(试题)勾股定理的应用

合集下载

关于勾股定理的八大应用

关于勾股定理的八大应用

关于勾股定理的八大应用
对于勾股定理的八大应用,具体如下:
1)判断是否超速:利用勾股定理可以判断司机是否超速。

2)求旗杆高度:利用勾股定理可以求旗杆高度。

3)折叠问题:利用勾股定理可以解决折叠问题,例如折叠矩形
纸张的问题。

4)求树高:利用勾股定理可以求树的高度。

5)求梯子最省力的位置:利用勾股定理可以求梯子最省力的位
置。

6)求面积问题:利用勾股定理可以解决一些求面积的问题。

7)求台风问题:利用勾股定理可以解决台风问题,例如台风眼
里是否有平地的问题。

8)九章算术问题:利用勾股定理可以解决九章算术中的一些问
题。

勾股定理的应用(人教版)(含答案)

勾股定理的应用(人教版)(含答案)

勾股定理的应用(人教版)一、单选题(共10道,每道10分)1.如图,Rt△ABC的直角边长分别为12和16,在其内部有n个小直角三角形,则这n个小直角三角形周长之和为( )A.28B.48C.36D.56答案:B解题思路:试题难度:三颗星知识点:图形的平移2.暑假中,小明到某海岛探宝.如图,他到达海岛登陆点后先往东走8km,又往北走2km,遇到障碍后又往西走3km,再折向北走6km处往东一拐,仅1km就找到宝藏,则登陆点到埋宝藏点的直线距离是( )km.A. B.C.10D.答案:C解题思路:试题难度:三颗星知识点:勾股定理的应用3.如图,在长方形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M的对应的值为( )A.2B.C. D.答案:D解题思路:试题难度:三颗星知识点:勾股定理的应用4.一架5m长的梯子斜靠在一竖直的墙上,这时梯脚距离墙角1.4m,如果梯子的顶端沿墙下滑0.8m,那么梯脚移动的距离为( )m.A.0.6B.0.8C.1.2D.1.6答案:D解题思路:试题难度:三颗星知识点:勾股定理的应用5.小明想知道学校旗杆的高,他发现旗杆顶端绳子垂到地面还多1米,当他把绳子的下端拉开7米后,发现下端刚好接触地面,则旗杆的高度为( )米.A.8B.12C.24D.25答案:C解题思路:试题难度:三颗星知识点:勾股定理的应用6.路旁有两棵树,一棵高10米,另一棵高4米,两树相距8米,一只鸟从一棵树的树梢飞到另一棵树的树梢,问小鸟至少飞行( )米.A.8B.10C.12D.14答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用7.在一棵树上10米高的B处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处,另一只爬到树顶D后直接跃到A处,两只猴子所经过的距离相等,则这棵树高为( )米.A.5B.15C.20D.18答案:B解题思路:试题难度:三颗星知识点:勾股定理的应用8.如图,将一个含60°角的三角板的直角顶点C放在一张宽为5cm的纸带边沿上,另一个顶点B在纸带的另一边沿上(∠ABC=60°),测得∠DBC=45°,则三角板的最大边长为( )cm.A.5B.10C. D.答案:C解题思路:试题难度:三颗星知识点:等腰直角三角形的性质和判定9.如图,一棵树在一次强风中,从离地面5米处折断,倒下的部分与地面成30°夹角,如图所示,这棵树在折断前的高度是( )米.A.10B.15C.5D.20答案:B解题思路:试题难度:三颗星知识点:含30°角的直角三角形10.如图,已知在Rt△ABC中,∠ACB=90°,AB=10,分别以AC,BC为直径作半圆,面积分别记为,,则的值为( )A.8πB.16πC.25πD.12.5π答案:D解题思路:试题难度:三颗星知识点:勾股定理的应用。

(完整版)勾股定理经典例题(含答案)

(完整版)勾股定理经典例题(含答案)

经典例题透析类型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路点拨:写解的过程中,一定要先写上在哪个直角三角形中,注意勾股定理的变形使用。

解析:(1) 在△ABC中,∠C=90°,a=6,c=10,b=(2) 在△ABC中,∠C=90°,a=40,b=9,c=(3) 在△ABC中,∠C=90°,c=25,b=15,a=举一反三【变式】:如图∠B=∠ACD=90°, AD=13,CD=12, BC=3,则AB的长是多少?【答案】∵∠ACD=90°AD=13, CD=12∴AC2 =AD2-CD2=132-122=25∴AC=5又∵∠ABC=90°且BC=3∴由勾股定理可得AB2=AC2-BC2=52-32=16∴AB= 4∴AB的长是4.类型二:勾股定理的构造应用2、如图,已知:在中,,,. 求:BC的长.思路点拨:由条件,想到构造含角的直角三角形,为此作于D,则有,,再由勾股定理计算出AD、DC的长,进而求出BC的长.解析:作于D,则因,∴(的两个锐角互余)∴(在中,如果一个锐角等于,那么它所对的直角边等于斜边的一半).根据勾股定理,在中,.根据勾股定理,在中,.∴.举一反三【变式1】如图,已知:,,于P. 求证:.解析:连结BM,根据勾股定理,在中,.而在中,则根据勾股定理有.∴又∵(已知),∴.在中,根据勾股定理有,∴.【变式2】已知:如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。

求:四边形ABCD的面积。

分析:如何构造直角三角形是解本题的关键,可以连结AC,或延长AB、DC交于F,或延长AD、BC交于点E,根据本题给定的角应选后两种,进一步根据本题给定的边选第三种较为简单。

勾股定理的应用综合大题专项训练

勾股定理的应用综合大题专项训练

勾股定理的应用综合大题专项训练1.在△ABC中,(1)如图1,AC=15,AD=9,CD=12,BC=20,求△ABC的面积;(2)如图2,AC=13,BC=20,AB=11,求△ABC的面积.2.如图,△ABC中,AB=4,∠ABC=45°,D是BC边上一点,且AD=AC,若BD ﹣DC=1.求DC的长.3.如图,已知BA=BC,BD=BE,∠ABC=∠EBD=90°.(1)求证:AB平分∠EAC;(2)若AD=1,CD=3,求BD.4.一透明的敞口正方体容器装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α,如图1所示),此时液面刚好过棱CD,并与棱BB'交于点Q,此时液体的形状为直三棱柱,三视图及尺寸如图2所示,求当正方体平放(正方形ABCD在桌面上)时,液体的深度.5.如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.(1)求证:BF=2AE;(2)若CD=2,求AD的长.6.用四个完全相同的直角三角形(如图1)拼成一大一小两个正方形(如图2),直角三角形的两直角边分别是a、b(a>b),斜边长为ccm,请解答:(1)图2中间小正方形的周长,大正方形的边长为.(2)用两种方法表示图2正方形的面积.(用含a,b,c)①S=;②S=;(3)利用(2)小题的结果写出a、b、c三者之间的一个等式.(4)根据第(3)小题的结果,解决下面的问题:已知直角三角形的两条腿直角边长分为是a=8,b=6,求斜边c的值.7.(1)教材在探索平方差公式时利用了面积法,面积法可以帮助我们直观地推导或验证公式,俗称“无字证明”,例如,著名的赵爽弦图(如图①,其中四个直角三角形较大的直角边长都为a,较小的直角边长都为b,斜边长都为c),大正方形的面积可以表示为c2,也可以表示为4×ab+(a﹣b)2,所以4×ab+(a﹣b)2=c2,即a2+b2=c2.由此推导出重要的勾股定理:如果直角三角形两条直角边长为a,b,斜边长为c,则a2+b2=c2.图②为美国第二十任总统伽菲尔德的“总统证法”,请你利用图②推导勾股定理.(2)试用勾股定理解决以下问题:如果直角三角形ABC的两直角边长为3和4,则斜边上的高为.(3)试构造一个图形,使它的面积能够解释(a﹣2b)2=a2﹣4ab+4b2,画在上面的网格中,并标出字母a,b所表示的线段.8.勾股定理被誉为“几何明珠”,在数学的发展历程中占有举足轻重的地位.它是初中数学中的重要知识点之一,也是初中学生以后解决数学问题和实际问题中常常运用到的重要知识,因此学好勾股定理非常重要.学习数学“不仅要知其然,更要知其所以然”,所以,我们要学会勾股定理的各种证明方法.请你利用如图图形证明勾股定理:已知:如图,四边形ABCD中,BD⊥CD,AE⊥BD于点E,且△ABE≌△BCD.求证:AB2=BE2+AE2.9.如图,将直角三角形分割成一个正方形和两对全等的直角三角形,直角三角形ABC中,∠ACB=90°,BC=a,AC=b,AB=c,正方形IECF中,IE=EC=CF=FI=x.(1)小明发明了求正方形边长的方法:由题意可得BD=BE=a﹣x,AD=AF=b﹣x.因为AB=BD+AD,所以a﹣x+b﹣x=c,解得x=.(2)小亮也发现了另一种求正方形边长的方法:连接IC,利用S△ABC=S△AIB+S△AIC+S△BIC可以得到x与a、b、c的关系,请根据小亮的思路完成他的求解过程;(3)请结合小明和小亮得到的结论验证勾股定理.(注:根据比例的基本性质,由可得ad=bc)10.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,当两个全等的直角三角形如图摆放时,也可以用面积法来证明,请将下面说理过程补充完整:证明:连接DB,过点D作BC边上的高DF,交BC的延长线与点F,则四边形DFCE为长方形,所以DF=EC=.(用含字母的代数式表示)因为S四边形ABCD=S△ACD+=+;S四边形ABCD=S△ADB+=;所以;所以.11.如图,∠C=90°,AC=12,BC=9,AD=8,BD=17,求△ABD的面积.12.如图,在△ABC中,D是AB的中点,AC=6,BC=8,AB=10,延长AC到E,使得CE=CD,连接BE.(1)求证:∠ACB=90°;(2)求线段BE的长度.13.如图,三个村庄A、B、C之间的距离分别是AB=5km,BC=12km,AC=13km.要从B修一条公路BD直达AC.已知公路的造价为26000元/km,求修这条公路的最低造价是多少?14.如图,在Rt△ABD中,∠ABD=90°,AD=10,AB=8.在其右侧的同一个平面内作△BCD,使BC=8,CD=2.求证:AB∥DC.15.如图,已知等腰△ABC的底边BC=13cm,D是腰BA延长线上一点,连接CD,且BD =12cm,CD=5cm.(1)判断△BDC的形状,并说明理由;(2)求△ABC的周长.16.已知:整式A=n(n+6)+2(n+8)(n>0),整式B>0.尝试:化简整式A;发现:A=B2,求整式B;应用:利用A=B2,填写下列表格:n(n+6)2(n+8)B\40\17.已知:整式A=(n2﹣1)2+(2n)2,整式B>0.尝试化简整式A.发现A=B2.求整式B.联想由上可知,B2=(n2﹣1)2+(2n)2,当n>1时,n2﹣1,2n,B为直角三角形的三边长,如图,填写下表中B的值;直角三角形三边n2﹣12n B勾股数组Ⅰ8勾股数组Ⅱ3518.满足a2+b2=c2的三个正整数,称为勾股数.(1)请把下列三组勾股数补充完整:①,8,10 ②5,,13 ③8,15,.(2)小敏发现,很多已经约去公因数的勾股数组中,都有一个数是偶数,如果将它写成2mn,那么另外两个数可以写成m2+n2,m2﹣n2,如4=2×2×1,5=22+12,3=22﹣12.请你帮小敏证明这三个数2mn,m2+n2,m2﹣n2是勾股数组.(3)如果21,72,75是满足上述小敏发现的规律的勾股数组,求m+n的值.19.勾股定理是一个基本的几何定理,早在我国西汉时期算书《周髀算经》就有“勾三股四弦五”的记载.如果一个直角三角形三边长都是正整数,这样的直角三角形叫“整数直角三角形”;这三个整数叫做一组“勾股数”,如:3,4,5;5,12,13;7,24,25;8,15,17;9,40,41等等都是勾股数.(1)小李在研究勾股数时发现,某些整数直角三角形的斜边能写成两个整数的平方和,有一条直角边能写成这两个整数的平方差.如3,4,5中,5=22+12,3=22﹣12;5,12,13中,13=32+22,5=32﹣22;请证明:m,n为正整数,且m>n,若有一个直角三角形斜边长为m2+n2,有一条直角长为m2﹣n2,则该直角三角形一定为“整数直角三角形”;(2)有一个直角三角形两直角边长分别为和,斜边长4,且a 和b均为正整数,用含b的代数式表示a,并求出a和b的值;(3)若c1=a12+b12,c2=a22+b22,其中,a1、a2、b1、b2均为正整数.证明:存在一个整数直角三角形,其斜边长为c1•c2.20.若正整数a,b,c(a<b<c)满足a2+b2=c2,则称(a,b,c)为一组“勾股数”.观察下列两类“勾股数”:第一类(a是奇数):(3,4,5);(5,12,13);(7,24,25);…第二类(a是偶数):(6,8,10);(8,15,17);(10,24,26);…(1)请再写出两组勾股数,每类各写一组;(2)分别就a为奇数、偶数两种情形,用a表示b和c,并选择其中一种情形证明(a,b,c)是“勾股数”.21.有一个水池,截面是一个边长为12尺的正方形,在水池正中央有一根新生的芦苇,它高出水面2尺,如图所示,如果把这根芦苇垂直拉向岸边,它的顶端恰好到达岸边的水面.那么水深多少?芦苇长为多少?22.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.(1)此时梯子顶端离地面多少米?(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?23.如图所示,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫格点,以格点为顶点分别按下列要求画三角形.(1)使三角形的三边长分别为3,2,(在图①中画一个即可);(2)使三角形为钝角三角形,且面积为4(在图②中画一个即可).24.如图,一个直径为12cm的杯子,在它的正中间竖直放一根筷子,筷子露出杯子外2cm,当筷子倒向杯壁时(筷子底端不动),筷子顶端正好触到杯口,求筷子长度.25.如图,小颖和她的同学荡秋千,秋千AB在静止位置时,下端B′离地面0.6m,荡秋千到AB的位置时,下端B距静止位置的水平距离EB等于2.4m,距地面1.4m,求秋千AB 的长.。

初二数学勾股定理的应用试题

初二数学勾股定理的应用试题

初二数学勾股定理的应用试题1.下列各组数中,以a,b,c为边的三角形不是Rt△的是( )A.a=1.5,b=2,c=3B.a=7,b=24,c=25C.a="6,b=8,c=10"D.a=3,b=4,c=5【答案】A【解析】要组成直角三角形,三条线段满足较小的平方和等于较大的平方即可.A、1.52+22≠32,符合题意;B、72+242=252,C、62+82=102,D、32+42=52,不符合题意.【考点】本题考查勾股定理的逆定理点评:解答本题的关键是熟练掌握勾股定理的逆定理:两边的平方和等于第三边的平方,那么这样的三角形是直角三角形.2.已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )A.6cm2B.8cm2C.10cm2D.12cm2【答案】A【解析】首先翻折方法得到ED=BE,在设出未知数,分别表示出线段AE,ED,BE的长度,然后在Rt△ABE中利用勾股定理求出AE的长度,进而求出AE的长度,就可以利用面积公式求得△ABE的面积了.∵长方形折叠,使点B与点D重合,∴ED=BE,设AE=xcm,则ED=BE=(9-x)cm,在Rt△ABE中,AB2+AE2=BE2,∴32+x2=(9-x)2,解得:x=4,∴△ABE的面积为:3×4×=6(cm2),故选A.【考点】此题主要考查了图形的翻折变换,勾股定理的应用点评:解题过程中应注意折叠后哪些线段是重合的,相等的,如果想象不出哪些线段相等,可以动手折叠一下即可.3.如图,在Rt△ABC中,∠ACB=90O,BC=6,正方形ABDE的面积为100,则正方形ACFG的面积为( )A.64B.36C.82D.49【答案】A【解析】由正方形ABDE的面积为100得直角三角形的斜边是10.再根据勾股定理得AC=8,从而正方形ACFG的面积为64.因为S正方形ABDE =AB2=100,且在Rt△ABC中,BC=6,所以S正方形ACFG=AC2=AB2-BC2=64.故选A.【考点】本题考查的是正方形的面积公式以及勾股定理点评:解答本题的关键是熟练掌握以直角三角形的两条直角边为边长的两个正方形的面积和等于以斜边为边长的正方形的面积.4.△ABC中,AB=AC=6,∠A=60°,BD为高,则BD=________.【答案】3【解析】先根据题意画出图形,由AB=AC=6,∠A=60°,可得△ABC为等边三角形,根据等边三角形的性质及勾股定理即可求得结果。

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

勾股定理的应用十种最常考类型(解析版) 八年级数学下册专题训练

专题05勾股定理的应用十种最常考类型(解析版)类型一大树折断问题【典例1】(2023春•德庆县期末)如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地面上,此处离树底部8m处.【思路引领】首先设树顶端落在离树底部x米处,根据勾股定理可得62+x2=(16﹣6)2,再解即可.【解答】解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.【总结提升】此题主要考查了勾股定理的应用,关键是正确理解题意,掌握直角三角形中两直角边的平方和等于斜边的平方.【变式训练】1.(2023•南宁模拟)在《九章算术》中有一个问题(如图):今有竹高一丈,末折抵地,去本三尺,问折者高几何?它的意思是:一根竹子原高一丈(10尺),中部一处折断,竹梢触地面处离竹根3尺,试问折断处离地面()尺.A.4B.3.6C.4.5D.4.55【思路引领】画出图形,设折断处离地面x尺,则AB=(10﹣x)尺,由勾股定理得出方程,解方程即可.【解答】解:如图,由题意得:∠ACB=90°,BC=3尺,AC+AB=10尺,设折断处离地面x尺,则AB=(10﹣x)尺,在Rt△ABC中,由勾股定理得:x2+32=(10﹣x)2,解得:x=4.55,即折断处离地面4.55尺.故选:D.【总结提升】此题主要考查了勾股定理的应用,正确应用勾股定理得出方程是解题的关键.类型二水杯中的筷子问题及类似问题【典例2】(2023春•陕州区期中)如图是一个饮料罐,下底面半径是5,上底面半径是8,高是12,上底面盖子的中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)的取值范围是()A.12≤a≤13B.12≤a≤15C.5≤a≤12D.5≤a≤13【思路引领】如图,过A作AB⊥BC于B,根据勾股定理即可得到结论.【解答】解:如图,过A作AB⊥BC于B,∵下底面半径是5,高是12,∴AB=12,BC=5,∴AC=B2+B2=122+52=13,∴a的长度的取值范围是12≤a≤13,故选A.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息,正确理解题意是解题的关键.【变式训练】1.(2023春•盐山县期末)如图,有一个水池,水面是一边长为10尺的正方形,在水池正中央有一根芦苇,它高出水面1尺.如果把这根芦苇拉向水池一边,它的顶端恰好到达池边的水面,这根芦苇的长度为()尺.A.10B.12C.13D.14【思路引领】找到题中的直角三角形,设水深为x尺,根据勾股定理解答.【解答】解:设水深为x尺,则芦苇长为(x+1)尺,根据勾股定理得:x2+(102)2=(x+1)2,解得:x=12,芦苇的长度=x+1=12+1=13(尺),答:芦苇长13尺.故选:C.【总结提升】本题考查正确运用勾股定理.善于观察题目的信息是解题以及学好数学的关键.2.(2022秋•安阳县期末)从前有一个人拿着竹竿进城,横拿竖拿都进不去,横着比城门宽43,竖着比城门高23,另一个人告诉他沿着城门的两对角斜着拿竿,这个人一试,不多不少刚好进去了,则竹竿的长度为103.【思路引领】设竹竿的长为x米,根据门框的边长的平方和等于竹竿的长的平方列方程,解一元二次方程即可.【解答】解:设竹竿的长为x米,由题意得:(−43)2+(−23)2=2,解得:1=103,2=23(舍去),故答案为:103.【总结提升】本题考查一元二次方程的应用;得到门框的边长和竹竿长的等量关系是解决本题的关键.类型三梯子滑动问题【典例3】(2020春•硚口区期中)如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=8米.若梯子的顶端沿墙面向下滑动2米,这时梯子的底端在水平的地面也恰好向外移动2米,则梯子AB的长度为()A.10米B.6米C.7米D.8米【思路引领】首先设BO=x米,则DO=(x+2)米,利用勾股定理可列出方程,再解可得BO长,然后再利用勾股定理计算出AB长.【解答】解:由题意得:AC=BD=2米,∵AO=8米,∴CO=6米,设BO=x米,则DO=(x+2)米,由题意得:62+(x+2)2=82+x2,解得:x=6,AB=82+62=10(米),故选:A.【总结提升】此题主要考查了勾股定理的应用,关键是掌握直角三角形两直角边的平方和等于斜边的平方.【变式训练】1.(2023秋•新泰市期中)如图,一架梯子若靠墙直立时比窗户的下沿高1m.若斜靠在墙上,当梯子的下端离墙5m时,梯子的上端恰好与窗户的下沿对齐.则梯子的长度为()A.13m B.12m C.15m D.172【思路引领】设梯子的长度为x m,根据勾股定理列方程即可得到结论.【解答】解:设梯子的长度为x m,根据勾股定理得,52+(x﹣1)2=x2,解得x=13,答:梯子的长度为13m,故选:A.【总结提升】本题考查了勾股定理,熟练掌握勾股定理是解题的关键.2.(2023秋•北京期末)如图,小巷左右两侧是竖直的墙,已知小巷的宽度CE是2.2米.一架梯子AB斜靠在左墙时,梯子顶端A与地面点C距离是2.4米.如果保持梯子底端B位置不动,将梯子斜靠在右墙时,梯子顶端D与地面点E距离是2米.求此时梯子底端B到右墙角点E的距离是多少米.【思路引领】设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,在Rt△ABC和Rt △DBE中,根据勾股定理列出方程,解方程即可.【解答】解:设此时梯子底端B到右墙角点E的距离是x米,则BC为(2.2﹣x)米,由题意可知,AC=2.4米,DE=2米,AB=DB,在Rt△ABC和Rt△DBE中,由勾股定理得:AB2=BC2+AC2,DB2=BE2+DE2,∴BC2+AC2=BE2+DE2,即(2.2﹣x)2+2.42=x2+4,解得:x=1.5,答:此时梯子底端B到右墙角点E的距离是1.5米.【总结提升】本题考查了勾股定理的应用,根据勾股定理列出方程是解题的关键.3.(2023秋•宝丰县期末)如图是盼盼家新装修的房子,其中三个房间甲、乙、丙,他将一个梯子斜靠在墙上,梯子顶端距离地面的垂直距离记作MA,如果梯子的底端P不动,顶端靠在对面墙上,此时梯子的顶端距离地面的垂直距离记作NB.(1)当盼盼在甲房间时,梯子靠在对面墙上,顶端刚好落在对面墙角B处,若MA=1.6米,AP=1.2米,则甲房间的宽度AB= 3.2米.(2)当他在乙房间时,测得MA=2.4米,MP=2.5米,且∠MPN=90°,求乙房间的宽AB;(3)当他在丙房间时,测得MA=2.8米,且∠MPA=75°,∠NPB=45°.①求∠MPN的度数;②求丙房间的宽AB.【思路引领】(1)根据勾股定理即可得到结论;(2)证明△AMP≌△BPN,从而得到MA=PB=2.4米,PA=NB=0.7米,即可求出AB=PA+PB;(3)①根据平角的定义即可求出∠MPN=60°;②根据PM=PN以及∠MPN的度数可得到△PMN为等边三角形.利用相应的三角函数表示出MN,MP的长,可得到房间宽AB和AM长相等.【解答】解:(1)在Rt△AMP中,∵∠A=90°,MA=1.6米,AP=1.2米,∴PM=B2+B2=1.62+1.22=2,∵PB=PM=2,∴甲房间的宽度AB=AP+PB=3.2米,故答案为:3.2;(2)∵∠MPN=90°,∴∠APM +∠BPN =90°,∵∠APM +∠AMP =90°,∴∠AMP =∠BPN .在△AMP 与△BPN 中,∠B =∠B ∠B =∠B =90°B =B,∴△AMP ≌△BPN ,∴MA =PB =2.4,∵PA =B2−B 2=0.7,∴AB =PA +PB =0.7+2.4=3.1;(3)①∠MPN =180°﹣∠APM ﹣∠BPN =60°;②过N 点作MA 垂线,垂足点D ,连接NM .设AB =x ,且AB =ND =x .∵梯子的倾斜角∠BPN 为45°,∴△BNP 为等腰直角三角形,△PNM 为等边三角形(180°﹣45°﹣75°=60°,梯子长度相同),∠MND =15°.∵∠APM =75°,∴∠AMP =15°.∴∠DNM =∠AMP ,∵△PNM 为等边三角形,∴NM =PM .∴△AMP ≌△DNM (AAS ),∴AM =DN ,∴AB =DN =AM =2.8米,即丙房间的宽AB 是2.8米.【总结提升】此题考查了勾股定理的应用,全等三角形的应用,解直角三角形的应用,根据PM=PN以及∠MPN的度数得到△PMN为等边三角形是解题的关键.类型四立体图形中的最短距离问题【典例4】(2021春•饶平县期末)如图,长方体的底面边长均为3cm,高为5cm,如果用一根细线从点A 开始经过4个侧面缠绕一圈达到点B,那么所用细线最短需要13cm.【思路引领】把立体图形转化为平面图形解决即可.【解答】解:将长方体展开,连接AB,根据两点之间线段最短,AB=52+122=13cm;故答案为:13【总结提升】本题考查了平面展开﹣最短路径问题,本题就是把长方体的侧面展开“化立体为平面”,用勾股定理解决.【变式训练】1.(2023秋•沙坪坝区期中)如图,圆柱形容器中,高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,则壁虎捕捉蚊子的最短距离为20cm.(容器厚度忽略不计)【思路引领】将容器侧面展开,建立A关于EC的对称点A′,根据两点之间线段最短可知A′B的长度即为所求.【解答】解:如图,将容器侧面展开,作A关于EC的对称点A′,连接A′B交EC于F,则A′B即为最短距离.∵高为12cm,底面周长为32cm,在容器内壁离容器底部2cm的点B处有一蚊子,此时一只壁虎正好在容器外壁,离容器上沿2cm与蚊子相对的点A处,∴A′D=16cm,BD=12cm,∴在直角△A′DB中,A′B=162+122=20(cm).故答案为:20.【总结提升】本题考查了平面展开﹣﹣﹣最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.2.(2022春•桦甸市期末)如图,是一块长,宽,高分别为6cm,4cm和3cm的长方体木块,一只蚂蚁要从长方体木块的一个顶点A处,沿着长方体的外表面,到长方体的另一个顶点B处吃食物,则它需要爬行的最短路径长是85cm.【思路引领】把这个长方体中蚂蚁所走的路线放到一个平面内,在平面内线段最短,根据勾股定理即可计算.【解答】解:第一种情况:把我们所看到的左面和上面组成一个平面,则这个长方形的长和宽分别是9和4,则所走的最短线段是AB=92+42=97(cm).第二种情况:把我们看到的前面与上面组成一个长方形,则这个长方形的长和宽分别是7和6,所以走的最短线段是AB=72+62=85(cm).第三种情况:把我们所看到的前面和右面组成一个长方形,则这个长方形的长和宽分别是10和3,所以走的最短线段是AB=102+32=109(cm).∴它需要爬行的最短路径是85cm.故答案为:85cm.【总结提升】本题主要考查的是平面展开﹣最短路径问题,解决此题的关键是明确线段最短这一知识点,然后把长方体的一些面展开到一个平面内,求出最短的线段.3.(荆州中考)如图,已知圆柱底面的周长为4dm,圆柱高为2dm,在圆柱的侧面上,过点A和点C嵌有一圈金属丝,则这圈金属丝的周长最小为()A.42dm B.22dm C.25dm D.45dm【思路引领】要求丝线的长,需将圆柱的侧面展开,进而根据“两点之间线段最短”得出结果,在求线段长时,根据勾股定理计算即可.【解答】解:如图,把圆柱的侧面展开,得到矩形,则这圈金属丝的周长最小为2AC的长度.∵圆柱底面的周长为4dm,圆柱高为2dm,∴AB=2dm,BC=BC′=2dm,∴AC2=22+22=4+4=8,∴AC=22dm,∴这圈金属丝的周长最小为2AC=42dm.故选:A.【总结提升】本题考查了平面展开﹣最短路径问题,圆柱的侧面展开图是一个矩形,此矩形的长等于圆柱底面周长,高等于圆柱的高,本题就是把圆柱的侧面展开成矩形,“化曲面为平面”,用勾股定理解决.类型五选址满足条件问题【典例5】(2023春•永善县期中)如图,河CD的同侧有A、B两个村,且AB=213km,A、B两村到河的距离分别为AC=2km,BD=6km.现要在河边CD上建一水厂分别向A、B两村输送自来水,铺设水管的工程费每千米需2000元.请你在河岸CD上选择水厂位置0,使铺设水管的费用最省,并求出铺设水管的总费用w(元).【思路引领】作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,分别利用勾股定理求出AF和A'B的长即可.【解答】解:如图所示,作A点关于CD的对称点为A',连接A'B交CD于点O,过点A作AF⊥BD于点F,过点A'作A'E⊥BD交BD的延长线于点E,此时AO+BO最小,∵AC=2km,BD=6km,∴BF=4km,DE=2km,∵AB=213km,∴AF=(213)2−42=6(km),在Rt△BA'E中,由勾股定理得:A'B=′2+B2=62+(6+2)2=10(km),∴AO+BO=10(km),∴铺设水管的总费用W=10×2000=20000(元).【总结提升】本题主要考查了勾股定理的应用,构造直角三角形运用勾股定理是解题的关键.【变式训练】1.(2023春•红塔区期中)如图,在笔直的铁路上A,B两点相距20km,C、D为两村庄,DA=8km,CB=14km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个中转站E,使得C、D两村到E站的距离相等,求AE=13.3km.【思路引领】设AE=x km,即可得到EB=(20﹣x)km,结合DA⊥AB于点A,CB⊥AB于B根据勾股定理列式求解即可得到答案.【解答】解:设AE=x km,则EB=(20﹣x)km,∵DA⊥AB,CB⊥AB,DA=8km,CB=14km,∴DE2=x2+82=x2+64,DE2=(20﹣x)2+142=x2﹣40x+596,∵C、D两村到E站的距离相等,∴x2﹣40x+596=x2+64,解得:x=13.3,故答案为:13.3.【总结提升】本题考查勾股定理的应用,解题的关键是根据相等列等式求解.类型六航海问题【典例6】(2023春•黄陂区期中)如图,某港口P位于东西方向的海岸线上,“远航”号、“海天”号轮船同时离开港口,各自沿一固定方向航行,“远航”号每小时航行16海里,“海天”号每小时航行12海里.它们离开港口一小时后分别位于点Q,R处,且相距20海里.如果知道“远航”号沿北偏东50°方向航行,你能判断“海天”号沿哪个方向航行吗?请说明理由.【思路引领】利用勾股定理逆定理以及方向角得出答案.【解答】解:由题意可得:RP=12海里,PQ=16海里,QR=20海里,∵162+122=202,∴△RPQ是直角三角形,∴∠RPQ=90°,∵“远航”号沿北偏东50°方向航行,∴∠RPN=40°,∴“海天”号沿北偏西40°方向航行.【总结提升】此题主要考查了勾股定理的逆定理以及解直角三角形的应用,正确得出各线段长是解题关键.【变式训练】1.(2023秋•泰山区期末)如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海,上午9时30分,我国反走私A艇发现正东方有一走私艇C以8海里/时的速度偷偷向我领海驶来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.反走私艇A和走私艇C的距离是20海里,A、B两艇的距离是12海里;反走私艇B测得距离C艇16海里,若走私艇C的速度不变,最早会在什么时候进入我国领海?【思路引领】由勾股定理的逆定理得△ABC为直角三角形,且∠ABC=90°,再由三角形面积求出BE=485海里,然后由勾股定理得CE=645海里,即可解决问题.【解答】解:由题意可知,∠BEC=90°,∵AB2+BC2=122+162=202=AC2,∴△ABC为直角三角形,且∠ABC=90°,∵MN⊥AC,∴走私艇C进入我国领海的最短距离是CE,=12AB•BC=12AC•BE,∵S△ABC∴BE=B⋅B B=12×1620485(海里),∴CE=B2−B2==645(海里),∴645÷8=85(小时)=96分,∴9时30分+96分=11时6分.答:走私艇C最早在11时6分进入我国领海.【总结提升】本题考查了勾股定理的应用、勾股定理的逆定理以及三角形面积等知识,熟练掌握勾股定理和勾股定理的逆定理是解题的关键.类型七受台风或噪声影响问题【典例7】(2022秋•清水县月考)如图,A城气象台测得台风中心在A城的正西方300千米处,以每小时107千米的速度向北偏东60°的BF方向移动,距台风中心200千米的范围内是受这次台风影响的区域.(1)问A城是否会受到这次台风的影响?为什么?(2)若A城受到这次台风的影响,那么A城遭受这次台风影响的时间有多长?【思路引领】(1)作AC⊥BF,则距点A最近的点即为C点,计算AC的长,若AC>200千米,则不受影响,反之,则受影响.(2)求出A城所受影响的距离DE,又有台风移动的速度,即可求解出其影响的时间.【解答】解:(1)A城市受影响.如图,过点A作AC⊥BF,则距离点C最近的距离为AC,∵AB=300,∠ABC=30°,∴AC=12AB=150<200,所以A城会受到这次台风的影响;(2)如图,∵距台风中心200千米的范围内是受这次台风影响的区域,则AD=AE=200,即DE为A城遭受这次台风的距离,CD=A2−B2=507,∴DE=1007,则t===10小时.故A城遭受这次台风影响的时间10小时.【总结提升】本题主要考查了方向角问题以及解直角三角形的简单运用,能够熟练掌握.【变式训练】1.(2022春•紫云县期末)如图,有两条公路OM,ON相交成30°,沿公路OM方向离O点80米处有一所学校A,当重型运输卡车P沿道路ON的方向行驶时,以P为圆心,50米长为半径的圆形区域内都会受到卡车噪声的影响,且卡车P与学校A的距离越近噪声影响越大,若重型运输卡车P沿道路ON方向行驶的速度为5米/秒.(1)求卡车P对学校A的噪声影响最大时,卡车P与学校A的距离;(2)求卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间.【思路引领】(1)过点A作AH⊥ON于H,利用含30°角的直角三角形的性质可得答案;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,利用勾股定理求出CH的长,再根据等腰三角形的性质可得CD的长,从而求出时间.【解答】解:(1)过点A作AH⊥ON于H,∵∠O=30°,OA=80米,∴AH=12OA=40米,∴卡车P对学校A的噪声影响最大时,卡车P与学校A的距离为40米;(2)当AC=AN=50米时,则卡车在CD段对学校A有影响,由(1)知AH=40米,∴CH=B2−B2=502−402=30(米),∴CN=2CH=60(米),∴t=60÷5=12(秒),∴卡车P沿道路ON方向行驶一次,它给学校A带来噪声影响的总时间为12秒.【总结提升】本题主要考查了勾股定理的实际应用,含30°角的直角三角形的性质,等腰三角形的性质,垂线段最短等知识,根据题意,构造出直角三角形是解题的关键.类型八求旗杆(大树)高度问题【典例8】(2023秋•开封期末)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)()A.14m B.15m C.16m D.17m【思路引领】根据题意画出示意图,设旗杆高度为x m,可得AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.【解答】解:设旗杆高度为x m,过点C作CB⊥AD于B,则AC=AD=x m,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选:D.【总结提升】本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.【变式训练】1.(2023春•岳阳楼区期末)小华和小侨合作,用一块含30°的直角三角板,旗杆顶端垂到地面的绳子,测量长度的工具,测量学校旗杆的高度,如图,测得AD=0.5米,绳子部分长CD=6米,则学校旗杆AB的高度为()A.6.5米B.(63+0.5)米C.12.5米D.(65+0.5)米【思路引领】根据含30°角的直角三角形的性质得出2DC=BC,进而利用勾股定理解答即可.【解答】解:由题意知∠ABC=30°,CD⊥AB,∴BC=2CD=12米,A=63米,∵AD=0.5米,∴B=(63+0.5)米,故选:B.【总结提升】本题考查了含30度直角三角形的性质及勾股定理的应用,熟悉勾股定理,能从实际问题中抽象出勾股定理是解题的关键.2.(2023秋•岱岳区期中)学习完《勾股定理》后,张老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为2米,将绳子拉直,且绳子底端与地面接触,此时绳子端点距离旗杆底端5米,则旗杆的高度为214米.【思路引领】在Rt△ABC中,由勾股定理得出关于AB的方程求解即可.【解答】解:如图,由题意可知,BD=2米,BC=5米,AC=AB+BD=(AB+2)米,在Rt△ABC中,由勾股定理得,AB2+BC2=AC2,即AB2+52=(AB+2)2,解得AB=214,∴旗杆的高度为214米.故答案为:214.【总结提升】本题考查了勾股定理的应用,熟记勾股定理是解题的关键.3.(2023秋•秦安县期末)如图,在一棵树的10米高B处,有两只猴子,一只猴子爬下树走到离树20米处的池塘A处,另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树的高度为15米.【思路引领】根据两只猴子所经过的距离相等,将两只猴子所走的路程表示出来,根据勾股定理列出方程求解.【解答】解:如图,设树的高度为x米,因两只猴子所经过的距离相等都为30米.由勾股定理得:x2+202=[30﹣(x﹣10)]2,解得x=15m.故这棵树高15m.【总结提升】把实际问题转化为数学模型,构造直角三角形,然后利用勾股定理解决.类型九小鸟飞行距离问题【典例9】(2022秋•嵩县期末)如图,有两棵树,一棵高8米,另一棵高2米,两树相距8米,一只小鸟从一棵树的树梢飞到另一棵树的树梢,则它至少要飞行()米.A.6B.8C.10D.12【思路引领】根据“两点之间线段最短”可知:小鸟沿着两棵树的树尖进行直线飞行,所行的路程最短,运用勾股定理可将两点之间的距离求出.【解答】解:两棵树的高度差为8﹣2=6m,间距为8m,根据勾股定理可得:小鸟至少飞行的距离=82+62=10m.故选:C.【总结提升】本题主要考查了勾股定理的应用,解题的关键是将现实问题建立数学模型,运用数学知识进行求解.【变式训练】1.(2023秋•青羊区期中)如图,一只小鸟旋停在空中A点,A点到地面的高度AB=20米,A点到地面C 点(B,C两点处于同一水平面)的距离AC=25米.(1)求出BC的长度;(2)若小鸟竖直下降到达D点(D点在线段AB上),此时小鸟到地面C点的距离与下降的距离相同,求小鸟下降的距离.【思路引领】(1)在直角三角形中运用勾股定理即可求解;(2)在Rt△BDC中,根据勾股定理即可求解.【解答】解:(1)由题意知∠B=90°,∵AB=20米,AC=25米.∴BC=252−202=15米,(2)设AD=x,则CD=x,BD=20﹣x,在Rt△BDC中,DC2=BD2+BC2,∴x2=(20﹣x)2+152,解得x=1258,∴小鸟下降的距离为1258米.【总结提升】本题考查勾股定理,熟练掌握勾股定理是解题关键.类型十利用勾股定理表示无理数【典例10】(2022春•武昌区期末)平面直角坐标系中,点P(﹣4,2)到坐标原点的距离是()A.2B.4C.23D.25【思路引领】利用勾股定理计算可得结论.【解答】解:由题意得,点P到坐标原点的距离为:42+22=20=25.故选:D.【总结提升】本题考查了勾股定理,掌握勾股定理的内容是解决本题的关键.【变式训练】1.(2023•大连)如图,在平面直角坐标系中,点A,B的坐标分别为(1,0)和(0,2),连接AB,以点A为圆心、AB的长为半径画弧,与x轴正半轴相交于点C,则点C的横坐标是+1.【思路引领】由勾股定理求出AB的长,进而得到AC的长,再求出OC的长,得出点C的坐标,即可解决问题.【解答】解:∵点A,B的坐标分别为(1,0)和(0,2),∴OA=1,OB=2,∵∠AOB=90°,∴AB=B2+B2=12+22=5,∵以点A为圆心,以AB长为半径画弧,∴AC=AB=5,∴OC=AC+OA=5+1,∵交x轴正半轴于点C,∴点C的坐标为(5+1,0).故答案为:5+1.【总结提升】本题考查了勾股定理以及坐标与图形性质等知识,熟练掌握勾股定理是解题的关键.2.(2022秋•芗城区月考)用尺规作图在数轴上作出表示实数=10的点P(保留作图痕迹,不写作法).【思路引领】过表示1的点A作数轴的垂线AB,在垂线上截取AB=3,连接OB,以O为圆心,OB为半径作弧交数轴于P,则P即为所求的点.【解答】解:如图:点P表示的数即为10.【总结提升】此题主要考查了勾股定理以及作图,关键是掌握10是两直角边长分别为1和3的直角三角形的斜边长.3.(2023•长阳县一模)如图,在3×3的正方形网格中,每个小正方形边长为1,点A,B,C,D均为格点,以A为圆心,AB长为半径作弧,交网格线CD于点E,则C,E两点间的距离为()A.3B.3−3C.3+12D.3−12【思路引领】如图:连接AE,则AE=2、AD=1,由勾股定理可求出DE,然后运用线段的和差即可解答.【解答】解:如图:连接AE,则AE=2,AD=1,∴DE=B2−A2=22−12=3,∴CE=CD﹣DE=3−3.故选B.【总结提升】本题主要考查了勾股定理的应用以及线段的和差,根据题意运用勾股定理求得DE是解答本题的关键.4.(2022秋•埇桥区期中)如图,网格中每个小正方形的边长均为1,点A、B,C都在格点上,以A为圆心,AB为半径画弧,交最上方的网格线于点D,则CD的长为()A.3−1B.3−5C.5D.22【思路引领】连接AD,则AD=AB=3,在Rt△AED中,利用勾股定理求出DE即可得出答案.【解答】解:连接AD,由题意知:AD=AB=3,在Rt△AED中,由勾股定理得:ED=A2−B2=32−22=5,∴CD=CE﹣DE=3−5,故选:B.【总结提升】本题主要考查了勾股定理,求出DE的长是解题的关键.。

勾股定理应用题型大汇总(经典)

勾股定理应用题型大汇总(经典)

勾股定理题型汇总一、用勾股定理解决实际问题 【经典例题】 1.水中芦苇问题在平静的湖面上,有一支红莲,高出水面1米,阵风吹来,红莲被吹到一边,花朵齐及水面,已知红莲移动的水平距离为2米,问这里水深是________m 。

2.梯子滑动问题一架方梯长25米,如图,斜靠在一面墙上,梯子底端离墙7米,(1)这个梯子的顶端距地面有多高?(2)如果梯子的顶端下滑了4米,那么梯子的底端在水平方向滑动了几米?(3)当梯子的顶端下滑的距离与梯子的底端水平滑动的距离相等时,这时梯子的顶端距地面有多高?【练一练】1、有一个传感器控制的灯,安装在门上方,离地高4.5米的墙上,任何东西只要移至5米以内,灯就自动打开,一个身高1.5米的学生,要走到离门多远的地方灯刚好打开?2、如图,公路MN 和公路PQ 在P 点处交汇,点A 处有一所中学,AP=160米,点A 到公路MN 的距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN 上沿PN 方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度是18千米/小时,那么学校受到影响的时间为多少?3、如图,南北向MN 为我国领海线,即MN 以西为我国领海,以东为公海,上午9时50分,我反走私A 艇发现正东方向有一走私艇C 以每小时6.4海里的速度偷偷向我领海开来,便立即通知正在MN 在线巡逻的我国反走私艇B 密切注意,反走私A 艇通知反走私艇B 时,A 和C 两艇的距离是20海里,A 、B 两艇的距离是12海里,反走私艇B 测得距离C 是16海里,若走私艇C 的速度不变,最早会在什么时间进入我国领海?AA ′BA ′ O二、最短路径问题1、如图1,长方体的长为12cm ,宽为6cm ,高为5cm ,一只蚂蚁沿侧面从A 点向B 点爬行,问:爬到B 点时,蚂蚁爬过的最短路程是多少?2、如图壁虎在一座底面半径为2米,高为4米的油罐的下底边沿A 处,它发现在自己的正上方油罐上边缘的B 处有一只害虫,便决定捕捉这只害虫,为了不引起害虫的注意,它故意不走直线,而是绕着油罐,沿一条螺旋路线,从背后对害虫进行突然袭击.请问壁虎至少要爬行多少路程才能捕到害虫?3:如图为一棱长为3cm 的正方体,把所有面都分为9个小正方形,其边长都是1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下地面A 点沿表面爬行至右侧面的B 点,最少要花几秒钟?4.如图,是一个三级台阶,它的每一级的长、宽和高分别等于5cm ,3cm 和1cm ,A 和B 是这个台阶的两个相对的端点,A 点上有一只蚂蚁,想到B 点去吃可口的食物.请你想一想,这只蚂蚁从A 点出发,沿着台阶面爬到B 点,最短线路是多少?5、如图,一个高18m ,周长5m 的圆柱形水塔,现制造一个螺旋形登梯,为减小坡度,要求登梯绕塔环绕一周半到达顶端,问登梯至少多长?(建议:拿张白纸动手操作,你一定会发现其中的奥妙)A B 5 316、有一圆柱形食品盒,它的高等于16cm ,底面直径为20cm , 蚂蚁爬行的速度为2cm/s. ⑴如果在盒内下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)⑵如果在盒外下底面的A 处有一只蚂蚁,它想吃到盒内对面中部点B 处的食物,那么它至少需要多少时间? (盒的厚度和蚂蚁的大小忽略不计,结果可含π)7、如图,圆锥的侧面展开图是半径为22cm 的半圆,一只蚂蚁沿圆锥侧面从A 点向B 点爬行,问:(1)爬到B 点时,蚂蚁爬过的最短路程;(2)当爬行路程最短时,求爬行过程中离圆锥顶点C 的最近距离.8、如图,一圆锥的底面半径为2,母线PB 的长为6,D 为PB 的中点.一只蚂蚁从点A 出发,沿着圆锥的侧面爬行到点D ,则蚂蚁爬行的最短路程为三、面积问题1. 已知△ABC 是边长为1的等腰直角三角形,以Rt △ABC 的斜边AC 为直角边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三个等腰Rt △ADE ,…,依此类推,第n 个等腰直角三角形的斜边长是 .AB CD E FGA ·B · A· B ·FE DABC2.如图,直线l 经过正方形ABCD 的顶点B ,点A 、C 到直线l 的距离分别是1、2,则正方形的边长是____ _____.3.在直线上依次摆着七个正方形(如图),已知斜放置的三个正方形的面积分别为1,2,3,正放置的四个正方形的面积是S 1,S 2,S 3,S 4,则S 1+S 2+S 3+S 4=______ ___. 4.如图,△ABC 中,∠C =90°,(1)以直角三角形的三边为边向形外作等边三角形(如图①),探究S 1+S 2与S 3的关系;(2)以直角三角形的三边为斜边向形外作等腰直角三角形(如图②),探究S 1+S 2与S 3的关系; (3)以直角三角形的三边为直径向形外作半圆(如图③),探究S 1+S 2与S 3的关系.图① 图② 图③5.如图,设四边形ABCD 是边长为1的正方形,以正方形ABCD 的对角线AC 为边作第二个正方形ACEF ,再以第二个正方形的对角线AE 为边作第三个正方形AEGH ,如此下去…,记正方形ABCD 的边长a1=1,依上述方法所作的正方形的边长依次为a1,a2,a3,…,an ,根据上述规律,则第n 个正方形的边长an =___ _____记正方形AB -CD 的面积S 1为1,按上述方法所作的正方形的面积依次为S 2,S 3,……,S n (n 为正整数),那么S n =____ ____.6.如图,Rt △ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为 .四、翻折问题1、如图,折叠矩形纸片ABCD ,先折出折痕(对角线)BD ,再折叠,使AD 落在对角线BD 上,得折痕DG ,若AB = 2,BC = 1,求AG.2、如图,把矩形纸片ABCD 沿对角线AC 折叠,点B 落在点E 处,EC 与AD 相交于点F. (1)求证:△FAC 是等腰三角形;(2)若AB=4,BC=6,求△FAC 的周长和面积.3、如图,将矩形ABCD 沿直线AE 折叠,顶点D 恰好落在BC 边上F 点处,已知cm CE 6=,cm AB 16=求BF 的长.G AD A B C DAA B C D EG FF 4、如图,一张矩形纸片ABCD 的长AD=9㎝,宽AB=3㎝。

专题02 勾股定理的四种实际应用(解析版)

专题02 勾股定理的四种实际应用(解析版)

专题02 勾股定理的四种实际应用【基础知识点】勾股定理的实际应用有很多,有梯子滑落问题、最短距离问题,树枝折断问题,求三角形角度问题等等,构造直角三角形是解决问题的关键。

类型一、梯子滑落高度问题例1.如图,一架梯子AB 斜靠在一竖直的墙OA 上,这时 2.5m AO =,30OAB Ð=°.梯子顶端A 沿墙下滑至点C ,使60OCD Ð=°,同时,梯子底端B 也外移至点D .求BD 的长度.(结果保留根号)【解析】在Rt OAB V 中, 2.5AO =Q ,30OAB Ð=°,2AB \==根据勾股定理知BO ===,60OCD Ð=°Q ,30ODC \Ð=°,在AOB D 和DOC D 中,OAB ODC AOB DOC AB DC Ð=ÐìïÐ=Ðíï=î,()AOB DOC AAS \D @D ,OA OD \=,OC OB =,52BD OD OB \=-==.【变式训练1】如图,在一棵大树AB 的10m 高的D 处有两只猴子,它们同时发现地面上的点C 处有一根香蕉,一只猴子从点D 处上爬到树顶点A 处,利用拉在点A 处的滑绳AC ,滑到点C 处,另一只猴子从点D 处滑到地面点B 处,再由点B 跑到点C ,已知两只猴子所经过的路程都是15m,那么这棵树有多高?【答案】12m【详解】解:设树高AB为x m.由题意知BC=15-10=5(m),AD=(x-10)m,AC=15-AD=15-x+10=(25-x)m.在Rt△ABC中,AB2+BC2=AC2,即x2+52=(25-x)2,解得x=12.答:这棵树有12 m高.【变式训练2】如图,一架25米长的梯子AB,斜靠在竖直的墙MO上,梯子底端B到墙底端O的距离为7米.(1)若梯子的顶端A沿墙面下滑4米,那么底端B将向外移动多少米?请写出解题过程.(2)在梯子AB滑动过程中,AB上是否存在点P,它到墙底端O的距离保持不变?若存在,请求出OP 的长;如果不存在,请说明理由.【答案】(1)8米;(2)存在,252 OP m=【解析】如图,在直角△ABO中,已知AB=25米,BO=7米,则由勾股定理得:=24(米);∵AO=AA1+OA1∴OA1=24米-4米=20米,∵在直角△A1B1O中,AB=A1B1,且A1B1为斜边,∴由勾股定理得:OB1米,∴BB1=OB1-OB=15米-7米=8米;答:梯足将向外移8米.(2)AB的中点P到O的距离始终不变,12522 OP AB m ==类型二、水杯中的筷子问题例1.将一根长24cm的筷子,置于底面直径为5cm,高为12cm的圆柱形水杯中,设筷子露出在杯子外面长为h cm,则h的取值范围是( )A.0≤h≤12B.12≤h≤13C.11≤h≤12D.12≤h≤24【答案】C【详解】当筷子与杯底垂直时h最大,h最大=24﹣12=12(cm).当筷子与杯底及杯高构成直角三角形时h最小,如图所示:此时,AB13(cm),故h=24﹣13=11(cm).故h的取值范围是:11cm≤h≤12cm.故选:C.【变式训练1】如图,是一种饮料的包装盒,长、宽、高分别为4cm,3cm,12cm,现有一长为16cm的吸管插入到盒的底部,则吸管插在盒内部分的长度h的最大值为____________ cm.【答案】13【解析】如图所示:BC=3cm,CD=4cm,AB=12cm,连接BD、AD,在Rt△BCD中,BD=5(cm),在Rt△ABD中,AD(cm).故吸管插在盒内部分的长度h的最大值为13cm.故答案为:13.【变式训练2】如图,八年级一班的同学准备测量校园人工湖的深度,他们把一根竹竿AB 竖直插到水底,此时竹竿AB 离岸边点C 处的距离0.8CD =米.竹竿高出水面的部分AD 长0.2米,如果把竹竿的顶端A 拉向岸边点C 处,竿顶和岸边的水面刚好相齐,则人工湖的深度BD 为( )A .1.5米B .1.7米C .1.8米D .0.6米【答案】A 【详解】解:设BD 的长度为xm ,则AB =BC =(x +0.2)m ,在Rt △CDB 中,0.82+x 2=(x +0.2)2,解得x =1.5.故选:A .【变式训练3】如图所示是一个圆柱形饮料罐底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a 的长度x (罐壁厚度和小圆孔大小忽略不计)范围是( )A .1213x ≤≤B .1215x ££C .512x ££D .513x ££【答案】A 【详解】解:由题意得:当吸管与底面圆垂直时,吸管在罐内部分a 的长度x 为最小,即为12,当吸管与底面圆的一端重合时,吸管在罐内部分a 的长度x 为最大,如图所示:∴5,12AB AC ==,∴在Rt △ABC 中,13BC ==,∴吸管在罐内部分a 的长度x 的范围是1213x ≤≤,故选A .类型三、最短距离问题例1.如图,有一个圆柱,底面圆的直径AB =16p ,高BC =12cm ,P 为BC 的中点,一只蚂蚁从A 点出发沿着圆柱的表面爬到P 点的最短距离为( )A .9cmB .10cmC .11cmD .12cm【答案】B 【详解】解:如图:展开后线段AB 的长度是圆柱中半圆AB 的周长,Q 圆柱底面直径16cm p 、高12BC cm =,P 为BC 的中点,\6BP cm =,1168,2AB cm p p\=´´=在Rt ABP V 中,10()AP cm ===,\蚂蚁从A点爬到P点的最短距离为10cm,故选:B.【变式训练1】如图是一个三级台阶,它的每一级的长,宽,高分别是20dm,3dm,2dm,A和B是这个台阶相对的端点,点A处有一只蚂蚁,想到B处去吃食物,则这只蚂蚁爬行的最短距离为()A.25dm B.26dm C.24dm D.27dm【答案】A【详解】解:三级台阶平面展开图为长方形,长为20dm,宽为(2+3)×3dm,则蚂蚁沿台阶面爬行到B点最短路程是此长方形的对角线长.设蚂蚁沿台阶面爬行到B点最短路程为x dm,由勾股定理得:x2=202+[(2+3)×3]2=252,解得x=25.故选:A.【变式训练2】长方体的长为15cm,宽为10cm,高为20cm,点B离点C5cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B去吃一滴蜜糖,需要爬行的最短距离是_________.【答案】25cm【详解】解:只要将长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10,高为20,点B与点C的距离是5,∴BD=CD+BC=10+5=15,AD=20,在直角三角形ABD中,根据勾股定理得:AB=;只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10,高为20,点B离点C的距离是5,∴BD=CD+BC=20+5=25,AD=10,在直角三角形ABD中,根据勾股定理得:AB==;只要把长方体的上表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10,高为20,点B离点C的距离是5,∴AC=CD+AD=20+10=30,在直角三角形ABC中,根据勾股定理得:AB=∵25<<∴蚂蚁爬行的最短距离是25cm,故答案为:25cm.【变式训练3】《九章算术》中一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐,问水深,葭长各几何?”题意是:有一个池塘,其地面是边长为10尺的正方形,一棵芦苇AC生长在它的中央,高出水面部分BC为1尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部C恰好碰到岸边的'C 处(如图),水深和芦苇长各多少尺?则该问题的水深是___________尺.【答案】12【详解】解:依题意画出图形,设芦苇长AC AC x ¢==尺,则水深(1)AB x =-尺,∵10C E ¢=尺,∴5C B ¢=尺,在Rt AC B ¢V 中,2225(1)x x +-=,解得13x =,即芦苇长13尺,水深为12尺,故答案为:12.类型三、是否有影响问题例1.台风是一种自然灾害,它以台风中心为圆心在周围上百千米的范围内形成极端气候,有极强的破坏力,如图,有一台风中心沿东西方向AB 由A 行驶向B ,已知点C 为一海港,且点C 与直线AB 上的两点A ,B 的距离分别为300AC km =,400BC km =,又500AB km =,以台风中心为圆心周围250km 以内为受影响区域.(1)求ACB Ð的度数.(2)海港C 受台风影响吗?为什么?(3)若台风的速度为20千米/小时,当台风运动到点E 处时,海港C 刚好受到影响,当台风运动到点F 时,海港C 刚好不受影响,即250CE CF km ==,则台风影响该海港持续的时间有多长?【答案】(1)90°;(2)海港C 受台风影响,证明见解析;(3)台风影响该海港持续的时间为7小时.【解析】(1)300AC km =Q ,400BC km =,500AB km =,222AC BC AB \+=,ABC D ∴是直角三角形,∴∠ACB=90°;(2)海港C 受台风影响,过点C 作CD AB ^,ABC D Q 是直角三角形,AC BC CD AB \´=´,300400500CD \´=´,240()CD km \=,Q 以台风中心为圆心周围250km 以内为受影响区域,\海港C 受台风影响.(3)当250EC km =,250FC km =时,正好影响C 港口,70()ED km ==,140EF km \=,Q 台风的速度为20千米/小时,140207\¸=(小时)答:台风影响该海港持续的时间为7小时.【变式训练1】如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点160米处有一所学校A ,当重型运输卡车P 沿道路ON 方向行驶时,在以P 为圆心,100米为半径的圆形区域内都会受到卡车噪声的影响,且卡车P 与学校A 的距离越近噪声影响越大.若已知重型运输卡车P 沿道路ON 方向行驶的速度为36千米/时,则对学校A 的噪声影响最大时卡车P 与学校A 的距离是___米;重型运输卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间是____秒.【答案】80 12【解析】作AD ON ^于D ,30MON Ð=°Q ,160AO =m ,1802AD OA \==m ,即对学校A 的噪声影响最大时卡车P 与学校A 的距离80m .如图以A 为圆心100m 为半径画圆,交ON 于B 、C 两点,AD BC ^Q ,12BD CD BC \==,在Rt △ABD 中,60BD ===m ,120BC \=m ,Q 重型运输卡车的速度为36千米/时10=米/秒,\重型运输卡车经过BC 的时间1201012=¸=(秒),故卡车P 沿道路ON 方向行驶一次给学校A 带来噪声影响的时间为12秒.故答案为:80,12.【变式训练2】如图,有两条公路OM 、ON 相交成30°角,沿公路OM 方向离O 点160m 处有一所医院A ,当卡车P 沿道路ON 方向行驶时,在以P 为圆心,100米为半径的圆形区域内都会受到噪声的影响.若已知卡车的速度为250米/分钟,则卡车P 沿道路ON 方向行驶一次时,给医院A 带来噪声影响的持续时间是__分钟.【答案】0.48.【解析】作AD ⊥ON 于D ,∵∠MON =30°,AO =160m ,∴AD =12OA =80m ,以A 为圆心100m 为半径画圆,交ON 于B 、C 两点,∵AD ⊥BC ,∴BD =CD =12BC ,在Rt△ABD中,BD60m==,∴BC=120m,∵卡车的速度为250米/分钟,∴卡车经过BC的时间=120÷250=0.48分钟,故答案为:0.48.类型四、角度问题例.已知在△ABC中,AB=7,AC=8,BC=5,则∠C=().A.45°B.37°C.60°D.90°【答案】C【详解】解:过点A作AD⊥BC于D,如图所示:设CD=x,则BD=BC−CD=5−x,在Rt△ABD中,由勾股定理得:AD2=AB2−BD2,在Rt△ACD中,由勾股定理得:AD2=AC2−CD2,∴AB2−BD2=AC2−CD2,即:72−(5−x)2=82−x2,解得:x=4,∴CD=4,∴CD=12AC,∴∠CAD=30°,∴∠C=90°−30°=60°,故选:C.【变式训练1】已知在△ABC中,AB=8,AC=7,BC=3,则∠B=().A.45°B.37°C.60°D.90°【答案】C【详解】解:如图,过点A作AD BC^交BC延长线于点D,∵在△ABC 中,AB =8,AC =7,BC =3,可设CD =x ,则BC =3+x ,在Rt ACD △ 中,222227A D A C C D x =-=- ,在Rt ABD △中,()2222283A D A B B D x =-=-+,∴()2222783x x -=-+,解得:1x = ,∴BC =3+x =4,∴在Rt ABD △中,12BD AB =,∴30BAD °Ð= ,∴9060B B A D °°Ð=-Ð= .故选 C .【变式训练2】边长为5,7,8的三角形的最大角和最小角的和是( ).A .90°B .150°C .135°D .120°【答案】D【详解】设△ABC 的三边AB =5,AC =7,BC =8,过点A 作AD ⊥BC 于点D ,如图设BD =x ,则CD =8-x在Rt △ADB 中,由勾股定理得:222225AD AB BD x =-=-;在Rt △ADC 中,由勾股定理得:222249(8)AD AC CD x =-=--则得方程:222549(8)x x -=--解得:52x =即52BD =∵12BD AB =,AD ⊥BC ∴∠BAD =30゜∴∠ABD =90゜-∠BAD =60゜∴∠BAC +∠C =180゜-∠ABD =120゜∵BC >AC >AB∴∠BAC >∠ABD >∠C故最大角与最小角的和为120゜故选:D .【变式训练3】在△ABC 中,AB =16,AC =14,BC =6,则△ABC 的面积为( )A .B .C .48D .112【答案】A【详解】如图,过C 作CD AB ^于D ,设BD x =,则16AD x =-,在,Rt BCD Rt ACD △△中222222,CD BC BD CD AC AD =-=-2222BC BD AC AD \-=-2222614(16)x x -=--解得x =3CD \===111622ABC S AB CD \=´=´´=△故选A。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《勾股定理的应用》同步练习
第1题. 如图,△ABC 中,∠ACB =90º,CD 为AB 边上的高,若∠A =30º,AB =16,则BC =______,BD =______,CD =______. 答案:8,4

第2题. 如图是一种“牛头形”图案,其作法是:从正方形1开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形2,以此类推,若正方形1的边长为64cm ,则正方形7的边长为_________cm .
答案:8.
第3题. 甲、乙两人从同一地点出发,甲往东走了4km ,乙往南走了3km ,这时,甲、乙两人相距______.
答案:5km
第4题. 如果梯子底端离建筑物9m ,那么15m 长的梯子可达到建筑物的高度是______.
答案:12m
第5题. 如图,一扇宽为4米,高为3米的栅栏门,需要一根长______
固定.
答案:5
第6题. 一块土地的形状如图所示,90,20,15,7,B D AB BC CD ∠=∠=︒===米米米求这块土地的面积?
答案:234平方米
A
B
C
D
4
4
3
3
2
2
1
3 A
B
C
D
第7题. 某菜农修建一个塑料大棚(如图),若棚宽a =4m ,高b =3m ,长d =35m ,求覆盖在顶
上的塑料薄膜的面积.
答案:175m 2
第8题. 一游泳池长48cm ,小方和小朱进行游泳比赛,从同一处出发,小方平均速度为3m/秒,小朱为3.1m/秒.但小朱一心想快,不看方向沿斜线游,而小方直游,俩人到达终点的位置相距14m .按各人的平均速度计算,谁先到达终点,为什么?
答案:小朱用16.13秒,小方用16秒,小方先到达终点
第9题. 如图,正方形ACDE 的面积为25cm ,测量出AB =12cm ,BC =13cm ,问E 、A 、
B 三点在一条直线上吗?为什么?
答案:在一条直线上,理由略
第10题. 从A 到B 有两种路线,一种走直线由A 到B ,另一种走折线,先从A 直线到C ,再由C 直线到B ,其中ACB ∠成直角,已知A 到C 为600m ,C 到B 为800m ,问从A 到B 走直线比走折线少走多少米?
答案:400米
第11题. 如图,△ABC 中,90C ∠=,量出AC 、BC
的长,计算出AB (保留两个有效数字)
答案:略
第12题. 已知一个三角形的三边长分别是12cm ,16cm ,20cm ,你能计算出这个三角形的面积吗?
答案:96平方厘米
a
b c d
B
A B
C
第13题. 某住宅小区的形状是如图所示的直角三角形,直角边AC ,BC 的长分别为600米、800米,DE 为小区的大门,大门宽5米,小区的周围用冬青围成了绿化带,问绿化带有多长?
答案:2395米
第14题. 一块木板如图所示,已知AB =4,BC =3,DC =12,AD =13,90B ∠=︒,木板的面积为( )
A .60
B .30
C .24
D .12
答案:C
第15题. 一个正方形的面积为1,那么以它的对角线为边长的正方形的面积是______.
答案:2
第16题. 如果一个直角三角形的斜边长为2m ,有一条直角边为m .那么这个三角形的另一条直角边是多少?
第17题. 如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要多少米?
答案:7米
第18题. 这是一个古代问题:有25尺长的梯子放置在一建筑物的垂直墙上,梯足距建筑物的
底端7尺,若梯子的顶端滑下4尺,求梯足将滑走多少尺?













C A D
B
E A D B C
5 米
3 米
A B
C
A
B
()
224,2515AC B C ===-=尺所以梯足滑走
()
1578B C BC -=-=尺
第19题. 如图,已知Rt △ABC 中,90,30C A ∠=∠=请你用刻度尺测量一下:AB 为多长?BC 为多长?你能发现二者长度的关系吗?再任画一个Rt △,且使一个锐角为30,看一看
30角所对的直角边与斜边的关系是什么规律.
答案:可以发现,在Rt △ABC 中,30角所对的直角边等于斜边的一半
第20题. 已知线段a ,求作线段13a 时,可分别以2a 和 ___为直角边作直角三角形,斜边即为所求.
答案:3a
第21题. 等边三角形边长为2,则面积为________.
答案:3
第22题. 如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边长为7cm ,则正方形A ,B ,C ,D 的面积的和是_______cm 2.
答案:49.
第23题
. 如图是边长为1的8个小正方形组成的图形,请重新剪拼成一个正方形(画出裁剪线和重新拼成的图形).
A
B
C
30
答案:
第24题. 小丽和小芳二人同时从公园去图书馆,都是每分钟走50米,
小丽走直线用了10分钟,小芳先去家拿了钱去图书馆,小芳到家用了6分,从家到图书馆用了8分,小芳从公园到图书馆拐了个( )角.
A .锐角
B .直角
C .钝角
D .不能确定
答案:B
第25题. 已知:将正方形纸片ABCD 折叠两次,第一次折痕为AC
,第二次折痕为AE ,且点D 落在F 处.若正方形边长为1,求DE .(见图)
答案:1DE =
第26题. 如图所示,一块四边形的土地需要开发,测量有关数据为:
90,40ABC AB ∠=︒=米,AD =130米,CD =120米,BC =30米,请你计算这块土地的面
积.
答案:3600平方米
第27题. 如图,要从电线杆离地面5m 处向地面拉一条长7m 的电缆,求地面电缆固定点A 到电线杆底部B 的距离.
D
C
B A 40
130 120
30
A B
C
答案:
第28题. 如图,已知长方体的底边BC=12cm,BF=9cm,长方体的高AB=8cm,求长方体的对角线AG的长.
答案:17cm
第29题. 如图,一扇长方形大门,高3m,宽4m,为了加固大门,在大门的四边及对角线位置分别订上铁条,问至少需要多长的铁条?
答案:24米
第30题. 一艘轮船以20海里/时的速度离开港口向东北方向航行,另一艘轮船同时离开此港以22海里/时的速度向东南方向航行,2小时后两船相距多少海里?
答案:
)海里。

相关文档
最新文档