数字图像处理图像编码
数字图像处理实验报告 (图像编码)

实验三图像编码一、实验内容:用Matlab语言、C语言或C++语言编制图像处理软件,对某幅图像进行时域和频域的编码压缩。
二、实验目的和意义:1. 掌握哈夫曼编码、香农-范诺编码、行程编码2.了解图像压缩国际标准三、实验原理与主要框架:3.1实验所用编程环境:Visual C++6.0(简称VC)3.2实验处理的对象:256色的BMP(BIT MAP )格式图像BMP(BIT MAP )位图的文件结构:(如图3.1)图3.1 位图的文件结构具体组成图:单色DIB 有2个表项16色DIB 有16个表项或更少 256色DIB 有256个表项或更少 真彩色DIB 没有调色板每个表项长度为4字节(32位) 像素按照每行每列的顺序排列每一行的字节数必须是4的整数倍biSize biWidth biHeight biPlanes biBitCount biCompression biSizeImagebiXPelsPerMeter biYPelsPerMeter biClrUsedbiClrImportantbfType=”BM ” bfSizebfReserved1 bfReserved2 bfOffBits BITMAPFILEHEADER位图文件头 (只用于BMP 文件)BITMAPINFOHEADER位图信息头Palette 调色板DIB Pixels DIB 图像数据3.3 数字图像基本概念数字图像是连续图像(,)f x y 的一种近似表示,通常用由采样点的值所组成的矩阵来表示:(0,0)(0,1)...(0,1)(1,0)(1,1)...(1,1).........(1,0)(1,1)...(1,1)f f f M f f f M f N f N f N M -⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥----⎣⎦每一个采样单元叫做一个像素(pixel ),上式(2.1)中,M 、N 分别为数字图像在横(行)、纵(列)方向上的像素总数。
数字图像处理数字图像的压缩编码

debbie. bmp BMP是一种与设备无关的位图格式。 256×256,65KB 一般采用非压缩模 式
8
400×400,10.9KB,
原图像数据468KB
5.1.1 图像压缩编码的必要性
2000年5月植被指数遥感图.bmp,原图像数据976×720=2MB
9
5.1.1 图像压缩编码的必要性
Buaa.jpg,0.98MB ,原图像数据1900×1560=8.5MB
35
5.1.3 图像压缩编码的分类
3.按压缩方法进行分类
静图:静止图像(要求质量高) 动图:活动的序列图像(相对质量要求低,压缩 倍数要高)
36
5.1.3 图像压缩编码的分类
4.按失真与否进行分类
无失真压缩:经压缩后再恢复图像与原图像无任何 区别, 一般压缩倍数 < 2
有限失真压缩:单帧(静)4~20倍。图像序列 (x、y、t)50~200倍
像素相关性大:压缩潜力大
评价受人的影响大(军标)
4
5.1 概述
图像的特点
数据量大,为其存储、传输带来困难,需压缩
例:电话线传输速率一般为56kbit/s(波特率)
一幅彩色图像640×480×24bit = 7Mbit大小 1.传输一幅图像:时间约2分钟左右 如压缩20倍,传一幅图6s左右,可以接受,实用 2.实时传送:640×480×24bit×25帧/s=175Mbit/s,
小,这种信息就被称为视觉心理冗余。
33K
15K
28
5.1.2 图像压缩编码的可能性
图像无损压缩的原理
RGB RGB RGB RGB
RGB
RGB RGB
RGB
RGB RGB
图像编码的基本原理

图像编码的基本原理图像编码是数字图像处理中的重要环节,它通过对图像进行压缩和编码,实现对图像信息的有效存储和传输。
在图像编码的过程中,需要考虑到图像的信息量、保真度、压缩比等多个因素,因此,图像编码的基本原理显得尤为重要。
首先,图像编码的基本原理包括两个主要方面,压缩和编码。
压缩是指通过一定的算法和技术,减少图像数据的存储空间和传输带宽,而编码则是将压缩后的图像数据转换成数字信号,以便于存储和传输。
在实际的图像编码过程中,通常会采用有损压缩和无损压缩两种方式,以满足不同应用场景的需求。
有损压缩是指在压缩图像数据的同时,会损失一定的信息量,但可以获得更高的压缩比。
常见的有损压缩算法包括JPEG、MPEG等,它们通过对图像进行离散余弦变换、量化、熵编码等步骤,实现对图像数据的有损压缩。
而无损压缩则是在不损失图像信息的前提下,实现对图像数据的压缩。
无损压缩算法主要包括LZW、Huffman编码等,它们通过对图像数据的统计特性进行编码,实现对图像数据的无损压缩。
除了压缩和编码外,图像编码的基本原理还包括了对图像信息的分析和处理。
在图像编码的过程中,需要对图像进行预处理、采样、量化等操作,以便于后续的压缩和编码。
同时,还需要考虑到图像的特性和人眼的视觉感知特点,以实现对图像信息的高效编码和保真传输。
总的来说,图像编码的基本原理涉及到压缩、编码和图像信息处理等多个方面,它是数字图像处理中的重要环节,直接影响到图像的存储、传输和显示质量。
因此,对图像编码的基本原理进行深入理解和研究,对于提高图像处理技术和应用具有重要意义。
希望本文的介绍能够帮助读者更好地理解图像编码的基本原理,为相关领域的研究和应用提供参考。
数字图像处理的主要内容

数字图像处理的主要内容
数字图像处理是将原始数字图像经过一系列特定步骤处理达到所需要的修改或
者提取图像相关信息的一种技术。
它包括图像采样、数字图像处理技术、图像参数维度,以及图像状态分析与特征抽取的等多种技术,是计算机视觉技术的一个重要组成部分。
数字图像采样,是将复杂的现实世界的信息片段,利用计算机进行图像编码处理,编码后进行数据采样,将采样结果以图像数据形式表示或显示出来,它通常将摄取到的图像数据编排成一系列矩阵,空间分辨率越高,代表的信息量越大,所采样出的图像就越清晰,通常采用RGB三原色或者灰度级,将原始图像进行信息处理,使图像变换成采样图形序列。
数字图像处理技术,是指对已经采样的图像进行编码与处理,将所采样的图像
数据变换成另一种形式,进行增强、转换、滤波、压缩、边缘检测、分割、提取特征等等,在不同参数精度上都得到所期望的结果。
比如,在处理图像边缘时,利用Robert、Prewitt等运算来实现图像边缘的提取,将图像中非边缘部分消除,是广
泛应用的数字图像处理技术。
图像参数的维度是指它所收集的图像参数的测量方法,其中包括图像尺寸、像
素数、色彩模式、分辨率等。
它可以影响到图像的色彩细节和色调等的变化,也可以用来改变图像的视觉效果,因此,有必要根据图像的数字图像处理要求,首先了解图像参数的维度,以决定有效操作方法。
最后,图像状态分析和特征抽取,即分析图像特征,提取好特征和信息,以用
于一些应用场景或参考,常见的技术有空间和时间域的处理方法,将图像变换成一系列特征向量,以用于特征相似度的评估,以及图像的聚类和分类等,可以用于分析图像的状态和特征,以支撑和管理图像应用中的信息抽取。
图形编码知识点总结

图形编码知识点总结一、概念图形编码是一种用来表示和传输图像信息的技术。
它是数字图像处理技术的一部分,用来把图像信息转换成数字信号,以便能够存储和传输。
图形编码技术是基于数字信号处理的基础上,通过压缩技术和编码方式,将图像信息转化成数字信号并保存在计算机或其他数字媒体上。
二、图像编码的分类1、无损编码无损编码是指在保持图像质量不变的情况下,将图像数据进行压缩,并进行编码以便于传输和存储。
常见的无损编码算法有无损压缩算法、赫夫曼编码和算术编码等。
无损编码的优点是能够保持图像质量不变,但缺点是无损编码算法产生的文件体积大,传输和存储成本高。
2、有损编码有损编码是指在一定情况下,将图像数据进行压缩并编码,在达到一定压缩比的同时,牺牲一定图像质量的编码方式。
有损编码通过舍弃图像数据中的一些细节信息,将图像数据压缩至较小的存储空间。
有损编码的优点是可以取得较大的压缩比,降低存储和传输成本,但缺点是会对图像质量造成一定程度的影响。
三、图像编码的基本原理1、信号采样信号采样是图像编码的第一步,它是将连续的图像信号转化为离散的数据点。
通过对图像进行采样,可以获得图像在空间和时间上的离散表示。
2、量化量化是将采样得到的离散数据映射为有限数量的离散数值。
量化的目标是将连续的图像信号转化为离散的数字信号集合,以方便图像编码和传输。
3、编码编码是将量化后的离散数据进行数字化处理,通过一定的编码方式将图像数据压缩并进行编码以便传输和存储。
编码方式常见有熵编码、差分编码、矢量量化和小波变换等。
四、常见的图像编码技术1、JPEGJPEG是一种常见的有损图像压缩标准,它采用的是DCT变换和量化技术,能够取得较大的压缩比。
JPEG压缩技术在图像编码中应用广泛,被用于数字摄影、网络传输和数字视频等领域。
2、PNGPNG是一种无损图像压缩标准,它将图像数据进行无损压缩和编码,以便于图像的存储和传输。
PNG压缩技术在需要无损图像保真度的场合得到广泛应用。
图像编码中的数据重排与压缩技巧(九)

图像编码是数字图像处理中一个非常重要的环节。
在图像编码的过程中,数据重排与压缩技巧起着至关重要的作用。
本文将从数据重排与压缩技巧两个方面进行论述。
一、数据重排技巧在图像编码中,数据重排是将原始的图像数据重新排列以满足一定的编码要求。
数据重排技巧主要有以下几种:1. 空间相关性重排:图像中的像素数据存在一定的空间相关性,即相邻像素之间存在一定的关联。
通过对图像中的像素数据进行重排,可以提取出这种相关性,并且减少冗余信息的传输,从而实现图像数据的压缩。
2. 颜色重排:在图像编码中,颜色信息是非常重要的一部分。
通过对图像中的颜色信息进行重排,可以将相似的颜色聚集在一起,从而提高编码效率。
常见的颜色重排方法有HSV重排、RGB重排等。
3. 傅里叶变换重排:傅里叶变换广泛应用于图像处理领域。
通过将原始图像进行傅里叶变换,可以将图像数据转换到频域中,并通过对频域数据的重排来实现图像数据的压缩。
二、图像压缩技巧图像压缩技巧是对图像进行编码时用于减少数据量的方法,包括有损压缩和无损压缩两种方法。
1. 有损压缩:有损压缩是一种在压缩图像数据的同时,会造成一定损失的压缩方法。
常用的有损压缩方法有JPEG压缩、JPEG2000压缩等。
这些方法通过对图像数据进行采样、量化和编码等操作,以牺牲一定的图像质量来实现数据的压缩。
2. 无损压缩:无损压缩是一种在保证图像数据质量不变的前提下,对图像进行压缩的方法。
常用的无损压缩方法有GIF压缩、PNG压缩等。
这些方法通过对图像中的冗余信息进行编码、重排等操作,以减少数据量的同时保持图像质量的完整性。
数据重排和压缩技巧的应用使得图像编码在传输和存储中更加高效。
通过合理选择数据重排和压缩技巧,可以大幅度减小图像数据的体积,并保持较高的图像质量。
在实际应用中,我们可以根据图像的特点和需求选择合适的数据重排和压缩技巧,以达到最佳的编码效果。
总之,数据重排与压缩技巧在图像编码中起着重要作用。
图像编码基本原理

图像编码基本原理
图像编码是指将图像信号转换为数字形式以便存储和传输的过程。
它的基本原理包括图像采样、量化和编码三个步骤。
首先是图像采样。
图像采样是将连续的图像信号转换为离散的图像样点。
采用的常见方法是在图像上按一定的规律选取像素点,将其亮度值记录下来。
采样过程决定了图像的分辨率,即图像中能够区分的最小细节。
其次是图像量化。
图像量化是将连续的亮度值分割成有限个级别,将每个采样点的亮度值映射到最接近的量化级别上。
量化过程能够减少图像的信息量,从而提高压缩比。
常用的量化方法有均匀量化和非均匀量化。
最后是图像编码。
图像编码是将离散的量化图像数据转换为二进制码流的过程。
编码方法有很多种,如霍夫曼编码、算术编码和熵编码等。
编码的目的是将图像数据表示为尽可能短的位数,以便存储和传输。
图像编码的基本原理是通过采样、量化和编码三个步骤将图像数据转换为数字形式。
这样可以实现图像的高效储存和传输。
通过合理选择采样率、量化级别和编码方法,可以实现对图像进行压缩,减少存储和传输的开销,同时保持图像的视觉质量。
图像编码在数字图像处理和多媒体技术中起着重要的作用。
数字图像处理~图像编码

Eb = -log2(0.3) = 1.737
Ec = -log2(0.2) = 2.322
总信息量也即表达整个字符串需要的位数为:
E = Ea * 5 + Eb * 3 + Ec * 2 = 14.855 位
举例说明:
如果用二进制等长编码,需要多少位?
数据压缩技术的理论基础是信息论。
2.信息量和信息熵
A
B
数据压缩的基本途径
数据压缩的理论极限
信息论中信源编码理论解决的主要问题:
信息量等于数据量与冗余量之差
I = D - du
数据是用来记录和传送信息的,或者说数据
是信息的载体。
数据所携带的信息。
信息量与数据量的关系:
du—冗余量
I— 信息量
D— 数据量
叁
实时传输:在10M带宽网上实时传输的话,需要压缩到原来数据量的?
肆
存储: 1张CD可存640M,如果不进行压缩,1张CD则仅可以存放?秒的数据
伍
可见,单纯依靠增加存储器容量和改善信道带宽无法满足需求,必须进行压缩
1 图像编码概述
数字化后的图像信息数据量非常大,图像压缩利用图像数据存在冗余信息,去掉这些冗余信息后可以有效压缩图像。
01.
02.
03.
04.
问题:
把某地区天气预报的内容看作一个信源,它有6种可能的天气:晴天(概率为0.30)、阴天(概率为0.20)、多云(概率为0.15)、雨天(概率为0.13)、大雾(概率为0.12)和下雪(概率为0.10),如何用霍夫曼编码对其进行编码?平均码长分别是多少?
哈夫曼编码
30
10
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4)Walsh-Hadamard变换(WHT)
压 这个字典。
缩
ppt
4
7.3.4 无损预测编码
ppt
第
七章可 编
1. 预测编码的基本思想 通过仅提取每个像素中的新信息, 并对它们编
图辑 码来消除像素间的冗余。
像 压
一个像素的新信息定义为该像素的当前值与预
缩 测值的差。
正是由于像素间有相关性,所以才使预测成为
可能。
5
2. 无损预测编码
ppt
17
7.4.2.3 实现变换压缩算法的主要问题
第
七章可 编
变换的选择
图辑
像
压
子图尺寸的选择
缩
位分配
ppt
18
7.4.2.3 实现变换压缩算法的主要问题
ppt
第
七章可 编 图辑
像
1. 变换的选择
可以选择的变换 1)Karhunen-Loeve变换(KLT)
压 缩
2)离散傅立叶变换(DFT)
3)离散余弦变换(DCT)
ppt
第
七章可 编
1. 有损压缩概述:
有损压缩是: 牺牲图像复原的准确度以换取压缩能力的增加。 如果产生的失真可以容忍,则压缩能力的增加是有效的。
图辑
像 压 缩
有损压缩方法的压缩比: 在图像压缩比大于30:1时,仍然能够重构图像。 在图像压缩比为10:1到20:1时,重构图像与原图几乎没有
差别。
7.3.2 LZW编码
第
七章可 编 1. 背景:是Lemple、Ziv最早提出,然后由Welch
图辑 充实的有专利保护的LZW算法。
像
压 缩
2.
基本思想:去除像素间冗余。
ppt
1
7.3.2 LZW编码
第 (1) 在压缩过程中动态地形成一个字串表(字典)。
七章可 编 图辑
像
(2) (2) (a) 每当压缩扫描图像发现一个字典中没有的 字符序列,就把该字符序列存到字典中。
压 63 59 66 90 109 85 69 72 7 -21 -62 9 11 -7 -6 6
缩 62 59 68 113 144 104 66 73 -46 8 77 -25 -30 10 7 -5
63 58 71 122 154 106 70 69 -50 13 35 -15 -9 6 0 3
七章可 编
像,通过变换这些子图像,得到(N/n)2个n n的子图像除每个子图像内部像素之间的相关性
压 ,或将尽可能多的信息集中到尽可能少的变换系数上。
缩
√ 量化:有选择地消除或较粗糙地量化携带信息最少的系数
,因为它们对重建的子图像的质量影响最小。
√ 符号编码:对量化的系数进行编码(常利用变长码)。
无损压缩的压缩比很少有能超过3:1的。
有损压缩和无损压缩的根本差别在于有没有量化模块。
9
7.4.1 有损预测编码
第
七章可 编 图辑
有损预测编码和变换编码都是有损压缩。 • 有损预测编码系统:直接对像素在图像空间进行
像 压
操作, 称为空域方法。
缩
• 变换编码:基于图像变换的编码方法,称为变换
域(频域)方法。
11
ppt
4 有损预测编码系统
输入图像 +
en
量化器
e n
第
七章可 编编码 图辑
fn -
fn
预测器 fn +
+
像
压
缩
压缩图像
符号 e n +
解码
+
解码
fn
预测器
符号 编码 压缩图像
fn
解压缩图像
12
7.4.1 有损预测编码
ppt
第
量化器插在符号编码器和预测误差产生处之
七章可 编
间,把原来无损编码器中的整数舍入模块吸收了进 来
ppt
10
2 有损预测的基本思想
ppt
对预测误差进行量化,通过消除视觉心理冗
第 余,达到对图像进一步压缩的目的。
七章可 编 图辑
3 算法的演变
像 压
a) 无损预测压缩的基础是:
缩
• 原图像值fn与预测值 fˆ之n 间的误差en。有公式:
en fn fˆn
• 解码与编码使用相同的预测器
b) 有损预测编码的演变——引入量化
图辑
像
量化器将预测误差映射到输出 e n 中,e n 确定
压 了有损预测编码中的压缩量和失真量
缩
反馈环的输入是过去预测和与其对应的量化
误差的函数
fn enfˆn
13
7.4.2 变换编码 7.4.2.1 变换编码的基本思想
ppt
第 基于图像变换的编码方法。
七章可 编 图辑
用一个可逆的、线性的变换(如傅立叶变换), 把图像映射到变换系数集合,然后对该系数集合
压
(b) 并用字典的地址(编码)作为这个字符序
缩
列的代码,替换原图像中的字符序列。
(c) 下次再碰到相同的字符序列,就用字典的
地址代替字符序列。
ppt
2
3 LZW编码例子:
第
七章可 编 图辑
像 压 缩
3
ppt
7.3.2 LZW编码
第
七章可 编
压缩的结果,除了压缩图像外,不需要传输压
图辑
像
缩过程中形成的字典,而在解压缩时,临时恢复
像 进行量化和编码。
压 缩 大多数图像变换得到的系数值都很小,这些系数
可以较粗地量化,或忽略不计,且仅以较小的图
像失真为代价。
虽然失真很小,信息仍然不能完全复原,所以还
是有损压缩。
14
7.4.2.1 变换编码的基本思想
ppt
第 变换编码的基本思想—举例
七章可 编
原始图像
相应的DCT系数
图辑
像 52 55 61 66 70 61 64 73 -415 -29 -62 25 55 -20 -1 3
无损预测编解码系统
第 输入图像
fn
en
+
符号
七章可 编
图辑
像
预测器
压 编码
最接近 的整数
-
fn
编码 压缩图像
缩
压缩图像
符号
en
+
解码
+
fn
解压缩图像
解码
fn
预测器
6
ppt
7.3.4 无损预测编码
第
七章可 编 图辑
像 压 缩
7
ppt
7.3.4 无损预测编码
第
七章可 编 图辑
像 压 缩
8
7.4 有损压缩
67 61 68 104 126 88 68 70 11 -8 -13 -2 -1 1 -4 1
79 65 60 70 77 68 58 75 -10 1 3 -3 -1 0 2 -1
85 71 64 59 55 61 65 83 -4 -1 2 -1 2 -3 1 -2
87 79 69 68 65 76 78 94 -1 -1 -1 -2 -1 -1 15 0 -1
7.4.2.2 变换编码系统
第
七章可 编
变换编码系统
图输辑入图像
像(NN)
构造nn
压
的子图
正向变换
缩编码器
量化器
符号 压缩图像 编码器
ppt
压缩的图像 解码器
符号 解码器
逆向变换
合成nn 的子图
解压图像
16
7.4.2.2 变换编码系统
ppt
第 √ 构造子图像:一幅NN图像先被分解成尺寸为n n的子图