动量与能量结合综合题附解答

合集下载

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合 专项练习题(含答案解析)

2020年高考物理复习:动量与能量综合专项练习题1.如图所示,在平直轨道上P点静止放置一个质量为2m的物体A,P点左侧粗糙,右侧光滑。

现有一颗质量为m 的子弹以v0的水平速度射入物体A并和物体A一起滑上光滑平面,与前方静止物体B发生弹性正碰后返回,在粗糙面滑行距离d停下。

已知物体A与粗糙面之间的动摩擦因数为μ=v2072gd,求:(1)子弹与物体A碰撞过程中损失的机械能;(2)B物体的质量。

2.如图所示,水平光滑地面的右端与一半径R=0.2 m的竖直半圆形光滑轨道相连,某时刻起质量m2=2 kg的小球在水平恒力F的作用下由静止向左运动,经时间t=1 s 撤去力F,接着与质量m1=4 kg以速度v1=5 m/s向右运动的小球碰撞,碰后质量为m1的小球停下来,质量为m2的小球反向运动,然后与停在半圆形轨道底端A点的质量m3=1 kg的小球碰撞,碰后两小球粘在一起沿半圆形轨道运动,离开B点后,落在离A点0.8 m的位置,求恒力F 的大小。

(g取10 m/s2)3.如图所示,半径为R的四分之三光滑圆轨道竖直放置,CB是竖直直径,A点与圆心等高,有小球b静止在轨道底部,小球a自轨道上方某一高度处由静止释放自A点与轨道相切进入竖直圆轨道,a、b小球直径相等、质量之比为3∶1,两小球在轨道底部发生弹性正碰后小球b经过C点水平抛出落在离C点水平距离为22R的地面上,重力加速度为g,小球均可视为质点。

求(1)小球b碰后瞬间的速度;(2)小球a 碰后在轨道中能上升的最大高度。

4.如图所示,一对杂技演员(都视为质点)荡秋千(秋千绳处于水平位置),从A 点由静止出发绕O 点下摆,当摆到最低点B 时,女演员在极短时间内将男演员沿水平方向推出,然后自己刚好能回到高处A .已知男演员质量为2m 和女演员质量为m ,秋千的质量不计,秋千的摆长为R ,C 点比O 点低5R .不计空气阻力,求:(1)摆到最低点B ,女演员未推男演员时秋千绳的拉力;(2)推开过程中,女演员对男演员做的功;(3)男演员落地点C 与O 点的水平距离s .5.如图所示,光滑水平面上放着质量都为m 的物块A 和B ,A 紧靠着固定的竖直挡板,A 、B 间夹一个被压缩的轻弹簧(弹簧与A 、B 均不拴接),用手挡住B 不动,此时弹簧弹性势能为92mv 20,在A 、B 间系一轻质细绳,细绳的长略大于弹簧的自然长度。

动量与能量部分习题分析与解答

动量与能量部分习题分析与解答

跳跃的距离增加了多少?(假设人可视为质点)
分析:人跳跃躏距离的增加是由于他在最
高点处向后抛出物体所致。在抛物的过程
中,人与物之间相互作用的冲量,使他们 各自的动量发生了变化。人与物水平方向 不受外力作用,系统在该方向上动量守恒, 且必须注意是相对地面(惯性系)而言的,
y
u v0
根据相对运动可确定人与物的速度,求得
x
v-u 为抛出物对地面的水平速率。
人的水平速率的增量为
v
v0
c
os
m m'm
u
x Δx
v
v
v0
cos
m m'm
u
而人从最高点到地面的运动时间为
t v0 sin
g
所以,人跳跃的距离的增加量为 x vt mv0 sin u
(m' m) g
第三章 动量与能量部分习题分析与解答
3-13 如图所示,一绳索跨过无摩擦的滑轮,系在质量为1.00kg 的物体上,起初物体静止在无摩擦的水平平面上,若用5.00N的 恒力作用在绳索的另一端,使物体向右作加速运动,当系在物 体上的绳索从与水平面成30°角变为37°角时,力对物体所作 的功为多少?已知滑轮与水平面之间的距离d=1.00m。
(2)
由式(1)、(2)可得 F P1 F2
(3)
当A板跳到N点时,B板刚被提起,此时弹性力F’2=P2,且F2=F’2。由 式(3)可得
F P1 P2 ( m1 m2 )g
第三章 动量与能量部分习题分析与解答
3-22 如图示,有一自动卸货矿工车,满载时的质量为m’,从与 水平成倾角α=30.0°斜面上的点A由静止下滑。设斜面对车的 阻力为车重的0.25倍,矿车下滑距离L时,与缓冲弹簧一道沿斜 面运动,当矿车使弹簧产生最大压缩形变时,矿车自动卸货, 然后矿车借助弹簧的弹性力作用,使之返回原位置A再装货。试 问要完成这一过程。空载时与满载时车的质量之比变为多大?

动量和能量的综合问题-解析版

动量和能量的综合问题-解析版

专题:动量和能量的综合问题1.燃放爆竹是我国传统民俗.春节期间,某人斜向上抛出一个爆竹,到最高点时速度大小为v0,方向水平向东,并炸开成质量相等的三块碎片a、b、c,其中碎片a的速度方向水平向东,忽略空气阻力.以下说法正确的是()A.炸开时,若碎片b的速度方向水平向西,则碎片c的速度方向可能水平向南B.炸开时,若碎片b的速度为零,则碎片c的速度方向一定水平向西C.炸开时,若碎片b的速度方向水平向北,则三块碎片一定同时落地D.炸开时,若碎片a、b的速度等大反向,则碎片c落地时的速度可能等于3v0答案C解析到最高点时速度大小为v0,方向水平向东,则总动量向东;炸开时,若碎片b的速度方向水平向西,碎片c的速度方向水平向南,则违反动量守恒定律,A错误;炸开时,若碎片b的速度为零,根据动量守恒定律,碎片c的速度方向可能水平向东,B错误;三块碎片在竖直方向上均做自由落体运动,一定同时落地,C正确;炸开时,若碎片a、b的速度等大反向,根据动量守恒定律3m v0=m v c,解得v c=3v0,碎片c 落地时速度的水平分量等于3v0,其落地速度一定大于3v0,D错误.2.天问一号探测器由环绕器、着陆器和巡视器组成,总质量达到5×103kg,于2020年7月23日发射升空,2021年2月24日进入火星停泊轨道.在地火转移轨道飞行过程中天问一号进行了四次轨道修正和一次深空机动,2020年10月9日23时,在距离地球大约2.94×107千米的深空,天问一号探测器3000N主发动机点火工作约480秒,发动机向后喷射的气体速度约为3×103m/s,顺利完成深空机动,天问一号飞行轨道变为能够准确被火星捕获的、与火星精确相交的轨道.关于这次深空机动,下列说法正确的是()A.天问一号的速度变化量约为2.88×103m/sB.天问一号的速度变化量约为288m/sC.喷出气体的质量约为48kgD.喷出气体的质量约为240kg答案B解析根据动量定理有Ft=MΔvΔv=FtM=3000×4805×103m/s=288m/s,即天问一号的速度变化量Δv约为288m/s,可知A错误,B正确;设喷出气体的速度为v气,方向为正方向,质量为m,由动量守恒定律可知m v气-(M-m)Δv=0,解得喷出气体质量约为m=438kg,C、D错误.3.某人站在静止于水面的船上,从某时刻开始,人从船头走向船尾,水的阻力不计,下列说法不正确的是()A.人匀速运动,船则匀速后退,两者的速度大小与它们的质量成反比B.人走到船尾不再走动,船也停止不动C .不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比D .船的运动情况与人行走的情况无关答案D解析人从船头走向船尾的过程中,人和船组成的系统动量守恒.设人的质量为m ,速度为v .船的质量为M ,速度为v ′.以人行走的速度方向为正方向,由动量守恒定律得0=m v +M v ′,解得vv ′=-M m可知,人匀速行走,v 不变,则v ′不变,船匀速后退,且两者速度大小与它们的质量成反比,故A 正确,与题意不符;人走到船尾不再走动,设整体速度为v ″,由动量守恒定律得0=(m +M )v ″,得v ″=0即船停止不动,故B 正确,与题意不符;由以上分析知v v ′=-Mm ,则不管人如何走动,人在行走的任意时刻人和船的速度方向总是相反,大小与它们的质量成反比,故C 正确,与题意不符;由以上分析知,船的运动情况与人行走的情况有关,人动船动,人停船停,故D 错误,与题意相符.4.(多选)倾角为θ的固定斜面底端安装一弹性挡板,P 、Q 两物块的质量分别为m 和4m ,Q 静止于斜面上A 处.某时刻,P 以沿斜面向上的速度v 0与Q 发生弹性碰撞.Q 与斜面间的动摩擦因数μ=tan θ,设最大静摩擦力等于滑动摩擦力.P 与斜面间无摩擦.斜面足够长,Q 的速度减为零之前P 不会再与之发生碰撞.重力加速度大小为g .关于P 、Q 运动的描述正确的是()A .P 与Q 第一次碰撞后P 的瞬时速度大小为v P 1=25v 0B .物块Q 从A 点上升的总高度v 029g C .物块P 第二次碰撞Q 前的速度为75v 0D .物块Q 从A 点上升的总高度v 0218g 答案CD解析P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m P v 0=m P v P 1+m Q v Q 1,由机械能守恒定律得12m P v 02=12m P v P 12+12m Q v Q 12,联立解得v P 1=-35v 0,A 错误;当P 与Q 达到H 高度时,两物块到此处的速度可视为零,对两物块运动全过程由动能定理得0-12m v 02=-(m +4m )gH -tan θ·4mg cos θ·Hsin θ,解得H =v 0218g,B 错误,D 正确;P 运动至与Q 刚要发生第二次碰撞前的位置时速度为v 02,第一次碰撞后至第二次碰撞前,对P 由动能定理得12m v 022-12m v P 12=-mgh 1,P 与Q 的第一次碰撞,取P 的初速度方向为正,由动量守恒定律得m v 0=m v P 1+4m v Q 1,由机械能守恒定律得12m v 02=12m v P 12+12·4m v Q 12,联立解得v 02=75v 0,C 正确.5.(多选)如图所示,一小车放在光滑的水平面上,小车AB 段是长为3m 的粗糙水平轨道,BC 段是光滑的、半径为0.2m 的四分之一圆弧轨道,两段轨道相切于B 点.一可视为质点、质量与小车相同的物块在小车左端A 点,随小车一起以4m/s 的速度水平向右匀速运动,一段时间后,小车与右侧墙壁发生碰撞,碰后小车速度立即减为零,但不与墙壁粘连.已知物块与小车AB 段之间的动摩擦因数为0.2,取重力加速度g =10m/s 2,则()A .物块到达C 点时对轨道的压力为0B .物块经过B 点时速度大小为1m/sC .物块最终距离小车A 端0.5mD .小车最终的速度大小为1m/s 答案AD解析对物块在AB 段分析,由牛顿第二定律可知F =ma代入数据解得a =μmg m =2m/s.根据运动学公式,物块在B 点的速度为-2ax =v B 2-v A 2,代入数据解得v B =2m/s从B 到C 的运动过程中,由动能定理可得-mgr =12m v C 2-12m v B 2,解得v C =0.根据向心力公式有F N =m v C 2r ,故物块到达C 点时对轨道的压力为0,A 正确;物块返回B 时,由于BC 是光滑的,有mgr =12m v B 2-12m v C 2,代入数据解得v B =2m/s ,B 错误;物块从B 到A ,以向左为正方向,由小车与物块的动量守恒,由动量守恒定律有m v B =(m +M )v ,解得v =1m/s ,整个过程由动能定理可得-mgx =12m v 2-12m v B 2,解得x =320m<3m ,不会从小车左端掉下来,符合题意,故物块最终距离A 端的距离为L =x AB -x =5720m ,C 错误,D 正确.6.如图所示,两平行光滑杆水平放置,两相同的小球M 、N 分别套在两杆上,并由轻弹簧拴接,弹簧与杆垂直。

7动量和能量的结合问题

7动量和能量的结合问题

端高度与木板高度相同.现在将质量 1. Ǥ 的小铁块 可视为质点 从弧形轨道
顶端由静止释放,小铁块到达轨道底端时的速度
. ݉ ,最终小铁块和长木
板达到共同速度.忽略长木板与地面间的摩擦.取重力加速度 1 ݉ .求:
小铁块在弧形轨道上滑动过程中克服摩擦力所做的功 ;
小铁块和长木板达到的共同速度 v.
第 1页,共 7页
根据动量守恒定律可得:1
1݉ ݉ ;
由此解得: ;
故选:B。 本题考查了用动量守恒定律分析弹簧类问题,以子弹、滑块 A、B 和弹簧组成的系统为 研究对象,当三者速度相等时,弹簧被压缩到最短,则弹性势能最大,根据动量守恒可 正确解答.
3.【答案】BC
【解析】【分析】
本题是含有非弹性碰撞的过程,要分过程研究,B 与 C 发生碰撞后,B 的速度减小,碰
从 B 与 C 共速后到弹簧再次回到原长时,A 的速度为最小,根据动量守恒和动能守 恒列式求解。 对于含有弹簧的系统,抓住系统的合外力为零,遵守两大守恒:动量守恒和机械能守恒 进行研究。
第 7页,共 7页
滑块在小车上滑动的过程中,滑块与小车组成的系统的动量守恒,由此即可求出小 车的末速度;然后结合运动学的公式即可求出小车的长度。
6.【答案】解: 1 弹簧被压缩到最短时,木块 A 与木板 B 具有相同的速度,此时弹簧
的弹性势能最大。设共同速度为 v,从木块 A 开始沿木板 B 表面向右运动至弹簧被压缩 到最短的过程中,A、B 系统的动量守恒,取向右为正方向,则有:
对木块 A,运用动量定理可求弹簧给木块 A 的冲量; 当木块 A 和 B 板分离时,对系统运用动量守恒定律和机械能守恒定律列式,可求得 木块 A 和 B 板的速度。 本题要分析清楚物体的运动过程,知道两个物体的速度相同时弹性势能最大,应用动量 守恒定律与能量守恒定律即可正确解题。

高考物理 试题分项解析 专题 动量与能量综合问题第期

高考物理 试题分项解析 专题 动量与能量综合问题第期

专题26 动量与能量综合问题一.选择题1.(2019黑龙江齐齐哈尔五校联考)质量为m的小球A以水平初速与原来静止在圆滑水平面上的质量为4m的小球B发生正碰。

已知碰撞过程中A球的动能减少了,则碰撞后B 球的动能是A. B. C. D.【参照答案】D【思路分析】碰后A球的动能恰好变为原来的,速度大小变为原来的,但速度方向可能跟原来相同,也可能相反,再依照碰撞过程中动量守恒即可解的B的速度,进一步可求得B的动能。

本题观察的是动量定律得直接应用,注意动能是标量,速度是矢量,难度适中,属于中档题。

若碰后A球速度方向和原来一致,则依照动量守恒得:将带入得若碰后A球速度将发生反向。

因此有:将带入公式得:,因此碰后B球的动能为或故ABC错误,D正确。

应选:D。

2. (2019安徽滁州期末)以下列图,A、B两物块放在圆滑的水平面上,一轻弹簧放在A、B之间与A相连,与B接触但不连接,弹簧恰好处于原长,将物块A锁定,物块C与A、B 在一条直线上,三个物块的质量相等,现让物块C以的速度向左运动,与B相碰并粘在一起,当C的速度为零时,清除A的锁定,则A最后获得的速度大小为A. B. C. D.【参照答案】D依照能量守恒定律可得,求得,应选:D【思路分析】本题是两个过程:第一是C与B碰撞,显然是动量守恒的,这样可以求出BC 的共同的速度;第二过程是BC一起撞向带有弹簧的A,且清除锁定。

显然第二过程有两个守恒,即动量守恒与能量守恒。

解决本题的要点是要正确分析物体的运动过程,掌握隐含的临界状态和临界条件,即当C的速度为零时,清除锁定,由于整个系统机械能与其他能未发生转变,因此从碰撞后到最后状态机械能守恒的。

二.计算题1.(2019河北衡水质检)以下列图,C是放在圆滑的水平面上的一块木板,木板的质量为3m,在木板的上面有两块质量均为m的小木块A和B,它们与木板间的动摩擦因数均为最初木板静止,A、B两木块同时以方向水平向右的初速度和在木板上滑动,木板足够长,A、B 向来未滑离木板求:木块B从刚开始运动到与木板C速度恰好相等的过程中,木块B所发生的位移;木块A在整个过程中的最小速度;整个过程中,A、B两木块相对于木板滑动的总行程是多少?【名师分析】对木块B运用动能定理,有:解得:设木块A在整个过程中的最小速度为,所用时间为t,由牛顿第二定律得:对木块A:,对木板C:,当木块A与木板C的速度相等时,木块A的速度最小,则有,解得木块A在整个过程中的最小速度为:.答:木块B从刚开始运动到与木板C速度恰好相等的过程中,木块B所发生的位移为;木块A在整个过程中的最小速度为;整个过程中,A、B两木块相对于木板滑动的总行程是.【方法归纳】、B两木块同时水平向右滑动后,木块A先做匀减速直线运动,当木块A 与木板C的速度相等后,AC相对静止一起在C摩擦力的作用下做匀加速直线运动;木块B 素来做匀减速直线运动,直到三个物体速度相同依照三个物体组成的系统动量守恒求出最后共同的速度,对B由动能定理求解发生的位移;当木块A与木板C的速度相等时,木块A的速度最小,依照牛顿第二定律分别研究A、C,求出加速度,依照速度公式,由速度相等条件求出时间,再求解木块A在整个过程中的最小速度;整个过程中,系统产生的内能等于滑动摩擦力与A与C、B与C相对滑动的总行程的乘积,依照能量守恒求解A、B两木块相对于木板滑动的总行程.本题木块在木板上滑动种类,分析物体的运动过程是解题基础,其次要掌握物理过程的物理规律,常常依照动量守恒和能量守恒结合办理.2.(2019重庆九校缔盟12月联考)距水平川面高5 m的平台边缘放有一质量为1 kg的木块,一质量为20 g的子弹水平射入木块,并留在木块内,木块在子弹的冲击下掉落到水平川面上,测得木块落地地址到平台边缘的水平距离为3 m。

动量与能量综合问题归类分析

动量与能量综合问题归类分析

量守恒,故小物块恰能到达圆弧最高点A时,
两者旳共同速度 v共 =0

设弹簧解除锁定前旳弹性势能为EP,上述过程中系 统能量守恒,则有 EP=mgR+μmgL ②
代入数据解得 EP =7.5 J

⑵设小物块第二次经过O′时旳速度大小为vm,此时 平板车旳速度大小为vM ,研究小物块在圆弧面上下 滑过程,由系统动量守恒和机械能守恒有
1 2
Mv 2 2
题目 2页 3页 末页
代入数据可得:v1+3v2=4
v21 +3v22 =10
解得
v1
2
3 2
2 3.12m/s
2 2 v2 2 0.29m/s
以上为A、B碰前瞬间旳速度。

v1
23 2
2 1.12m/s
v2
2 2
2
1.71m/s
此为A、B刚碰后瞬间旳速度。
题目 2页 3页 末页
m
M
若小球只能在下半个圆周内作摆动 1/2m1V22 =m1gh ≤m1gL V2 2gL v0 m M 2gL
类型三:子弹射木块类问题
如图所示,质量为m旳小木块与水平面间旳动摩擦因数
μ=0.1.一颗质量为0.1m、水平速度为v0=33 Rg 旳子弹
打入原来处于静止状态旳小木块(打入小木块旳时间极短, 且子弹留在小木块中),小木块由A向B滑行5R,再 滑上半径为R旳四分之一光滑圆弧BC,在C点正上方有一 离C高度也为R旳旋转平台,平台同一直径上开有两个离轴 心等距旳小孔P和Q,平台旋转时两孔均能经过C点旳正上 方,若要使小木块经过C后穿过P孔,又能从Q孔落下,则平台 旳角速度应满足什么条件?
住一轻弹簧后连接在一起,两车从光滑弧形轨道上旳 某一高度由静止滑下,当两车刚滑入圆环最低点时连 接两车旳挂钩忽然断开,弹簧将两车弹开,其中后车 刚好停下,前车沿圆环轨道运动恰能越过圆弧轨道最 高点,求:

2023届高考一轮复习:动量和能量综合问题

2023届高考一轮复习:动量和能量综合问题一、完全非弹性碰撞碰后物体的速度相同, 根据动量守恒定律可得: m 1v 1+m 2v 2=(m 1+m 2)v 共 (1)完全非弹性碰撞系统损失的动能最多,损失动能: ΔE k = ½m 1v 12+ ½ m 2v 22- ½(m 1+m 2)v 共2. (2)联立(1)、(2)解得:v 共 =;ΔE k =1.半圆形光滑轨道固定在水平地面上,如图所示,并使其轨道平面与地面垂直,物体m 1、m 2同时由轨道左、右最高点释放,二者碰后粘在一起向左运动,最高能上升到轨道M 点,如图所示,已知OM 与竖直方向夹角为60°,则两物体的质量之比为m 1︰m 2为( )A .(21)∶(21)+-B .2∶1C .(21)∶(21)-+D .1∶22.如图所示,木块A 和B 质量均为2 kg ,置于光滑水平面上.B 与一轻质弹簧一端相连,弹簧另一端固定在竖直挡板上,当A 以4 m/s 的速度向B 撞击时,由于有橡皮泥而粘在一起运动,那么弹簧被压缩到最短时,具有的弹性势能大小为( )A .4 JB .8 JC .16 JD .32 J3.A 、B 两小球静止在光滑水平面上,用水平轻弹簧相连接,A 、B 两球的质量分别为m 和M (m <M ).若使A 球获得瞬时速度v (如图3甲),弹簧压缩到最短时的长度为L 1;若使B 球获得瞬时速度v (如图乙),弹簧压缩到最短时的长度为L 2,则L 1与L 2的大小关系为( )A .L 1>L 2B .L 1<L 2C .L 1=L 2D .不能确定二、弹性碰撞解法一: 解法二:4.一质量为2m 的小物块A ,沿X 轴的正方向运动,与另一个沿X 轴的负方向运动的质量为m 的小物块B 发生弹性碰撞。

碰撞前物块A 、B 的速度大小都为v 0。

则碰撞后,小物块A 、B 速度分别为(取X 轴的正方向为速度的正方向) , .5.旅行者1号经过木星和土星时通过引力助推(引力弹弓)获得了足以完全摆脱太阳引力的动能。

2024年高考物理二轮复习专题7:动量和能量的综合应用(附答案解析)

第1页(共19页)
专题07·动量和能量的综合应用能力突破
本专题考查动量、冲量、碰撞、反冲等知识点,用科学思
维的方法解决动量定理、动量守恒定律、人船模型、“木块—滑块”模型、“子弹打木块”模型、“含弹簧”模型等。

高考热点(1)与动量相关的概念及规律;
(2)应用解决碰撞类问题的方法;
(3)“三大观点”在力学中的应用技巧。

出题方向以计算题为主,选择题主要是和其他知识点进行综合考查,计算题也常作为压轴题进行考查,难度中档或偏上。

考点1动量定理和动量守恒定律
1.恒力的冲量可应用I =Ft 直接求解,变力的冲量优先考虑应用动量定理求解,合外。

高中力学动量与能量综合题精选35题(例题+练习+知识提要)

高中力学综合题精选35题例1、如图所示,光滑水平面上有一质量M=4.0kg 的平板车,车的上表面右侧是一段长L=1.0m 的水平轨道,水平轨道左侧是一半径R=0.25m 的1/4光滑圆弧轨道,圆弧轨道与水平轨道在O′点相切。

车右端固定一个尺寸可以忽略,处于锁定状态的压缩轻弹簧,一质量m=1.0kg 的小物体(可视为质点)紧靠弹簧,小物体与水平轨道间的动摩擦因数0.5μ=。

整个装置处于静止状态。

现将轻弹簧解除锁定,小物体被弹出,恰能到达圆弧轨道的最高点A 。

不考虑小物体与轻弹簧碰撞时的能量损失,不计空气阻力。

g 取10m/s 2,求:(1)解除锁定前轻弹簧的弹性势能;(2)小物体第二次经过O′点时的速度大小;(3)最终小物体与车相对静止时距O′点的距离。

解:(1)由能量守恒定律得:E=mgR+μmgL 代入数据解得:E=7.5J(2)设小物体第二次经过O′点时的速度大小为v 1,此时车的速度大小v 2,由水平方向动量守恒定律得:m v 1-M v 2 =0 ①由能量守恒定律得:mgR=12m v 12+12Mv 22 ②①②联立代入数据解得:v 1=2.0m/s(3) 最终小物体与车相对静止时,二者的速度都为0由能量守恒定律得:E=μmgS ③距O′点的距离: x=S-L ④③④代入数据解得:x=0.5m例2、质量m =1kg 的小车左端放有质量M =3kg 的铁块,两者以v 0=4m/s 的共同速度沿光滑水平面向竖直墙运动,车与墙的碰撞时间极短,无动能损失。

铁块与车间的动摩擦因数为μ=1/3,车足够长,铁块不会到达车的右端。

从小车第一次与墙相碰开始计时,取水平向右为正方向,g =10m/s 2,求:(1)当小车和铁块再次具有共同速度时,小车右端离墙多远?(2)在答卷的图上画出第二次碰撞前,小车的速度时间图象。

不要求写出计算过程,需在图上标明图线的起点、终点和各转折点的坐标。

解:(1)撞墙后至两者具有共同速度,小车和铁块系统动量守恒:(M -m )v 0=(M +m )v 1,此时小车右端离墙距离s 1,由动能定理知:221101122Mgs mv mv μ-=-, 10.6m s =。

高三物理专项训练 力学中的动量和能量问题(附答案解析)

力学中的动量和能量问题专题强化练1.(2019·河南洛阳孟津二中调研)一质量为m的滑块A以初速度v0沿光滑水平面向右运动,与静止在水平面上的质量为23m的滑块B发生碰撞,它们碰撞后一起继续运动,则在碰撞过程中滑块A动量的变化量为()A.25mv0,方向向左 B.35mv0,方向向左C.25mv0,方向向右 D.35mv0,方向向右【答案】A设两滑块碰后的共同速度为v,以水平向右为正方向,根据动量守恒定律有mv0=m+23mv,解得v=35v0,可知在碰撞过程中滑块A动量的变化量为Δp=m·35v0-mv0=-25mv0,方向向左,故选A.2.(2019·山东日照一模)A、B两小球静止在光滑水平面上,用轻弹簧相连接,A、B两球的质量分别为m和M(m<M).若使A球获得瞬时速度v(如图甲),弹簧压缩到最短时的长度为L1;若使B球获得瞬时速度v(如图乙),弹簧压缩到最短时的长度为L2,则L1与L2的大小关系为()A.L1>L2B.L1<L2C.L1=L2D.不能确定【答案】C3.(2019·福建晋江季延中学月考)质量为m1=1 kg和m2(未知)的两个物体在光滑的水平面上发生正碰,碰撞时间极短,其x-t图像如图所示,则() A.此碰撞一定为弹性碰撞B.m2=2 kgC.碰后两物体速度相同D.此过程有机械能损失【答案】A由图像可知,碰撞前质量为m 2的物体是静止的,质量为m 1的物体速度为v 1=4 m/s ,碰后质量为m 1的物体速度为v 1′=-2 m/s ,质量为m 2的物体速度为v 2′=2 m/s ,两物体碰撞过程动量守恒,由动量守恒定律得m 1v 1=m 1v 1′+m 2v 2′,解得m 2=3 kg ;碰撞前总动能E k =E k1+E k2=12m 1v 21+12m 2v 22=8 J ,碰撞后总动能E k ′=E k1′+E k2′=12m 1v 1′2+12m 2v 2′2=8 J ,碰撞前后系统动能不变,故碰撞是弹性碰撞,综上分析可知A 正确,B 、C 、D 错误.4.(2019·福建省泉州市模拟三)如图,半径为R 、质量为m 的半圆轨道小车静止在光滑的水平地面上,将质量也为m 的小球从距A 点正上方h 0高处由静止释放,小球自由落体后由A 点经过半圆轨道后从B 冲出,在空中能上升的最大高度为34h 0,则( )A .小球和小车组成的系统动量守恒B .小车向左运动的最大距离为12RC .小球离开小车后做斜上抛运动D .小球第二次能上升的最大高度12h 0<h <34h 0【答案】D小球与小车组成的系统在水平方向所受合外力为零,水平方向系统动量守恒,但系统整体所受合外力不为零,系统动量不守恒,故A 错误;系统水平方向动量守恒,以向右为正方向,在水平方向,由动量守恒定律得:mv -mv ′=0,m 2R -x t -m x t =0,解得,小车的位移:x =R ,故B 错误;小球与小车组成的系统在水平方向动量守恒,小球由B 点离开小车时系统水平方向动量为零,小球与小车水平方向速度为零,小球离开小车后做竖直上抛运动,故C 错误;小球第一次由释放经半圆轨道冲出至最高点时,由动能定理得:mg (h 0-34h 0)-W f =0,W f 为小球克服摩擦力做功大小,解得W f =14mgh 0,即小球第一次在车中滚动损失的机械能为14mgh 0,由于小球第二次在车中滚动时,对应位置处速度变小,因此小车给小球的弹力变小,摩擦力变小,摩擦力做的功小于14mgh 0,机械能的损失小于14mgh 0,因此小球第二次离开小车时,能上升的高度大于34h 0-14h 0=12h 0,且小于34h 0,故D 正确.5.(2019·河南省鹤壁市第二次段考)有一只小船停靠在湖边码头,小船又窄又长(估计重一吨左右).一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停泊,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d ,然后用卷尺测出船长L .已知他的自身质量为m ,水的阻力不计,船的质量为( )A.()m L d d +B.()m L d d - C.mL dD.()m L d L + 【答案】B设人走动的时候船的速度为v ,人的速度为v ′ ,人从船尾走到船头用时为t ,人的位移为L -d ,船的位移为d ,所以v =d t ,v ′=L -d t.以船的速度方向为正方向,根据动量守恒定律有:Mv -mv ′=0,可得:M d t =m L -d t ,解得小船的质量为M =m L -d d ,故B 项正确.6.(多选)水平地面上有两个物体在同一直线上运动,两物体碰撞前后的速度-时间图像如图所示(其中一个物体碰后速度为0),下列说法正确的是( )A .t =0时,两物体的距离为1 mB .t =2.5 s 时,两物体的距离为4.5 mC .两物体间的碰撞为弹性碰撞D .碰撞前,地面对两个物体的摩擦力大小不相等【答案】BC两物体相向运动,均做匀减速运动,1 s 相碰,可知t =0时,两物体的距离为Δs =12×(4+6)×1 m +12(2+6)×1 m =9 m ,选项A 错。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.(1) =10m/s(2) m(3)smin=2.5×10-2m
【解析】(1)子弹射穿物块A后,A以速度vA沿桌面水平向右匀速运动,离开桌面后做平抛运动 t=0.40s
A离开桌边的速度 =5.0m/s
设子弹射入物块B后,子弹与B的共同速度为vB,子弹与两物块作用过程系统动量守恒:
B离开桌边的速度 =10m/s
a.此过程中物体上升的高度;
b.此过程中物体的最大速度;
c.此过程中绳子对物体所做的功。
10.如图所示,水平地面和半圆轨道面均光滑,质量M=1kg的小车静止在地面上,小车上表面与R=0.24m的半圆轨道最低点P的切线相平。现有一质量m=2kg的滑块(可视为质点)以v0=6m/s的初速度滑上小车左端,二者共速时小车还未与墙壁碰撞,当小车与墙壁碰撞时即被粘在墙壁上,已知滑块与小车表面的滑动摩擦因数μ=0.2,g取10m/s2,求:
①求反应中生成的另一粒子的速度:
②假设此反应中放出的能量为0.9MeV,求质量亏损。
6.(19分)如图12所示,质量M=1.0kg的木块随传送带一起以v=2.0m/s的速度向左匀速运动,木块与传送带间的动摩擦因数μ=0.50。当木块运动至最左端A点时,一颗质量为m=20g的子弹以v0=3.0×102m/s水平向右的速度击穿木块,穿出时子弹速度v1=50m/s。设传送带的速度恒定,子弹击穿木块的时间极短,且不计木块质量变化,g=10m/s2。求:
1,质量为m时物块与木板碰撞后的速度;
2,质量为2m时物块向上运动到O的速度。
3.如图所示,两根足够长的固定的平行金属导轨位于同一水平面内,两导轨间的距离为 ,导轨上面横放着两根导体棒 和 ,构成矩形回路,两根导体棒的质量皆为 ,电阻皆为 ,回路中其余部分的电阻可不计。在整个导轨平面内都有竖直向上的匀强磁场,磁感应强度为 。设两导体棒均可沿导轨无摩擦地滑行,开始时,棒 静止,棒 有指向棒 的初速度 ,若两导体棒在运动中始终不接触,求:
(1)物块A和物块B离开桌面时速度的大小分别是多少;
(2)求子弹在物块B中穿行的距离;
(3)为了使子弹在物块B中穿行时物块B未离开桌面,求物块B到桌边的最小距离。
5.宇宙射线每时每刻都在地球上引起核反应。自然界的14C大部分是宇宙射线中的中子轰击“氮-14”产生的,核反应方程式为 。若中子的速度为v1=8×l06m/s,反应前“氮-14”的速度认为等于零。反应后生成的14C粒子的速度为v2=2.0×l05m/s,其方向与反应前中子的运动方向相同。

由②③④解得物块B到桌边的最小距离 smin=2.5×10-2m
本题考查动量守恒与能量守恒的应用,物块A被子弹射穿后做平抛运动飞出桌面,由平抛运动规律可求得平抛运动的初速度及子弹射穿后木块的速度,在子弹射穿木块过程中系统动量守恒,子弹射进木块B中,木块B向右加速,使得A、B分离,如果以子弹、木块A、B为一个系统,内力远远大于外力,系统动量始终守恒,初状态为AB静止,末状态为子弹与B共速,列式可求得B的速度,再以子弹和木块A为研究对象,动量守恒可求得子弹飞出后的速度,此时AB速度相同,再以子弹和B为一个系统,系统动能的减小量完全转化为内能,系统的内能为阻力乘以相对距离及打进物体B的深度,由此可求解
解得:
设物块与木板碰撞后一起开始向下运动的速度为 ,因碰撞时间极短,动量守恒: ,解得: 。
②设质量为 时物块与木板刚碰撞时弹簧的弹性势能为 ,当它们一起回到O点时,弹簧弹性势能为零,且此时物块与木板速度恰好都为零,以木板初始位置为重力势能零点,由机械能守恒得到:
设 表示质量为 时物块与木板碰撞后一起开始向下运动的速度,由动量守恒得到:
5.(1) (2)
【解析】①轰击前后系统动量守恒,选中子速度方向为正方向
(1分)
氢核速度为 方向与中子原速度方向相同 (1分)
②由质能方程 (1分)

本题考查动量守恒定律,轰击前后系统动量守恒,找到初末状态,规定正方向,列公式求解,由爱因斯坦的质能方程可求得质量亏损
6.(1) (2) (3)12.5J
【解析】(1)设木块被子弹击穿时的速度为u,子弹击穿木块过程动量守恒
解得 ………………………………(2分
设子弹穿出木块后,木块向右做匀减速运动的加速度为a,根据牛顿第二定律μmg=ma解得 …………………………………………(2分)木块向右运动到离A点最远时,速度为零,设木块向右移动最大距离为s1
解得 ………………………………………(2分) (2)根据能量守恒定律可知子弹射穿木块过程中产生的内能为
A.cd始终做减速运动,ab始终做加速运动,并将追上cd
B.cd始终做减速运动,ab始终做加速运动,但追不上cd
C.开始时cd做减速运动,ab做加速运动,最终两杆以相同速度做匀速运动
D.磁场力对两金属杆做功的大小相等
2.一轻弹簧的下端固定在水平面上,上端连接质量为m的木板处于静止状态,此时弹簧的压缩量为 ,如图所示。一物块从木板正上方距离为 的A处自由落下,打在木板上并与木板一起向下运动,但不粘连,它们到达最低点后又向上运动。若物块质量也为m时,它们恰能回到O点;若物块质量为 时,它们到达最低点后又向上运动,在通过O点时它们仍然具有向上的速度,求:
E= …………………………(3分) 解得 …………………………………………………(1分)(3)设木块向右运动至速度减为零所用时间为t1,然后再向左做加速运动,经时间t2与传送带达到相对静止,木块向左移动的距离为s2。根据运动学公式
【名师点睛】本题主要考查了动量守恒定律、闭合电路的欧姆定律、导体切割磁感线时的感应电动势。分根据动量守恒定律确定两棒最后的末速度是本题的关键,分析这类电磁感应现象中的能量转化较易:系统减少的动能转化为回路的焦耳热;本题涉及到动生电动势、动量守恒定律、牛顿第二定律及闭合电路欧姆定律综合的力电综合问题,故本题属于难度较大的题。
(1)求滑块A从2L高度处由静止开始下滑,与B碰后瞬间B的速度。
(2)若滑块A能以与球B碰前瞬间相同的速度与滑块C相碰,A至少要从距水平轨道多高的地方开始释放?
(3)在(2)中算出的最小值高度处由静止释放A,经 一段时间A与C相碰,设碰撞时间极短,碰后一起压缩弹簧,弹簧最大压缩量为 L,求弹簧的最大弹性势能。
动量与能量结合综合题
1.如图所示,水平放置的两根金属导轨位于方向垂直于导轨平面并指向纸里的匀强磁场中.导轨上有两根小金属导体杆ab和cd,其质量均为m,能沿导轨无摩擦地滑动.金属杆ab和cd与导轨及它们间的接触等所有电阻可忽略不计.开始时ab和cd都是静止的,现突然让cd杆以初速度v向右开始运动,如果两根导轨足够长,则()
考点:电磁感应问题的力的问题
【名师点睛】本题是牛顿第二定律在电磁感应现象中的应用问题.解答本题能搞清楚物体的受力情况和运动情况,突然让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,根据牛顿第二定律判断两杆的运动情况。
【答案】① ;②
【解析】
试题分析:①设物块与木板碰撞时,物块的速度为 ,由能量守恒得到:
参考答案
1.C
【解析】
试题分析:让cd杆以初速度v向右开始运动,cd杆切割磁感线,产生感应电流,两杆受安培力作用,安培力对cd向左,对ab向右,所以ab从零开始加速,cd从v0开始减速.那么整个电路的感应电动势减小,所以cd杆将做加速度减小的减速运动,ab杆做加速度减小的加速运动,当两杆速度相等时,回路磁通量不再变化,回路中电流为零,两杆不再受安培力作用,将以相同的速度向右匀速运动.故C正确,AB错误.两导线中的电流始终相等,但由于通过的距离不相等,故磁场对两金属杆做功大小不相等;故D错误;故选C。
(2)设子弹离开A时的速度为 ,子弹与物块A作用过程系统动量守恒:
m/s
子弹在物块B中穿行的过程中,由能量守恒

子弹在物块A中穿行的过程中,由能量守恒

由①②解得 m
(3)子弹在物块A中穿行的过程中,物块A在水平桌面上的位移为s1,根据动能定理

子弹在物块B中穿行的过程中,物块B在水平桌面上的位移为s2,根据动能定理
(1)在运动中产生的焦耳热 最多是多少?
(2)当 棒的速度变为初速度的 时, 棒的加速度 是多少?
4.(20分) 如图所示,两物块A、B并排静置于高h=0.80m的光滑水平桌面上,两物块的质量均为M=0.60kg。一颗质量m=0.10kg的子弹C以v0=100m/s的水平速度从左面射入A物块,子弹射穿A后接着射入B并留在B中,此时A、B都没有离开桌面。已知物块A的长度为0.27m,A离开桌面后,落地点到桌边的水平距离s=2.0m。设子弹在物块A、B 中穿行时受到的阻力保持不变,g取10m/s2。求:
3.(1) ;
(2)
【解析】
试题分析:(1)从开始到两棒达到相同速度 的过程中,两棒的总动量守恒,有
根据能量守恒定律,整个过程中产生的焦耳热
(2)设 棒的速度变为 时, 棒的速度 ,则由动量守恒可知
解得
此时回路中的电动势为
此时回路中的电流为
此时 棒所受的安培力为
由牛顿第二定律可得, 棒的加速度
考点:动量守恒定律;闭合电路的欧姆定律;导体切割磁感线时的感应电动势
(1)在被子弹击穿后,木块向右运动距A点的最大距离;
(2)子弹击穿木块过程中产生的内能;
(3)从子弹击穿木块到最终木块相对传送带静止的过程中,木块与传送带间由于摩擦产生的内能。(AB间距离足够长)
7、为了有效地将重物从深井中提出,现用小车利用“双滑轮系统”(两滑轮同轴且有相同的角速度,大轮通过绳子与物体相连,小轮通过另绳子与车相连)来提升井底的重物,如图所示。滑轮离地的高度为H=3m,大轮小轮直径之比为3:l,(车与物体均可看作质点,且轮的直径远小于H),若车从滑轮正下方的A点以速度v=5m/s匀速运动至B点.此时绳与水平方向的夹角为37°,由于车的拉动使质量为m=1 kg物体从井底处上升,则车从A点运动至B点的过程中,试求:
相关文档
最新文档