动量和能量

合集下载

动量、能量综合应用

动量、能量综合应用

§6 动量、能量综合应用知识目标一、动量和动能动量和动能都是描述物体运动状态的物理量,但它们存在明显的不同:动量是矢量,动能是标量.物体动量变化时,动能不一定变化;但动能一旦发生变化,动量必发生变化.如做匀速圆周运动的物体,动量不断变化而动能保持不变.动量是力对时间的积累效应,动量的大小反映物体可以克服一定阻力运动多久,其变化量用所受冲量来量度;动能是力对空间的积累效应,动能的大小反映物体可以克服一定阻力运动多么远,其变化量用外力对物体做的功来量度.动量的大小与速度成正比,动能大小与速率的平方成正比.不同物体动能相同时动量可以不同,反之亦然,p=常用于比较动能相同而质量不同物体的动量大小;22 kpEm=常用来比较动量相同而质量不同物体的动能大小.二、动量守恒定律与机械能守恒(包括能量守恒)定律动量守恒定律和机械能守恒定律所研究的对象都是相互作用的物体组成的系统,且研究的都是某一物理过程一但两者守恒的条件不同:系统动量是否守恒,决定于系统所受合外力是否为零;而机械能是否守恒,则决定于是否有重力以外的力(不管是内力还是外力)做功.所以,在利用机械能守恒定律处理问题时要着重分析力的做功情况,看是否有重力以外的力做功;在利用动量守恒定律处理问题时着重分析系统的受力情况(不管是否做功),并着重分析是否满足合外力为零.应特别注意:系统动量守恒时,机械能不一定守恒;同样机械能守恒时,动量不一定守恒,这是因为两个守恒定律的守恒条件不同必然导致的结果.如各种爆炸、碰撞、反冲现象中,因F内》F外,动量都是守恒的,但因很多情况下有内力做功使其他形式的能转化为机械能而使其机械能不守恒.另外,动量守恒定律表示成为矢量式,应用时必须注意方向,且可在某一方向独立使用;机械能守恒定律表示成为标量式,对功或能量只需代数加减,不能按矢量法则进行分解或合成.三、处理力学问题的基本方法处理力学问题的基本方法有三种:一是牛顿定律,二是动量关系,三是能量关系.若考查有关物理量的瞬时对应关系,须应用牛顿定律,若考查一个过程,三种方法都有可能,但方法不同,处理问题的难易、繁简程度可能有很大的差别.若研究对象为一个系统,应优先考虑两大守恒定律,若研究对象为单一物体,可优先考虑两个定理,特别涉及时间问题时应优先考虑动量定理,涉及功和位移问题的应优先考虑动能定理.因为两个守恒定律和两个定理只考查一个物理过程的始末两个状态有关物理量间关系,对过程的细节不予细究,这正是它们的方便之处.特别对于变力作用问题,在中学阶段无法用牛顿定律处理时,就更显示出它们的优越性.四、求解动量守恒定律、机械能守恒定律、动能定理、功能关系的综合应用类题目时要注意:1.认真审题,明确物理过程.这类问题过程往往比较复杂,必须仔细阅读原题,搞清已知条件,判断哪一个过程机械能守恒,哪一个过程动量守恒2.灵活应用动量、能量关系.有的题目可能动量守恒,机械能不守恒,或机械能守恒,动量不守恒,或者动量在整个变化过程中守恒,而机械能在某一个过程中有损失等,过程的选取要灵活,既要熟悉一定的典型题,又不能死套题型、公式.【例1】如图所示,A和B并排放在光滑的水平面上,A上有一光滑的半径为R 的半圆轨道,半圆轨道右侧顶点有一小物体C ,C 由顶点自由滑下,设A 、B 、C 的质量均为m .求:(1)A 、B 分离时B 的速度多大?(2)C 由顶点滑下到沿轨道上升至最高点的过程中做的功是多少?分析:小物体C 自由滑下时,对槽有斜向右下方的作用力,使A 、B 一起向右做加速运动,当C 滑至槽的最低点时,C 、A 之间的作用力沿竖直方向,这就是A 、B 分离的临界点,因C 将沿槽上滑,C 对A 有斜向左下方的作用力,使A 向右做减速运动,而B 以A 分离时的速度向右做匀速运动,C 沿轨道上升到最大高度时,C 与A 的相对速度为零,而不是C 对地的速度为零,至于C 在全过程中所做的功,应等于A 、B 、C 组成的系统动能的增加(实际上是等于C 的重力所做的功)。

动量和能量

动量和能量

3、功和能的关系 做功的过程是物体能量的转化过程,做了多少功, 就有多少能量发生了变化,功是能量转化的量度. a. 重力做功与重力势能增量的关系
重力做正功,重力势能减少;重力做负功,重力 势能增加.重力对物体所做的功等于物体重力势 能增量的负值. 即WG = EP1 - EP2 = -ΔEP
b. 弹力做功与弹性势能增量的关系 弹力做正功,弹性势能减少;弹力做负功,弹性 势能增加.弹力对物体所做的功等于物体弹性势能 增量的负值. 即W弹力= EP1-EP2 = -ΔEP
f = μ mg
a= μ g
t = v/a = v / μg
木板 的位移S 2=v t
在t 时间内,物体m 的位移S 1=1/2×v t
W = FS 2 = f S 2 = μ mgv t=mv2
又解:由能量守恒定律,拉力F 的功等于物体动能的增加和 υ m 转化的内能. f P f F 2 +f ΔS W=1/2× mv S1 v S2 = 1/2× mv2 + f (S 2 - S 1)
若A不固定,B向上摆动时A也要向右运动,当B恰能 摆到水平位置时,它们具有相同的水平速度,把A、B 看成一个系统,此系统除重力外,其他力不做功,机 械能守恒.又在水平方向上系统不受外力作用,所以系 统在水平方向上动量守恒,设M在最低点得到的速度 为v0,到水平位置时的速度为v. Mv0=(M+m)v. Mv02/2=(M+m)v2/2+Mgh. I′=. Mv0 M m I′= I m
ห้องสมุดไป่ตู้
例4.(2000全国高考题)有三根长度皆为 l=1.00m 的 不可伸长的绝缘轻线,其中两根的一端固定在天花板上 的 O 点,另一端分别拴有质量皆为 m=1.00×10- 2kg 的带电小球 A 和 B,它们的电量分别为 一q 和 + q,q=l.00×10-7C。A、B 之间用第三根线连接起来。 空间中存在大小为 E=1.00×106N/C 的匀强电场,场 强方向沿水平向右,平衡时 A、B 球的位置如图所示。 现将 O、B 之间的线烧断,由于有空气阻力,A、B 球 最后会达到新的平衡位置。求最后两球的机械能与电势 能的总和与烧断前相比改变了多少。(不计两带电小球 间相互作用的静电力)

动量与能量的概念与计算

动量与能量的概念与计算

动量与能量的概念与计算在物理学的广阔天地中,动量和能量是两个极为重要的概念,它们不仅在理论研究中占据着关键地位,也在我们日常生活和各种实际应用中发挥着不可或缺的作用。

让我们先来聊聊动量。

动量,简单来说,就是物体运动的一种“冲量”。

它的定义是物体的质量乘以其速度。

如果一个物体的质量很大,速度也很快,那么它的动量就会很大。

想象一下一辆高速行驶的重型卡车,与一辆缓慢行驶的小型汽车相比,卡车显然具有更大的动量。

因为卡车的质量大,速度也不低。

动量是一个矢量,这意味着它不仅有大小,还有方向。

就像一辆向前行驶的车和一辆向后倒车的车,它们的动量方向是完全相反的。

动量的计算非常直接。

假设一个物体的质量用 m 表示,速度用 v 表示,那么它的动量 p 就可以用公式 p = mv 来计算。

这里要注意的是,速度 v 是一个矢量,所以在计算时要考虑其方向。

如果物体的运动方向发生了改变,那么动量也会相应地发生变化。

再来说说能量。

能量的形式多种多样,比如动能、势能、热能、电能等等。

我们先从大家比较熟悉的动能说起。

动能就是物体由于运动而具有的能量。

一个运动速度越快、质量越大的物体,它所具有的动能就越大。

想象一下一颗飞速射出的子弹,它具有很大的动能,能够造成巨大的破坏力。

动能的计算可以用公式 E_k = 1/2 mv²来表示。

其中 m 是物体的质量,v 是物体的速度。

从这个公式可以看出,速度对动能的影响更大,因为速度是平方的关系。

势能则与物体所处的位置有关。

比如,一个被举高的物体具有重力势能。

把它举得越高,它的重力势能就越大。

当这个物体下落时,重力势能会逐渐转化为动能。

在实际生活中,动量和能量的概念无处不在。

比如在体育运动中,足球运动员射门时,脚与球接触的瞬间,运动员给球施加了一个力,改变了球的动量,使其以一定的速度飞向球门。

而球在飞行过程中具有动能,如果守门员成功挡住球,球的动能会转化为守门员和球的内能等其他形式的能量。

动量与能量守恒

动量与能量守恒

动量与能量守恒动量和能量是物理学中两个重要的守恒量,它们对于理解和描述各种物理现象都具有重要作用。

本文将介绍动量和能量守恒的概念、原理以及在实际应用中的重要性。

一、动量守恒动量是物体运动中的基本物理量,定义为物体的质量乘以其速度。

动量的大小和方向与物体的质量和速度有关。

当一个物体不受外力作用时,它的动量保持不变,这就是动量守恒的基本原理。

动量守恒定律可以用数学公式表示如下:\[ m_{1}v_{1}+m_{2}v_{2}=m_{1}v'_{1}+m_{2}v'_{2} \]其中,m和v分别代表物体的质量和速度。

这个公式表示了两个物体碰撞前后动量的守恒关系。

根据动量守恒定律,系统内外力的合力为零时,系统的总动量保持不变。

动量守恒在许多物理问题中都有广泛的应用,例如汽车碰撞、弹道学、运动物体的跳跃等。

通过分析动量守恒,可以预测物体运动的轨迹和速度变化。

二、能量守恒能量是物体运动和变化的基本原因,它存在于各种物理系统中。

能量守恒定律指出,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,总能量保持不变。

能量守恒定律可以用数学公式表示如下:\[ E_{i} = E_{f} \]其中,\(E_{i}\)代表系统的初始能量,\(E_{f}\)代表系统的最终能量。

这个公式表明,在一个封闭系统中,能量总量在时间上保持不变。

能量守恒在物理学中起着重要的作用,它可以解释和预测各种物理现象,例如机械能守恒、热能守恒和化学能守恒等。

通过分析能量守恒,可以计算物体的动能、势能和热能的变化。

三、动量与能量守恒的关系动量和能量守恒是物理学中两个独立但相互联系的概念。

它们在某些情况下可以相互转化,但在大多数情况下是独立守恒的。

例如,在完全弹性碰撞中,动量守恒和能量守恒同时成立。

动量守恒可以用来确定碰撞物体的速度变化,而能量守恒可以用来确定碰撞物体的动能变化。

在这种情况下,动量和能量都守恒,并且可以相互转化。

动量与能量结合的公式

动量与能量结合的公式

动量与能量结合的公式在咱们的物理世界里,动量与能量的结合那可是相当有趣且重要的一部分。

先来说说动量,它可以简单理解为物体运动的“冲击力”。

想象一下,一辆高速行驶的汽车,就算你能瞬间挡住它不让它再往前移动一厘米,但你依然能感受到它那种强大的“冲劲儿”,这就是动量。

而能量呢,就像是物体的“本事”。

比如一个被举高的重物,它就具有了重力势能,一旦松开手,它就能依靠这份“本事”往下掉落,产生各种效果。

当动量和能量结合起来,那公式就登场啦!动量与能量结合的公式就是:$E_{k} = \frac{p^2}{2m}$ 。

这里的 $E_{k}$ 表示动能,$p$ 是动量,$m$ 是物体的质量。

为了更好地理解这个公式,我想起之前给学生们上课时候的一件事。

当时我在课堂上讲这个知识点,有个特别调皮的学生,总是坐不住,注意力不集中。

我就拿了个小皮球,问大家:“如果我把这个皮球用力扔出去,它的动量会怎样?能量又会怎样?” 这时候,那个调皮的学生眼睛一下子亮了起来,开始认真思考。

我接着说:“大家想想,如果这个皮球质量变大,按照咱们的公式,它的动能又会怎么变化?” 同学们纷纷讨论起来,那个调皮学生也积极参与,还争着回答问题。

咱们再深入一点,这个公式在实际生活中的应用那可多了去了。

就比如说在交通事故中,车辆的碰撞就是动量和能量的相互作用。

车速越快,动量越大,碰撞时产生的能量也就越大,造成的破坏也就越严重。

这也是为什么要限制车速,就是为了减少事故中的动量和能量,降低危害。

还有在体育比赛里,像打乒乓球、羽毛球,运动员击球的力量和速度,其实都涉及到动量和能量的变化。

运动员要根据球的来势,巧妙地控制自己的力量和击球时机,以达到最佳的效果。

这背后,动量与能量的结合公式可是默默发挥着作用呢。

再说说火箭发射,那更是动量与能量结合的精彩展示。

火箭燃料燃烧产生巨大的推力,让火箭获得极大的动量,同时也赋予了它巨大的能量,从而能够挣脱地球引力,飞向太空。

动量和能量的关系公式

动量和能量的关系公式

动量和能量的关系公式动量和能量是物理学中两个重要的物理量,它们之间存在着紧密的关系。

在经典力学中,动量和能量可以通过公式进行相互转化。

首先,我们来看动量的定义。

动量是物体的运动状态的量度,它定义为物体的质量乘以速度:动量 = 质量×速度。

动量的单位是千克·米/秒(kg·m/s)。

而能量则描述了物体所具有的做工能力。

能量可以通过物体的动能和势能来表示。

动能是物体由于运动而具有的能量,它等于物体的质量乘以速度的平方再除以2:动能 = 1/2 ×质量×速度^2。

动能的单位也是千克·米/秒(kg·m/s)。

势能则是物体由于位置而具有的能量,它与物体所处位置的势场相关,例如重力势能、弹性势能等。

根据动量和能量的定义可以得知,动量和能量的关系是通过速度来联系的。

由动量的定义可知,动量正比于速度,即动量随速度的变化而变化。

而根据动能的定义可以得知,动能正比于速度的平方。

因此,动量和能量之间存在以下关系:动能 = 动量的平方 / (2 ×质量)这个公式表明,当物体的质量不变时,动量的平方和动能呈正比关系。

当动量增加时,动能也会增加。

这意味着,在碰撞或运动过程中,当物体的动量增加时,它的动能也会增加。

此外,还存在能量守恒定律,即在一个封闭系统中,能量的总量保持不变。

这意味着在物体之间发生碰撞或相互作用时,能量可以从一个物体转移到另一个物体,但总能量保持不变。

总结起来,动量和能量之间存在紧密的联系,而它们的关系可以通过速度、质量和能量守恒定律进行描述和推导。

这些公式和定律的应用使得我们能够更好地理解和解释物体的运动和相互作用过程。

物理能量与动量

物理能量与动量

物理能量与动量物理学是一门关于能量和物质运动的科学领域。

本文将聚焦于物理中的两个重要概念:能量和动量。

通过深入探讨它们的定义、性质和相互关系,我们可以更好地理解宇宙中发生的各种运动和相互作用。

一、能量的定义和性质能量是物体或系统具有的做功能力。

它是物理学中最基本的概念之一,广泛应用于各个学科领域。

根据能量形式的不同,能量可以分为多种类型,包括机械能、热能、电能、化学能等。

1. 机械能:机械能是物体由于运动或位置而具有的能量。

它包括动能和势能两个组成部分。

动能是由于物体的运动而产生的能量,它与物体的质量和速度成正比。

势能是由于物体的位置而产生的能量,它与物体的质量和位置高度成正比。

2. 热能:热能是物体内部微观粒子的热运动所具有的能量。

它与物体的温度和热容量有关,符合热力学第一定律,即能量守恒定律。

3. 电能:电能是由于电荷之间的相互作用所产生的能量。

在电路中,电能可以转化为其他形式的能量,如光能、热能、声能等。

二、动量的定义和性质动量是物体运动的物理量,是描述物体运动状态的重要参数。

它是速度与质量的乘积,用符号p表示。

动量是矢量量,方向与速度方向一致。

动量的定义为:p = m·v其中,p表示动量,m表示物体的质量,v表示物体的速度。

动量的单位是千克·米/秒(kg·m/s)。

根据动量定理,当一个物体受到外力作用时,它的动量将发生变化,变化率等于作用力的瞬时值,即:F = Δp/Δt其中,F表示作用力,Δp表示动量的变化量,Δt表示时间的变化量。

这个定理说明了力与物体动量变化之间的关系。

三、能量与动量的关系能量和动量在物理中有着密切联系,并且彼此之间可以相互转化。

1. 动能和能量转化:当物体的动量改变时,它的动能也会发生相应改变。

根据动能的定义,动能的大小与物体的质量和速度平方的乘积成正比。

因此,当速度增加时,动能增加;当速度减小时,动能减小。

2. 势能和能量转化:物体的势能也能转化为动能或其他形式的能量。

物理学中的动量与能量

物理学中的动量与能量

物理学中的动量与能量动量和能量是物理学中两个重要的概念,它们在描述物质运动和相互作用中扮演着关键的角色。

在本文中,我将对动量和能量进行详细论述,并探讨它们之间的关系。

一、动量动量是描述物体运动状态的物理量,用符号p表示。

动量的定义为物体的质量m与其速度v的乘积,即p=mv。

动量是一个矢量,它的方向与物体运动的方向相同。

所以,一个物体的动量不仅取决于它的质量,还取决于它的速度。

动量定理是描述物体受力作用下动量变化的定律。

根据动量定理,物体受到的净外力(即合力)的作用会改变物体的动量。

动量定理可以用公式表示为F=△p/△t,其中F为合力,△p为物体的动量变化,△t为时间间隔。

根据动量定理,当一个物体受到一个持续的力时,动量的改变量等于力对物体的作用时间。

因此,物体的动量可以通过改变它的质量、速度或受力时间来改变。

二、能量能量是物体或系统进行工作的能力或容纳的能力。

根据能量的形式和特性,可以将能量分为多种类型,包括机械能、热能、电能、化学能等。

在本文中,我们将重点讨论机械能。

机械能是指物体由于位置或运动而具有的能量。

它由势能和动能的总和构成。

势能是物体由于位置而具有的能量,可以分为重力势能、弹性势能等。

动能是物体由于运动而具有的能量,它与物体的质量和速度有关。

根据能量守恒定律,孤立系统中的机械能保持不变。

这意味着在没有外力做功或热量交互的情况下,机械能总是保持恒定。

三、动量与能量的关系动量和能量之间存在着密切的联系。

在物体发生碰撞或相互作用时,动量和能量都会发生变化。

根据动能定理,物体的动能可以表示为K=1/2mv²,其中K为动能,m为物体的质量,v为物体的速度。

根据动量定理,物体的动量可以表示为p=mv。

当物体发生碰撞时,动能可以转化为势能或其他形式的能量。

例如,当一个运动的球撞击到静止的球时,动能可以通过碰撞转化为弹性势能,导致静止球开始运动。

在一维弹性碰撞中,动量守恒定律成立,即碰撞前后物体总动量保持不变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考点2 动量和能量命题趋势本专题涉及的内容是动力学内容的继续和深化,其中的动量守恒定律、机械能守恒定律、能量守恒定律比牛顿运动定律的适用范围更广泛,是自然界中普遍适用的基本规律,因此是高中物理的重点,也是高考考查的重点之一。

高考中年年有,且常常成为高考的压轴题。

如2002年、2003年理综最后一道压轴题均是与能量有关的综合题。

但近年采用综合考试后,试卷难度有所下降,因此动量和能量考题的难度也有一定下降。

要更加关注有关基本概念的题、定性分析现象的题和联系实际、联系现代科技的题。

试题常常是综合题,动量与能量的综合,或者动量、能量与平抛运动、圆周运动、热学、电磁学、原子物理等知识的综合。

试题的情景常常是物理过程较复杂的,或者是作用时间很短的,如变加速运动、碰撞、爆炸、打击、弹簧形变等。

知识概要冲量是力对时间的积累,其作用效果是改变物体的动量;功是力对位移的积累,其作用效果是改变物体的能量;冲量和动量的变化、功和能量的变化都是原因和结果的关系,对此,要像熟悉力和运动的关系一样熟悉。

在此基础上,还很容易理解守恒定律的条件,要守恒,就应不存在引起改变的原因。

能量还是贯穿整个物理学的一条主线,从能量角度分析思考问题是研究物理问题的一个重要而普遍的思路。

应用动量定理和动能定理时,研究对象可以是单个物体,也可以是多个物体组成的系统,而应用动量守恒定律和机械能守恒定律时,研究对象必定是系统;此外,这些规律都是运用于物理过程,而不是对于某一状态(或时刻)。

因此,在用它们解题时,首先应选好研究对象和研究过程。

对象和过程的选取直接关系到问题能否解决以及解决起来是否简便。

选取时应注意以下几点:1.选取研究对象和研究过程,要建立在分析物理过程的基础上。

临界状态往往应作为研究过程的开始或结束状态。

2.要能视情况对研究过程进行恰当的理想化处理。

3.可以把一些看似分散的、相互独立的物体圈在一起作为一个系统来研究,有时这样做,可使问题大大简化。

4.有的问题,可以选这部分物体作研究对象,也可以选取那部分物体作研究对象;可以选这个过程作研究过程,也可以选那个过程作研究过程;这时,首选大对象、长过程。

确定对象和过程后,就应在分析的基础上选用物理规律来解题,规律选用的一般原则是:1.对单个物体,宜选用动量定理和动能定理,其中涉及时间的问题,应选用动量定理,而涉及位移的应选用动能定理。

2.若是多个物体组成的系统,优先考虑两个守恒定律。

3.若涉及系统内物体的相对位移(路程)并涉及摩擦力的,要考虑应用能量守恒定律。

点拨解疑【例题1】某地强风的风速是20m/s ,空气的密度是ρ=1.3kg/m 3。

一风力发电机的有效受风面积为S =20m 2,如果风通过风力发电机后风速减为12m/s ,且该风力发电机的效率为η=80%,则该风力发电机的电功率多大?【点拨解疑】 风力发电是将风的动能转化为电能,讨论时间t 内的这种转化,这段时间内通过风力发电机的空气 的空气是一个以S 为底、v 0t 为高的横放的空气柱,其质量为m=ρSv 0t ,它通过风力发电机所减少的动能用以发电,设电功率为P ,则)(21)2121(2200220v v t Sv mv mv Pt -=-=ηρη 代入数据解得 P =53kW【例题2】 (1998年全国卷)在光滑水平面上,动能为E 0、动量的大小为0p 的小钢球1与静止小钢球2发生碰撞,碰撞前后球1的运动方向相反。

将碰撞后球1的动能和动量的大小分别记为E 1、1p ,球2的动能和动量的大小分别记为E 2、p 2,则必有A .E 1<E 0B .p 1<p 0C .E 2>E 0D .p 2>p 0【点拨解疑】 两钢球在相碰过程中必同时遵守能量守恒和动量守恒。

由于外界没有能量输入,而碰撞中可能产生热量,所以碰后的总动能不会超过碰前的总动能,即E 1+E 2≤E 0 ,可见A 对C 错;另外,A 也可写成mp m p 222021<,因此B 也对;根据动量守恒,设球1原来的运动方向为正方向,有p 2-p 1=p 0,所以D 对。

故该题答案为A 、B 、D 。

点评:判断两物体碰撞后的情况,除考虑能量守恒和动量守恒外,有时还应考虑某种情景在真实环境中是否可能出现,例如一般不可能出现后面的球穿越前面的球而超前运动的情况。

【例题3】(2000年全国)在原子核物理中,研究核子与核关联的最有效途径是“双电荷交换反应”。

这类反应的前半部分过程和下述力学模型类似。

两个小球A 和B 用轻质弹簧相连,在光滑的水平直轨道上处于静止状态。

在它们左边有一垂直于轨道的固定挡板P ,右边有一小球C 沿轨道以速度0v 射向B 球,如图所示。

C 与B 发生碰撞并立即结成一个整体D 。

在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变。

然后,A 球与挡板P 发生碰撞,碰后A 、D 都静止不动,A 与P 接触而不粘连。

过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失)。

已知A 、B 、C 三球的质量均为m 。

(1)求弹簧长度刚被锁定后A 球的速度。

(2)求在A 球离开挡板P 之后的运动过程中,弹簧的最大弹性势能。

图 1【点拨解疑】 (1)设C 球与B 球粘结成D 时,D 的速度为1v ,由动量守恒,有 10)(v m m mv += ①当弹簧压至最短时,D 与A 的速度相等,设此速度为2v ,由动量守恒,有2132mv mv = ②由①、②两式得A 的速度 0231v v = ③ (2)设弹簧长度被锁定后,贮存在弹簧中的势能为P E ,由能量守恒,有P E mv mv +⋅=⋅2221321221 ④ 撞击P 后,A 与D 的动能都为零,解除锁定后,当弹簧刚恢复到自然长度时,势能全部转变成D 的动能,设D 的速度为3v ,则有23)2(21v m E P = ⑤ 当弹簧伸长时,A 球离开挡板P ,并获得速度。

当A 、D 的速度相等时,弹簧伸至最长。

设此时的速度为4v ,由动量守恒,有4332mv mv = ⑥当弹簧伸到最长时,其势能最大,设此势能为PE ',由能量守恒,有 P E mv mv '+⋅=⋅2423321221 ⑦ 解以上各式得 20361mv E P =' ⑧ 【例题4】(2003年理综全国)一传送带装置示意图如图2所示,其中传送带经过AB 区域时是水平的,经过BC 区域时变为圆弧形(圆弧由光滑模板形成,为画出),经过CD 区域时是倾斜的,AB 和CD 都与BC 相切。

现将大量的质量均为m 的小货箱一个一个在A 处放到传送带上,放置时初速为零,经传送带运送到D 处,D 和A 的高度差为h 。

稳定工作时传送带速度不变,CD 段上各箱等距排列,相邻两箱的距离为L 。

每个箱子在A 处投放后,在到达B 之前已经相对于传送带静止,且以后也不再滑动(忽略经BC 段时的微小滑动)。

已知在一段相当长的时间T 内,共运送小货箱的数目为N 。

这装置由电动机带动,传送带与轮子间无相对滑动,不计轮轴处的摩擦。

求电动机的平均输出功率P 。

【点拨解疑】 以地面为参考系(下同),设传送带的运动速度为v 0,在水平段运输的过程中,小货箱先在滑动摩擦力作用下做匀加速运动,设这段路程为s ,所用时间为t ,加速度为a ,则对小箱有221at s =① at v =0② 在这段时间内,传送带运动的路程为t v s 00= ③ 由以上可得s s 20= ④用f 表示小箱与传送带之间的滑动摩擦力,则传送带对小箱做功为2021mv fx A == ⑤ 传送带克服小箱对它的摩擦力做功2000212mv fx A ⋅== ⑥ 两者之差就是克服摩擦力做功发出的热量 2021mv Q = ⑦ 可见,在小箱加速运动过程中,小箱获得的动能与发热量相等。

T 时间内,电动机输出的功为 T P W = ⑧此功用于增加小箱的动能、势能以及克服摩擦力发热,即NQ Nmgh Nmv W ++=2021 ⑨ 已知相邻两小箱的距离为L ,所以 NL T v =0 ⑩ 联立⑦⑧⑨⑩,得][222gh TL N T Nm P += ⑾ 针对训练1.(2001年高考理综卷)下列一些说法:① 一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内的冲量一定相同②一质点受两个力作用且处于平衡状态(静止或匀速),这两个力在同一段时间内做的功或者都为零,或者大小相等符号相反③ 在同样时间内,作用力和反作用力的功大小不一定相等,但正负号一定相反 ④ 在同样时间内,作用力和反作用力的功大小不一定相等,正负号也不一定相反 以上说法正确的是:A .①②B .①③C .②③D .②④2.A 、B 两球在光滑水平面上沿同一直线、同一方向运动,A 球的动量是5kgm/s ,B 球的动量是7kgm/s ,当A 追上B 球时发生碰撞,则碰撞后A 、B 两球的动量的可能值是( )A .-4 kg ·m/s 、14 kg ·m/sB .3kg ·m/s 、9 kg ·m/sC .-5 kg ·m/s 、17kg ·m/D .6 kg ·m/s 、6 kg ·m/s3.(1998年高考上海卷)在光滑水平面上有质量均为2kg 的a 、b 两质点,a 质点在水平恒力F a =4N 作用下由静止出发运动4s 。

b 质点在水平恒力F b =4N 作用下由静止出发移动4m 。

比较这两个质点所经历的过程,可以得到的正确结论是A .a 质点的位移比b 质点的位移大B .a 质点的末速度比b 质点的末速度小C .力F a 做的功比力F b 做的功多D .力F a 的冲量比力F b 的冲量小4.矩形滑块由不同材料的上下两层粘结在一起组成,将其放在光滑的水平面上,如图所示。

质量为m 的子弹以速度v 水平射向滑块,若射击上层,则子弹恰好不射出;若射击下层,则子弹整个儿恰好嵌入,则上述两种情况相比较A .两次子弹对滑块做的功一样多B .两次滑块所受冲量一样大C .子弹嵌入下层过程中,系统产生的热量较多D .子弹击中上层过程中,系统产生的热量较多5.如图3所示,长2m ,质量为1kg 的木板静止在光滑水平面上,一木块质量也为1kg (可视为质点),与木板之间的动摩擦因数为0.2。

要使木块在木板上从左端滑向右端而不至滑落,则木块初速度的最大值为A .1m/sB .2 m/sC .3 m/sD .4 m/s图36.如图4所示,质量分别为m 和2m 的A 、B 两个木块间用轻弹簧相连,放在光滑水平面上,A 靠紧竖直墙.用水平力F 将B 向左压,使弹簧被压缩一定长度,静止后弹簧储存的弹性势能为E .这时突然撤去F ,关于A 、B 和弹簧组成的系统,下列说法中正确的是( ) A .撤去F 后,系统动量守恒,机械能守恒B .撤去F 后,A 离开竖直墙前,系统动量不守恒,机械能守恒C .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为ED .撤去F 后,A 离开竖直墙后,弹簧的弹性势能最大值为E /37.如图5所示,质量为M 的小车A 右端固定一根轻弹簧,车静止在光滑水平面上,一质量为m 的小物块B 从左端以速度v 0冲上小车并压缩弹簧,然后又被弹回,回到车左端时刚好与车保持相对静止.求整个过程中弹簧的最大弹性势能E P 和B 相对于车向右运动过程中系统摩擦生热Q 各是多少?参考答案:1. D 2. B 3. AC 4. AB 5. D 6.解析:A 离开墙前墙对A 有弹力,这个弹力虽然不做功,但对A 有冲量,因此系统机械能守恒而动量不守恒;A 离开墙后则系统动量守恒、机械能守恒.A 刚离开墙时刻,B 的动能为E ,动量为p =mE 4向右;以后动量守恒,因此系统动能不可能为零,当A、图4图5B 速度相等时,系统总动能最小,这时的弹性势能为E /3. 答案: BD7.v M m mv )(0+=,220)(21212v M m mv Q +-=,E P =Q=)(420M m m Mv +。

相关文档
最新文档