≠,∴tan 1C =,又0C π<<,∴4C π=,D 对,故选:CD.15.BD 【分析】由题意可得:2a b OC -=,CD ab =,2a b OD +=,在Rt OCD △中,2CD DE OD =,在Rt OCF中,22CF OF OC =+,再根据几何平均数,调和平均数,算术平均数,加权平均数即可得出答案.【详解】解:由题意可得:2a bOC -=,CD ab =,2a b OD +=,故A 错误,C 错误;在Rt OCD △中,由射影定理可得:222CD ab abDE a b OD a b ===++,故B 正确;在Rt OCF 中,由勾股定理可得:222222()()222a b a b a b CF OF OC +-+=+=+=,故D 正确.故选:BD .16.ABD 【分析】对于A 选项,由A B >,得到a b >,再利用正弦定理判断;对于B 选项,由sin b A a b <<判断;对于C 选项,由ABC 为钝角三角形且C 为钝角,利用余弦定理判断;对于D 选项,利用余弦定理与基本不等式集合三角形面积公式求解判断.【详解】对于A 选项,若A B >,则a b >,由正弦定理可得sin sin a bA B=,所以,sin sin A B >,A 选项正确;对于B 选项,sin 4sin 302b A ==,则sin b A a b <<,如图:所以ABC 有两解,B 选项正确;对于C 选项,若ABC 为钝角三角形且C 为钝角,则222cos 02a b c C ab+-=<,可得222a b c +<,C 选项错误;对于D 选项,由余弦定理与基本不等式可得2222242cos 2a b c bc A b c bc bc bc bc ==+-=+-≥-=,即4bc ≤,当且仅当2b c ==时,等号成立,所以13sin 324ABC S bc A bc ==≤△,D 选项正确.故选:ABD 17.ABC 【分析】由正弦定理化边为角后求得B ,从而得三角形的内角,判断AB ,用D 角表示出四边形的面积(先由余弦定理求得2AC ),然后由三角函数知识得最值判断CD .【详解】因为3sin cos sin cos 2a B C c B Ab +=,由正弦定理得3sin sin cos sin sin cos sin 2A B C C B A B +=,B 为三角形内角,sin 0B ≠,所以3sin cos cos sin 2A C A C +=,3sin()2A C +=,所以3sin sin()2B AC =+=,3B π=或23B π=,又3CAB π∠=,所以23B π=不合题意,所以3B π=,从而3ACB π∠=,AB 正确;ACD △中,2222cos 91231cos 106cos AC AD CD AD CD D D D =+-⋅=+-⨯⨯⨯=-,所以21333353sin sin cos 24222ABCD S AD CD D AC D D =⋅+=-+533sin()32D π=-+,(0,)D π∈,2,333D πππ⎛⎫-∈- ⎪⎝⎭,所以32D -=ππ,即56D π=时,5332ABCD S =+为最大值,无最小值.C 正确,D 错.故选:ABC .18.ABD 【分析】利用正弦定理判断A,D,利用余弦函数,正切函数的单调性判断B,C,由此确定正确选项.【详解】∵A >B ,∴a >b ,∴sin A >sin B ,A 对,∵A >B ,且(0)A B π∈,,,又函数cos y x =在(0)π,上为减函数,∴cos cos A B >,B 对,取236A B C ππ===,,则A >B ,但tan tan A B <,C 错,∵A <B ,(0)A B π∈,,∴22sin sin A B <,∴22cos cos A B >,D 对,故选:ABD.19.1【分析】设ABC 中BC 边上的高为h ,进而根据题意得2AB AC =,22BD DC ==,再结合cos cos 0BDA CDA ∠+∠=求解即可.【详解】解:因为AD 平分BAC ∠,ABD △面积是ADC 面积的2倍,所以CAD BAD ∠=∠,1sin 2ABDS AB AD BAD =⋅⋅⋅∠,1sin 2ADCAC A S AD C D ⋅⋅⋅∠=,所以2AB AC =,设ABC 中BC 边上的高为h ,因为12ABDSBD h =⋅⋅,12ADCDC h S ⋅=⋅,所以22BD DC ==,因为1AD =,所以在ABD △中,222234cos 222AD BD AB AC BDA AD BD +--∠==⋅,在ADC 中,222232cos 22AC AD DC AC CDA AD DC -+-∠==⋅.因为()cos cos cos BDA CDA CDA π∠=-∠=-∠,所以cos cos 0BDA CDA ∠+∠=,即2233420222AC AC --+=,解得1AC =故答案为:120.5006【分析】由题可得45ACB ∠=︒,利用正弦定理即可求出.【详解】由题可得180607545ACB ∠=︒-︒-︒=︒,由正弦定理可得sin sin AB BCACB CAB=∠∠,即31000sin 25006sin 22AB CABBC ACB⨯⋅∠===∠米.故答案为:5006.21.6743##【分析】以点A 为原点,射线AD 为x 轴非负半轴建立坐标系,设出点B ,C ,D ,E 的坐标,由此表示出点1G ,2G ,3G ,再借助向量探求123G G G 的面积与四边形ABCD 的面积的关系即可计算作答.【详解】以点A 为原点,射线AD 为x 轴非负半轴建立平面直角坐标系,如图,设00(,),(,),(,0),(,0)(0)B a b C c d D e E x x e ≤≤,因ABE △,BCE ,CDE △的重心分别为1G ,2G ,3G ,则01(,)33G a x b +,02(,)33G a c x b d+++,03(,)33c e x G d ++,1232(,),(,)3333c d a e b G G G G -==,123G G G 面积1232212321231232123211||||sin (||||)()22G G G S G G G G G G G G G G G G G G G =∠=-⋅22222211[()()][()()]()()23333333323333c d a e b c a e d b c b d a e ---=++-⋅+⋅=⋅-⋅11||2333318c bd ae bc de ad -=⋅-⋅=+-(,),(,)AC c d DB a e b ==-,同理可得四边形ABCD 的面积:111||||sin ,|()|||222ABCD S AC BD AC BD bc d a e bc de ad =〈〉=--=+-,于是得123116742022993ABC G G D G S S ==⨯=,所以123G G G 的面积为6743.故答案为:674322.642+【分析】根据三角形的面积公式列方程,结合基本不等式来求得正确答案.【详解】,,,2AB c AC b BC a AD ====,依题意AD 是角A 的角平分线,由三角形的面积公式得1π1π12π2sin 2sin sin 232323c b bc ⨯⨯⨯+⨯⨯⨯=⨯⨯,化简得22c b bc +=,1112b c +=,()112222223c b AB AC c b c b b c b c ⎛⎫⎛⎫+=+=++=++ ⎪ ⎪⎝⎭⎝⎭2232642c b b c ⎛⎫≥+⋅=+ ⎪ ⎪⎝⎭.当且仅当2,2c bc b b c==,2222,22,222b b b b b c ⋅+=⋅=+=+时等号成立.故答案为:642+23.275##【分析】由已知可得3b =,2c =,根据余弦定理求a ,再由题设三角形面积间的等量关系可得23BD CD =,即可求BD 的长.【详解】∵1b c -=,2213b c +=,∴()222()62bc b c bc +--==,易得:3b =,2c =,在三角形ABC 中,由余弦定理得:222cos 1312cos73a b c bc A π=+-=-=,∵ABDACD bScS=,即ABD ACDS c Sb=,∴23BD CD =,又7BD CD +=,∴275BD =.故答案为:275.24.3π【分析】应用余弦定理,结合已知等量关系、辅助角公式可得222sin 6ab C a b π⎛⎫+=+ ⎪⎝⎭,由基本不等式可得sin 16C π⎛⎫+≥ ⎪⎝⎭,最后根据正弦函数的性质即可求C 的大小.【详解】在△ABC 中,由余弦定理2222cos c a b ab C =+-,代入22223sin a b c ab C ++=.得22222cos 23sin a b ab C ab C +-=,∴222sin cos 3sin 26ab C ab C ab C a b ab π⎛⎫+=+=+ ≥⎪⎝⎭,即2sin 26ab C ab π⎛⎫+≥ ⎪⎝⎭.∴sin 16C π⎛⎫+≥ ⎪⎝⎭,即sin 16C π⎛⎫+= ⎪⎝⎭,又0C π<<.∴3C π=.故答案为:3π.25.(1)5b =(2)351524+【分析】(1)根据题意可得1a b =-,1c b =+,由正弦定理可得()1cos 21b A b +=-,利用余弦定理可得()4cos 21b A b +=+,列出方程,解方程即可;(2)根据题意和三角函数的同角关系可得2sin 3θ=,利用两角和的正弦公式求出sin CAD ∠,结合三角形的面积公式计算即可.(1)由题意知a ,c 可以分别表示为1b -,1b +,由正弦定理,得1111sin sin sin 22sin cos b b b b A C A A A-+++===,得()1cos 21b A b +=-.由余弦定理得()()()()222114cos 2121b b b b A b b b ++--+==++,所以()()412121b b b b ++=+-,解得5b =.(2)由(1)知5b =,6c =,3cos 4BAC ∠=,则7sin 4BAC ∠=.因为7cos 3θ=,且02πθ<<,所以2sin 3θ=,所以()7732732sin sin sin cos cos sin 434312CAD BAC BAC BAC θθθ+∠=∠+=∠+∠=⨯+⨯=则CAD 的面积1173235152sin 5622124S bc CAD ++=∠=⨯⨯⨯=.26.(Ⅰ)3π;(Ⅱ)7b =,3314.【详解】分析:(Ⅰ)由题意结合正弦定理边化角结合同角三角函数基本关系可得3tanB =,则B =π3.(Ⅱ)在△ABC 中,由余弦定理可得b =7.结合二倍角公式和两角差的正弦公式可得()33214sin A B -=.详解:(Ⅰ)在△ABC 中,由正弦定理a b sinA sinB=,可得bsinA asinB =,又由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,得π6asinB acos B ⎛⎫=- ⎪⎝⎭,即π6sinB cos B ⎛⎫=- ⎪⎝⎭,可得3tanB =.又因为()0πB ∈,,可得B =π3.(Ⅱ)在△ABC 中,由余弦定理及a =2,c =3,B =π3,有22227b a c accosB =+-=,故b =7.由π6bsinA acos B ⎛⎫=- ⎪⎝⎭,可得37sinA =.因为a <c ,故27cosA =.因此43227sin A sinAcosA ==,212217cos A cos A =-=.所以,()222sin A B sin AcosB cos AsinB -=-=4311333727214⨯-⨯=.点睛:在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.27.(Ⅰ)23π;(Ⅱ)21.【分析】(Ⅰ)由题意结合正弦定理边化角,整理计算可得sin 16A π⎛⎫-= ⎪⎝⎭,则23A π=.(Ⅱ)由三角形面积公式可得:4bc =,结合余弦定理计算可得221a =,则21a =.【详解】(Ⅰ)由正弦定理得,,∵,∴,即.∵∴,∴∴.(Ⅱ)由:可得.∴,∵,∴由余弦定理得:,∴.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.28.(1)6π;(2)73.【分析】(1)先用余弦定理化余弦为边,再用正弦定理化边为角从而求得A ;(2)由余弦定理用c 表示a ,然后把三角形的面积用两种方法表示求得c ,从而可计算出面积.【详解】(1)由22sin cos 2c a B C ab--=得222sin 2cos ab B ab C c a -=-,由余弦定理得222222sin ab B c a b c a +--=-,所以2sin a B b =,由正弦定理得2sin sin sin A B B =,B 是三角形内角,sin 0B ≠,所以1sin 2A =,又A 为锐角,所以6A π=.(2)由(1)22222332cos 2cos 1646a b c bc A c c c c π=+-=+-⨯⋅⋅2716c =,74a c =,所以11sin 2322ABC S bc A a ==⨯△,即2131172324224c c ⨯⨯=⨯⨯,47c =,3214b c ==,111sin 214773222ABC S bc A ==⨯⨯⨯=△.【点睛】思路点睛:本题考查正弦定理、余弦定理、三角形面积公式.利用正弦定理和余弦定理进行边角互化是解题关键.三角形的面积采取了二次计算,通过不同的计算方法得出等式,从而求解.这是一种解题技巧.29.(1)π3C =;(2)3ABCS =.【分析】(1)根据正弦定理,将角化为边的表达形式;结合余弦定理即可求得角C 的值.(2)由余弦定理求得2c 与ab 的关系,结合不等式即可求得c 的最小值,即可得到ab 的值,进而求得三角形面积.【详解】(1)由条件和正弦定理可得2222b c a b a b+-=-,整理得222b a c ab +-=从而由余弦定理得1cos 2C =.又∵C 是三角形的内角,∴π3C =.(2)由余弦定理得222222cos c a b ab C a b ab =+-=+-,∵4a b +=,∴()22223163c a b ab a b ab ab =+-=+-=-,∴2216316342a b c ab +⎛⎫=-≥-= ⎪⎝⎭(当且仅当2a b ==时等号成立).∴c 的最小值为2,故1sin 32ABCSab C ==.【点睛】本题考查了正弦定理与余弦定理的简单应用,边角关系的转化及不等式在求最值中的用法,属于基础题.30.(1)6π;(2)27.【分析】(1)先由正弦定理边角互化,计算求得sin B ;(2)由(1)可知ABC 是等腰三角形,根据面积公式求边长a ,AMC 中,再根据余弦定理求中线AM 的长.【详解】(1)∵1sin cos 2a B Ab =,由正弦定理边角互化得1sin sin cos sin sin cos sin 2A B C C B A B +=,由于(0,),sin 0B B π∈≠,∴1sin cos sin cos 2A C C A +=,即1sin()2A C +=,得1sin 2B =.又c b >,∴02B π<<,∴6B π=.(2)由(1)知6B π=,若6A π=,故a b =,则2112sin sin 43223ABC S ab C a π∆===,∴4a =,4a =-(舍)又在AMC 中,22222cos3AM AC MC AC MC π=+-⋅,∴222221121()2cos42242()282232AM AC AC AC AC π=+-⋅⋅⋅=+-⋅⋅⋅-=,∴27AM =.31.(1)4π;(2)12.【分析】(1)利用正弦定理化边为角,利用三角恒等变换公式化简,得到2cos 2C =,从而求得C 的大小;(2)利用余弦定理化简()2cos cos c a B b A b -=,得到222a b =,求出b ,再计算面积即可.【详解】解:(1)由已知及正弦定理,得2sin cos sin cos sin cos B C A C C A -=.∴()2sin cos sin cos cos sin sin B C A C A C A C =+=+.∵πA C B +=-,∴()sin sin A C B +=.∴2sin cos sin B C B =.又∵sin 0B ≠,∴2cos 2C =.∵()0,πC ∈,∴π4C =.(2)由已知及余弦定理,得222222222a c b b c a ac bc b ac bc +-+-⋅-⋅=.222222222a cb bc a b +-+--=化简,得222a b =.又∵2a =,∴1b =.∴ABC 的面积1121sin 212222ABC ab C S ==⨯⨯⨯=△.【点睛】在处理三角形中的边角关系时,一般全部化为角的关系,或全部化为边的关系.题中若出现边的一次式一般采用到正弦定理,出现边的二次式一般采用到余弦定理.应用正、余弦定理时,注意公式变式的应用.解决三角形问题时,注意角的限制范围.32.(1),2p p 轹÷ê÷÷êøë;(2)1534【分析】(1)利用降次公式化简()f x ,然后利用三角函数单调区间的求法,求得()f x 的单调递增区间.(2)由()0f A =求得A ,用余弦定理求得c ,由此求得三角形ABC 的面积.【详解】(1)依题意()()2211()cos sin cos 20,π22f x x x x x =-+=+Î,由2ππ22πk x k -≤≤得πππ2k x k -≤≤,令1k =得ππ2x ≤≤.所以()f x 的单调递增区间,2p p 轹÷ê÷÷êøë.(2)由于a b <,所以A 为锐角,即π0,02π2A A <<<<.由()0f A =,得11cos 20,cos 222A A +==-,所以2ππ2,33A A ==.由余弦定理得2222cos a b c bc A =+-⋅,2560c c -+=,解得2c =或3c =.当2c =时,22219cos 0238a cb B ac +-==-<,则B 为钝角,与已知三角形ABC 为锐角三角形矛盾.所以3c =.所以三角形ABC 的面积为113153sin 532224bc A =⨯⨯⨯=.【点睛】本小题主要考查二倍角公式,考查三角函数单调性的求法,考查余弦定理解三角形,考查三角形的面积公式,属于基础题.33.(1)3B π=,32b =;(2)3316.【分析】(1)根据cos 3sin 2B B +=得出sin 16B π⎛⎫+= ⎪⎝⎭,然后根据角B 是锐角得出3B π=,最后根据正弦定理与余弦定理对cos cos 2sin 3sin B C Ab c C+=进行转化,即可得出结果;(2)由正弦定理得出sin a A =、sin c C =,然后根据23A C π+=得出,62A ππ⎛⎫∈ ⎪⎝⎭,再然后根据解三角形面积公式得出1sin 2ABC S ac B =△,并将其转化为33sin 28616ABC S A △π⎛⎫=-+ ⎪⎝⎭,最后根据正弦函数的性质即可求出最值.【详解】(1)因为cos 3sin 2B B +=,所以13cos sin 122B B +=,sin 16B π⎛⎫+= ⎪⎝⎭,因为角B 是锐角,所以3B π=,因为cos cos 2sin 3sin B C Ab c C+=,所以由正弦定理与余弦定理易知,2222222223a c b a b c aabc abc c +-+-+=,整理得222323a a abc c=,解得32b =.(2)因为1sin sin sin a b cA B C===,所以sin a A =,sin c C =,因为02A π<<,02C <<π,23A C π+=,所以,62A ππ⎛⎫∈ ⎪⎝⎭,则1133sin sin sin sin sin 222423ABC S ac B A C A A △π⎛⎫==⨯-⨯⨯= ⎪⎝⎭221cos cos sin cos sin 33333sin sin sin 4422A A A A A A ππ⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭-+()23333sin sin sin 21cos 288161cos 6A A A A A =+=+-33333sin 2cos 2sin 21616168616A A A π⎛⎫=-+=-+⎪⎝⎭,因为,62A ππ⎛⎫∈ ⎪⎝⎭,所以52666A ,πππ⎛⎫-∈ ⎪⎝⎭,则1sin 2,162A π骣纟琪ú-Î琪琪ú桫û,33333sin 2,8616816A π⎛⎤⎛⎫-+∈ ⎥ ⎪ ⎝⎭⎝⎦,故333,816ABC S △⎛⎤∈ ⎥ ⎝⎦,ABC 面积的最大值为3316.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学练习册拓展2答案
数学练习册拓展二
1. 张师傅把一根木头锯成三段用36分钟,他锯一根同样的木头用108分钟,这根木头锯了几段?
2. 小凡在计算1.5-a+2.5时,漏看了小数点,错算成15-a+25,这样算得的结果比正确的结果大多少?
3. 笑笑在计算一道除法题目时,不小心把除数79看成了97,结果商是7还余82,正确的商是多少?
4. 一筐苹果连筐重48千克,取出一半苹果后连筐重25千克,筐重多少千克?
5. 小花在计算120-□÷5时,先算减法,再算除法,得到的结果是20,正确的结果是多少?
6. 给一本书编页码,一共用了723个数字,这本书一共多少页?(从一位数、两位数、三位数分别计算)
7. 街道两边共有100根灯柱,每2根灯柱之间有一个花坛,街道的一边有多少个这样的花坛?
8. 把一根长17.5米的铁丝截成3段。
已知第一段加第二段共长
9.75米,第二段加第三段共长10.5米。
求第二段铁丝的长度?
9. 把12个苹果沿一个圆桌边排成一圈,每2个苹果之间放一个盘子,一共放几个盘子?
10.海华小学的教学楼,相邻的两层之间都有12级台阶,小明从1楼走到3楼,共要走多少级台阶
11.在一个周长为40米的圆形池塘边等距离栽树,每4米栽一棵树,一共可以栽多少棵树?
12.3×3×3×3×……×3(2000个3),那么积的末位数字是多少?
13.同学们围坐在周长为36米的花坛周围休息,每隔2米坐一名同学,花坛周围一共坐了多少名同学?
14.小明家所在楼层每上一层楼要走10级台阶,小明回家一共要走50级台阶,他家住在几楼?
15.乐乐在计算14×(□+3)时,把算式错写成14×□+3.这样得到的结果与正确答案相差多少?
16.水果店有5箱苹果。
如果从每只箱子里取30千克,那么5只箱子剩下的重量正好等于原来两箱苹果的重量。
原来每只箱子有多少千克苹果?
17.一个数的3倍加上6,再减去9,最后乘2,结果得60,这个数是多少?
18.小明家住在花苑大厦9楼,某天由于大厦停电,小明步行上楼,他从1楼到3楼用了46秒,他从3楼到家还要多少秒?。