(2020年7月整理)浙大材料科学基础课件part7.doc

合集下载

材料科学基础完整ppt课件

材料科学基础完整ppt课件

经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
离子% 结 )= [-1 e 合 -1 4(X A 键 X B )( 2 1% 00
另一种混合键表现为两种类型的键独立 纯在例如一些气体分子以共价键结合,而 分子凝聚则依靠范德瓦力。聚合物和许多 有机材料的长链分子内部是共价键结合, 链与链之间则是范德瓦力或氢键结合。石 墨碳的上层为共价键结合,而片层间则为 范德瓦力二次键结合。
.
5
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
八.材料科学研究的内容:材料结构的基础知识、
晶体结构、晶体缺陷、材料的相结构及相图、材
料的凝固、材料中的原子扩散、热处理、工程材
料概论等主要内容。 .
子,因此,它们都是良好的电绝缘体。但当
.
16
处在
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
高温熔融状态时,正负离子在外电场作用 下可以自由运动,即呈现离子导电性。
2.共价键
(1)通过共用电子对形成稳定结构
.
13
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
三.结论
1.原子核周围的电子按照四个量子数的规定 从低能到高能依次排列在不同的量子状态 下,同一原子中电子的四个量子数不可能 完全相同。

材料科学基础PPT精品课件幻灯片

材料科学基础PPT精品课件幻灯片

❖ 材料发展动力: ▪ 社会需求(市场拉动) ▪ 技术发展(技术推动) ▪ 科学发展(对物质的了 解,是创新的源泉)
• 硅时代(1950年)
• 20新20/材12/1料9 时代(1990年材、料科特学征与工是程多学院种材材料学料教研并室存)
8
2020/12/19
材料科学与工程学院材料学教研室
9
材料的历史:300,000 BC—3,500 BC
川徐家岭楚墓出土。龙首、虎颈、虎身、虎尾、
编钟:春秋中期,1978年河南淅川出土, 龟足,张口吐舌,牙齿犀利。龙首上附六条蛇
最大钟通高120.4厘米,舞修52.3厘米,
形龙。脊背上有有一方座,座上有一神兽也为
铣间59.7厘米。该钟一组26件,形制相同, 龙首,口衔一条龙,龙 首。通身饰动物纹和
大2小02依0/1次2/递19减。
2020/12/19
材料科学与工程学院材料学教研室
3
提到“材料”,同学们会想到什么?列举一下现 代生活中用到了哪些材料?给材料下个定义。
请同学们能不能根据材料的发展来划分历史?如 果能,是怎样划分的? 材料科学与材料工程有什么区别?
请问同学们材料是怎样分类的?
如何认识材料的科学问题? (链接)
2020/12/19

由于材料的重要性,历史学家常常根据人类使用的材料来划分
人类社会发展的历史阶段。从古代到现在人类使用材料的历史共经
历了七个时代,其中的有些时代持续了几个世纪,各时代的开始时
间:
• 旧、新石器时代(公元前10万年) • 陶器时代 • 青铜器时代(公元前3000年) • 铁器时代(公元前1000年) • 水泥时代(公元0年) • 钢时代(1800年)
6

《材料科学基础》PPT课件

《材料科学基础》PPT课件

编辑版ppt
9
w(Cu)为35%的Sn-Cu合金冷却到415℃时发生L+ε→η的包晶转变,如图 7.35(a)所示,剩余的液相冷却227℃又发生共晶转变,所以最终的平 衡组织为η+(η+Sn)。而实际的非平衡组织(见图7.35(b))却保留相 当数量的初生相ε(灰色),包围它的是η相(白色),而外面则是黑色 的共晶组织。
Pt等。
编辑版ppt
3
图7.30所示的PT-AG相图是具 有包晶转变相图中的典型代 表
图中ACB是液相线,AD,PB是固相线,DE是Ag在Pt为基的α固溶体的 溶解度曲线,PF是Pt在Ag为基的β固溶体的溶解度曲线。水平线DPC是包晶转变 线,成分在DC范围内的合金在该温度都将发生包晶转变:
LC+αD βP 包晶反应是恒温转变,图中P点称为包晶点
室温平衡组织 为:β+αⅡ
合金Ⅱ缓慢冷至包晶转变前的结晶过程与上述包晶成分合金相同,由于合金Ⅱ中的液相 的相对量大于包晶转变所需的相对量,所以包晶转变后,剩余的液相在继续冷却过程中, 将按匀晶转变的方式继续结晶出β相,其相对成分沿CB液相线变化,而β相的成分沿PB线 变化,直至t3温度全部凝固结束,β相成分为原合金成分。在t3至t4温度之间,单相β无 任何变化。在t4温度以下,随着温度下降,将从β相中不断析出αⅡ。
第七章 二元系相图及其合金的凝固
制作人:李凌锋 080207022
编辑版ppt
1
7.3.3包晶相图及其合金凝固
1.包晶相图 2.包晶合金的凝固及其平衡组织 3.包晶合金的非平衡凝固 7.3.4溶混间隙相图与调幅分解
编辑版ppt
2
ONE.包晶相图
包晶转变定义:
组成包晶相图的两组元,在液态可无限互溶, 而在固态只能部分互溶。在二元相图中, 包晶转变就是已结晶的固相与剩余液相反 应形成另一固相的恒温转变。具有包晶转 变的二元合金有Fe-C,Cu-Zn,Ag-Sn,Ag-

《材料科学基础》课件

《材料科学基础》课件

1 2
a
101
1 6
a
121
1 3
a
111
3-11
全位错
几何条件:
shockley不全位错
Franker不全位错
• 能量条件:
shockley不全位错
全位错
Franker不全位错
b=a/3<111>和{111}面垂直。纯刃位错。
b垂直于滑移面,不是fcc晶体的滑移方向, 不能滑移,只可攀移。
ቤተ መጻሕፍቲ ባይዱ
4、(3-8)比较刃位错和螺位错的异同点。
14、表征晶体中晶向和晶面的方法有 解析法 和 图示 法。(晶 体投影图 )
二、分析计算
1、(2-3)(1)晶面A在x、y、z轴上的截距分别是2a、3b和 6c,求该晶面的米勒指数;(2)晶面B在x、y、z轴上的截 距分别是a/3、b/2和c,求该晶面的米勒指数。
1 : 1 : 1 3: 2:1 236
3 0.40183
0.683
•(4) CsCl的分子量为:
(35.453 +132.905 )=168.358,
•阿佛加得罗常数是6.0238×1023;
•每个CsCl分子的质量A为:
168.358/(6.0238×10 ) 23
ZM / N A a3
1168.358 /(6.02 1023) (0.4018 107 )3
配位数是8.
[CsCl 8] 或 [ClCs8]配位六面体。
(4)
对CsCl晶体,晶体结构为简 单立方,晶胞中含有一个 正离子一个负离子,沿体 对角线正负离子相切:
3a 2r 2r
a=0.4018nm
3a 2 (0.167 0.181) 0.696

浙大材料科学基础课件part

浙大材料科学基础课件part

滑动面表示符号:平移为a/2、b/2或c/2时,写作a、b或c;沿体对角线平移1/2距离,写作n;沿面对角线平移1/4距离,写作d。

(2)螺旋轴:由回转轴和平行于轴的平移构成。

图1-24为3次螺旋轴,绕轴回转120º并沿轴平移c/3。

螺旋轴按其回转向有右旋和左旋之分螺旋轴表示符号:21(表示2次、c/2),31(表示3次、c/3、右旋),32(表示3次、c/3、左旋),41(表示4次、c/4、右旋),42(4次、c/2),43(表示4次、c/4、左旋),61(6次、c/6、右旋),62(6次、c/3、右旋),63(6次、c/2),64(6次、c/6、左旋),65(6次、c/3、左旋)所有对称要素归纳:回转对称轴:1、2、3、4、6对称面:m(2)对称中心:1(z)回转-反演轴:3、4、6滑动面:a、b、c、n、d螺旋轴:21、31、32、41、42、43、61、62、63、64、65(二)点群、单形及空间群点群:晶体可能存在的对称类型。

通过宏观对称要素在一点上组合运用而得到。

只能有32种对称类型,称32种点群表1- 3 32种点群及所属晶系*2/m表示其对称面与二次轴相垂直,/表示垂直的意思。

其余类推同一晶系晶体可为不同点群的原因:阵点上原子组合情况不同。

如错误!未找到引用源。

,对称性降低,平行于六面体面的对称面不存在,4次对称轴也不存在。

理想晶体的形态―单形和聚形:单形:由对称要素联系起来的一组同形等大晶面的组合。

32种对称型总共可以导出47种单形,如错误!书签自引用无效。

,错误!书签自引用无效。

,错误!书签自引用无效。

所示聚形:属于同一晶类的两个或两个以上的单形聚合而成的几多面体。

大量的晶体形态是由属于同一晶类的单形聚合而成的封闭一定空间的几多面体,如单形四柱与平行双面形成了四柱体的真实晶体形态空间群:描述晶体中原子通过宏观和微观对称要素组合的所有可能式。

属于同一点群的晶体可因其微观对称要素的不同而分属不同的空间群,空间群有230种,见教材中表1- 4国际通用的空间群符号及其所代表的意义为:P:代表原始格子以及六底心格子(六底心格子为三晶系和六晶系所共有)。

材料科学基础说课PPT课件

材料科学基础说课PPT课件

2020/1/2
14
材料要素
• 材料科学与工程所探讨的是材料的制备、结构、性能与功
效之间的相互关系。
Composition 成分/结构
表征
合成/ Synthesis/ 加工
2020/1/2
图3材料四要素(英国科学家)
性能 效能
15
图4 材料要素(中国)
2020/1/2
16
材料科学的形成历史
2020/1/2
• 材料科学导论,冯端、师昌绪、刘治国 主编,化学工业出版社,2006.01
2020/1/2
21
• 1936年Mott与Jones的专著“金属与合金性质的理论”(The Theory of Properties of Metals and Alloys)问世,表明了应用 量子力学对理解金属材料物性所取得的突破。
• 20世纪60年代初,美国许多大学建立了跨学科的材料研究 中心,不同类型的材料在同一实验室平行地被研究,促进 了不同材料学科的相互借鉴和融汇贯通。美国高校开始出 现以“材料科学与工程”系取代原先的冶金系的变更,将 专业范围由金属扩大到陶瓷,然后到高分子材料。
2020/1/2
25
• 1949年创刊的“金属物理学进展”(Progress in Metal Physics)于1961年更名为“材料科学的进展”(Progress in Materials Science),明确地指出,材料科学是在实 用和理论上相当重要的领域,而金属物理学仅是其重要的 组成部分,而非其全部。这是材料科学名称的首次提出。
26
• 金属、半导体和陶瓷之间的共同点较多:以晶态为主,辅 以非晶态的玻璃。而以高分子为主的有机材料的发展途径 和研究工具和无机材料有较大差异。

材料科学基础ppt课件

材料科学基础ppt课件
11
• 这类聚合物是由缩聚反应或开环聚合而成的, 因主链带极性,易水解,醇解或酸解
• 优点:耐热性好,强度高 • 缺点:易水解
• 这类聚合物主要用作工程塑料
12
元素高分子
➢主链中不含碳原子,而是由Si 、B 、As等元素和O元 素组成,但在侧链上含有有机取代基团。这类高分 子兼具无机和有机高分子特性,如有机硅高分子。
• 支化高分子的形式:星形(Star)、 梳形 (Comb)、无规(Random)
23
网状(交联)大分子
• 缩聚反应中有三个或三个以上官能 度的单体存在时,高分子链之间通 过支链联结成一个三维空间网形大 分子时即成交联结构
• 交联与支化有本质区别 支化(可溶,可熔,有软化点) 交联(不溶,不熔,可膨胀)
2

3-1 材料组成和结构的基本内容
Principal Contents of Materials Composition and Structures
• 材料的组成: 构成材料的基本单元的成分及数目
• 材料的结构: 材料的组成单元(即原子或分子)之间相互吸引 和相互排斥作用达到平衡时在空间的几何排列。
(2)
结构单元 的键接方式 ( 几何构型 Geometric
Configuration) (链节)
16
加聚
缩聚
• 由以上知:
• 由于高分子是链状结构,所以把简单重复(结构)单元称为“链节”(chains) • 简单重复(结构)单元的个数称为聚合度DP(Degree of Polymerization1
28
无 规 共 聚 ( random)
• 两种高分子无规则地平行联结
ABAABABBAAABABBAAA

材料科学基础课程总结PPT课件

材料科学基础课程总结PPT课件
晶面、晶向和晶面族、晶向族的写法
6
第6页/共65页
立方晶系常见的晶面族为:
{100} : (100)、(010)、(001)
{110} : (110)、(101)、(011)、(110)、(101)、(011)
{111} : (111)、(111)、(111)、(111)
立方晶系常见的晶向为:
100 : [100]、[010]、[001]
31
第31页/共65页
Байду номын сангаас
单晶体金属的塑性变形
滑移变形的特点 :
⑴ 滑移只能在切应力的作用下发生。临界分切应力! ⑵ 滑移常沿晶体中原子密度最大的晶面和晶向发生。 ⑶滑移时,晶体两部分的相对位移量是原子间距的整数倍. ⑷ 滑移的同时伴随着晶体的转动。 (5) 滑移是通过滑移面上的位错的运动来实现的。
当外力在某一滑移系中的分切应力达到 一定临界值时,该滑移系方向首先发生 滑移,该分切应力称为临界分切应力
小角度晶界 大角度晶界
共格 半共格 非共格
对称倾斜
不对称倾斜 扭转
29
第29页/共65页
晶界特性
1) 晶界能量高,原子处于不稳定状态
易于原子扩散,故新相易于在晶界处形核 杂质原子易于在晶界富集,导致晶界熔点低于晶内,加
热时晶界先熔化, 过热 晶界原子扩散速度高于晶内,且晶内腐蚀比晶内也快
2) 晶界原子排列不规则,且存在较多的缺陷,如空位和位错等
三种常见晶格的密排面和密排方向
体心立方晶格 面心立方晶格 密排六方晶格
密排面 {110} {111} 六方底面
数量 6 4 1
密排方向 <111> <110>
底面对角线
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(六)晶界的特性晶界的特性:不完整,畸变较大,存在晶界能,晶粒长大和晶界的平直化能减小晶界总面积,降低晶界总能量;晶界常温下对塑性变形起阻碍作用,显然,晶粒越细,金属材料的强度、硬度也越高;晶界有较高动能及缺陷,熔点较低,腐蚀速度较快第三章固溶体固溶体:类似于液体中含有溶质的溶液,晶体中含有外来杂质原子的一种固体的溶液固溶体特点:掺入外来杂质原子后原来的晶体结构不发生转变。

但点阵畸变,性能变化如多数合金,硅中掺入磷和硼都是固溶体固溶度:外来组分量可在一定范围内变化,不破坏晶体结构的最大溶解度量中间相:超过固溶体的溶解限度时,可能形成晶体结构不同,处于两端固溶体的中间部位的新相固溶体分类:置换固溶体,间隙固溶体,缺位固溶体,如图3-1所示溶体的有序和无序分类:据溶质原子在溶剂晶体结构中排列的有序与否区分。

达某一尺度为有序畴;长程有序可为超结构有限和无限固溶体分类:两组元在固态呈无限溶解,即为(连§3-1影响固溶度的因素结构相同只是完全固溶的必要条件,不是充分条件续固溶体)无限固溶体一、休姆-罗瑟里(Hume-Rothery)规律固溶体固溶度的一般规律:1、尺寸因素:当尺寸因素不利时,固溶度很小;2、化学亲和力:稳定中间相(和组元的化学亲和力有关)会使一次固溶体的固溶度下降(中间相自由能曲线低);3、电子浓度:电子浓度(价电子数和原子数的比值)影响固溶度和中间相稳定性,100)100(vx x V a e +-=(溶质价为v ,溶剂价为V )。

还有适用于某些合金系的“相对价效应” ,即高价元素在低价中的固溶度大二、尺寸因素尺寸与溶解度关系:溶质与溶剂原子的尺寸相差大,畸变大,稳定性就低,溶解度小点阵常数的改变:置换固溶体,平均点阵常数增大或收缩,如 图3-2所示;间隙固溶体,总是随溶质溶入而增大。

维伽定律:固溶体点阵常数a 与溶质的浓度x 之间呈线性关系:x a a a a )(121-+=。

离子晶满足,但合金偏离(有正、负偏差),如 图3-3所示,表明点阵常数还受其他一些因素影响。

静位移:当两种不同尺寸的原子固溶在一起时,各个原子将不同程度地偏离其理想的点阵位置(图中方格的交点),固溶体因溶质与溶剂原子尺寸不同而产生点阵畸变可以用原子的平均“静位移”来估量。

原子实际中心与其点阵位置之差称为静位移(从图3-4可见)尺寸因素对固溶度的影响:连续介质弹性力学估算。

得到尺寸条件为15.0212<-rrr,r1、r2溶剂和溶质原子半径15%规律:相对差小于14~15%,才可能形成溶解度较大甚至无限固溶体。

事实上,当键的长度变化到10~15%左右时,大多数的晶体变成不稳定,分离产生新相,如膨胀到10%左右熔化15%规律,主要针对金属中的固溶体;用于非金属时,用离子半径或键长代替。

另外,15%规律并不是十分严格的,还应考虑与具体的结构有关宽容系数:由ABO 3型的钙钛矿型结构可得)(2O b O a r r r r +=+( 图3-5);但实际上,)(2)(2O b O a O b O a r r r r t r r t r r ++=+=+, r b值可以在一定范围内变化,不至于使结构发生变化三、电价因素1、在金属中:电子浓度与溶解度:溶解度受电子浓度控制。

固溶体的电子浓度有极限值(一价面心立方合金Cu 、Ag 约为1.4)。

因此,溶质元素的原子价越高,其溶解度就越小,如 图3-6和 图3-7所示。

极限电子浓度与晶体结构类型:对铜锌合金的电子结构进行计算,得出面心立方的α固溶体极限电子浓度为1.36,而体心立方的β相为1.48,与实验结果甚为接近。

但有异议过渡族元素的“平均族数”(AGN)概念:因为d 壳层未被填满,虽可贡献外层电子,却又吸收电子填充d 壳层,原子价在0~2范围变化。

各元素的族数以满壳层以外的s+p+d 电子总数计值。

按各元素的原子百分数乘以其族数求平均值。

例如20atm%铬的镍基固溶体,平均族数为2.91008010206=⨯+⨯ 固溶限度与平均族数:一些面心立方固溶体的溶解限约位于平均族数为8.4,体心立方钼为基约为6.62、离子晶体:离子价对固溶体的影响:离子价相同或离子价总和相同时才生成连续固溶体。

如A 2+B 4+O 3型钙钛矿结构,A 位和B 位平均原子价之和等于6,离子半径符合条件:9.01.1)(2≥≥++=t r r r r t O B OA 。

图3-8是PbTiO 3-PbZrO 3系统的高温相图及常温相图。

一般,不等价离子,又不发生复合取代,很少生成固溶体,即使能生成也只有百分之几范围。

也有例外,如MgAl 2O 4-Al 2O 3和CaO-ZrO 2,基体中产生空位,大的固溶体区域,可能与结构相似有关。

随着离子价差别的增大,中间化合物的数目增多,固溶度则下降四、电负性因素化学亲和力对固溶体溶解度的影响:溶质元素与溶剂化学亲和力强,倾向于生成化合物。

化合物越稳定,则固溶度越小。

见 图3-9和表3- 1表3- 1 镁基固溶体的溶解度与所生成化合物稳定性的关系化学亲和力与固溶度:通常以电负性因素来衡量。

电负性差大,化学亲和力强,化合物越稳定。

电负性相近的元素可能具有大的溶解度,电负性之差小于±0.4是一个边界达肯经验规律:±0.4的边界主要针对金属,对氧化物,更决定于离子尺寸及电价因素。

场强与固溶度:中间化合物的数目与场强之差∆(Z/d2)成正比(二元系两种正离子的场强差)。

∆(Z/d2)=0,固溶度最大,生成完全固溶的固溶体;∆(Z/d2)小于10%,互溶或具有大固溶度;∆(Z/d2)增大,一个低共熔点→两个低共熔点→许多中间化合物图3-10是表示氧化物系统的场强差与化合物数目的实验结果的关系。

证明场强差大,导致生成化合物的数目增多§3-2固溶体各论三类固溶体的区分方法:通过测定固溶体的点阵参数和密度。

固溶体的计算确定:平均原子数n 与理论原子数n 0比较n=n 0为置换固溶体,n>n 0为间隙,n<n 0为缺位固溶体。

V A n 241065.1-⨯⨯=ρ(1002211 ++=A C A C A ) V 为晶胞体积,ρ为固溶体密度一、 置换固溶体在金属铁中:结构相容与置换:晶体结构相同有较好的相容性 图3-11。

如体心立方的Mo 、W 、V 、Cr 等元素在体心立方的α-Fe 中溶解度要大于γ-Fe 中;面心立方结构的Co 、Ni 、Cu 等在γ-Fe 中的溶解度大于在α-Fe 中尺寸因素分析:原子直径相差都不超过15%有较大固溶度。

如Ni 、Co 、Cr 、V 等元素与铁无限固溶,原子直径相差都不超过10%;Mg 、Ca 、Rb 、Sr 等元素在铁中溶解度均很小,直径相差在15%以上。

图3-12可解释,至于C 和N 在γ-Fe 中一定的溶解度是形成了间隙固溶体。

合金元素在铁中的溶解度如下表所示表3- 2 合金元素在铁中的溶解度在氧化物中:晶体结构相同和尺寸相近有较好的相容性。

MgO和FeO各自具有NaCl型结构,两种离子半径相差又不超过15%,完全互溶;CaO和MgO,超过了15%,部分互溶;钙钛矿结构的钛酸铅PT也可以形成一系列完全互溶的置换型固溶体二、间隙固溶体间隙固溶体:原子接近于溶剂结构中某些间隙的大小,处于间隙位置,形成间隙固溶体在金属中:溶质元素是半径小于1A的一些非金属元素。

即氢、硼、碳、氮、氧等间隙形状、大小与溶解度:间隙元素小间隙大,溶解度相对较大,但与具体情况有关。

γ-Fe中溶入碳原子,八面体间隙0.535A,碳0.77A,点阵畸变,溶解度受限,(1148︒C)仅2.11wt%,约相当于9.2atm%;α-Fe中,虽四面体间隙大于八面体间隙,但尺寸仍远小于碳,溶解度极小。

且测定表明,碳在α-Fe八面体间隙中在无机非金属材料中:可利用的空隙较多。

面心立方结构的MgO,四面体空隙可利用;TiO2中还有八面体空隙可利用;CaF2结构中则有配位为八的较大空隙存在三、有序固溶体包括短程有序和长程有序两类。

(一)短程有序-微观不均匀性溶质原子分布的三种情况:1、无序分布。

随机的、呈统计性,如图3-13(a),最近邻有溶质原子的几率等于溶质原子分数,甚低的稀薄固溶体中或在高温时才有可能;2、偏聚状态。

同类原子对(AA 或BB)的结合较异类原子对(AB)强,如 图3-13 (b);3、有序分布。

异类原子对(AB)的结合较同类原子对(AA 或BB)强,如 图3-13 (c)。

短程有序:有序分布通常只存在于短距离小范围内的情况。

“短程序参数”α:描述固溶体点阵分布特点的参数之一。

假想以B 原子为中心的同心圆球,在i 层球面上共C i 个原子,其A 平均数n i 个,而按合金成分层上A 应为m A C i 个,有iA i i C m n -=1α;从最近邻原子的成键分析,A A ABAB C P N N '-=-=*111α,N AB 表示A-B 键数,N AB *为溶质随机分布A-B 键数目,P’A 为B 邻近出现A 的几率,C A 为A 的浓度。

αi =0,完全无序;αi 负,有序分布;αi 正,偏聚态。

短程序参数αi 可通过x 射线分析方法予以估算。

实验得出,合金中短程序的程度,即αi 的数值,还与其成分有关, 图3-14所示为金镍固溶体的短程序参数与成分的关系。

短程序参数σ:描述固溶体点阵分布特点的参数之一。

**--=ABAB AB AB N N N N max )(σ。

(N AB )max 是完全有序时最大A-B 键数。

完全有序时,N AB =(N AB )max ,σ =1;完全无序时N AB =N AB *,σ =0。

反相畴:短程有序,达到临界温度T c 时形成的畴。

畴内有序完全,相邻的有序畴反相。

如 图3-15温度低于T c 时,畴壁不再稳定,由短程有序变为长程有序,可成为超结构。

(二)长程有序长程有序:溶质原子在整个晶体中完全呈有序分布,也称为“超结构”。

图3-18是Cu 3Au 的X 射线德拜相出现明显的超结构线条的示意图长程序参数ϕ:AA A C C P --=1αϕ,A 原子占有某一α位置的几率为P A α,完全有序时,P A α=1,ϕ=1;完全无序时P A α=C A ,ϕ=0。

部分有序时P A α在C A ~1之间;ϕ在0~l 之间。

其中把格点分成α、β两类。

完全有序时,A 原子占据α格点位置,B 原子占据β位置(如 图3-16所示)。

长程序和短程序的不同:如 图3-15,AB 键比例很高,P ’A ≈1,考虑溶质浓度C=C A =1/2,从短程序角度有α1=1-2P ’A ≈-1,σ =2P ’≈1,近完全有序;从长程序的角度,P Aα=1/2,ϕ=0,无序A-1典型有序结构:图3-17(a)Cu3Au面心立方;图3-17(b)CuAuI面心四方,c/a=0.935;图3-17(c)CuAuII反相畴,间隔五晶胞四、固溶体的理论分析与计算固溶体中的缺陷、固溶体的密度及晶格参数:根据固溶体的基体物质及溶入物质的性质、固溶时的形成条件等不同,形成固溶体的形式也就不同,从而引起固溶体中的缺陷、固溶体的密度及晶格参数等出现明显的不同。

相关文档
最新文档