简单区域扩张法实施图像的区域分割

合集下载

区域算法的分割方法

区域算法的分割方法

区域算法的分割方法
区域算法的分割方法是一种将图像分成若干个区域的图像分割技术。

这些区域通常具有相似的特征,例如颜色、纹理、亮度等,并且在图像内部具有连续性。

常见的基于区域的分割方法包括以下几种:
1. 区域生长法(Region Growing):从某个起始点开始,不断地向周围生长,直到达到一定条件为止,例如颜色、纹理或灰度值等。

这种方法需要手动选择起始点,并且计算复杂度较高。

2. 分裂与合并法(Split and Merge):将整张图像看作一个区域,将其分割成若干个子区域,然后对相邻的区域进行比较,并将相似的区域合并成更大的区域。

这种方法可以自动选择区域,并且可以产生较平滑的分割结果。

3. 基于能量函数的方法:通过定义一个能量函数来分割图像。

能量函数是一种用于衡量分割质量的函数,通常包括区域的特征和区域之间的相似度。

通过最小化能量函数来得到最佳的分割结果。

4. 基于图论的方法:将图像表示为一个图,其中每个像素表示一个节点,节点之间的边表示像素之间的相似度。

然后使用图分割算法来将图分割成若干个子图,每个子图对应一个区域。

这种方法可以自动选择区域,并且通常具有较高的分割质量。

这些基于区域的分割方法可以根据具体的应用场景和需求进行选择和应用。

遥感数字图像处理第8章 图像分割

遥感数字图像处理第8章 图像分割

腐蚀运算
目的:消除目标的边界点,用于消除无意义的小目标
(毛刺,小突起)
方法:
1.原点在集合B(结构元素)中
2.原点不在集合B(结构元素)中
腐蚀运算(erosion)
腐蚀运算(erosion)
A B x | ( B )x A .
对结构元素B作平移x,B全包含在A中时,
原点的集合就是计算结果
(1)直方图方法:直方图的谷底位置
最佳阈值的选择
(2)自适应阈值方法
A.将目标分割成大小固定的块
B.确定每一个块的目标峰值和背景峰值
C.第一次处理:对每一个块进行分割(边界阈值采用目标和背 景峰值的中点) D.计算每一个块的目标灰度和背景灰度平均值 E.第二次处理:对每个块再次分割(边界阈值采用目标和背景灰 度平均值的中值)
四连通 八连通
工作流程
1.确定待分割对象
2.选择敏感波段
3.选择分割方法
4.对分割的结果进行矢量化
分割原理和方法
边界(边缘)方法: 阈值分割技术,微分算子
边缘检测
假设:图像分割结果中的子区域在原来图像中有边缘存在,或
不同子区域间有边界的存在(像素值灰度不连续性)
区域方法:区域增长技术,聚类分割技术
图像分割的目的
图像分割的目标:根据图像中的物体将图像的像素分
类,并提取感兴趣目标
图像分割是图像识别和图像理解的基本前提步骤
图像
图像预处理
图像识别
图像理解
图像分割
图像分割的目的
图像分割是把图像分解成构成的部件和对象的过程
把焦点放在增强感兴趣对象:汽车牌照(前景)
排除不相干图像成分:其它区域(背景)
最佳阈值的选择

Python图像分割之区域增长法

Python图像分割之区域增长法

Python图像分割之区域增长法 原⽂链接:⼀、简介 区域增长法是⼀种已受到计算机视觉界⼗分关注的图像分割⽅法。

它是以区域为处理对象的,它考虑到区域内部和区域之间的同异性,尽量保持区域中像素的临近性和⼀致性的统⼀。

这样就可以更好地分辨图像真正的边界。

基于区域的分割⽅法的关键在于定义⼀个⼀致性准则,⽤来判断两个邻接的区域是否可以合并,⼀致则将两区域合并,直到不能合并为⽌。

区域增长的⽅法是在图像上选定⼀个种⼦点,记录下该点的灰度值,作为⼀致性判断的标准阈值,此外还需要定义⼀个标准差。

算法的主要过程是,依次⽤图像的每⼀个像素的灰度值和标准阈值相减,判断结果是否⼩于标准差,是则将该点和种⼦点合并,不是则保持像素点的灰度值不变。

这样处理后的图像就是⽤区域分割法处理后的边缘分割图像。

⼆、实例下⾯我们通过⼀个例⼦来进⾏详细的解释 上图⽰意的是区域增长的过程,图中的⽅格表⽰图像的像素点,⽅格中的数值表⽰像素点的灰度值。

(a)表⽰开始选取的⽣长点,在⽣长的过程中,每个⽣长点都将本⾝上下左右4个像素点和初试选取的⽣长点⽐较灰度值,如果灰度值的差的绝对值在设定的阈值内,则认为这些点是属于相同区域并将其合并,否则将灰度差⼤于设定阈值的点删除,重复检查区域内的像素点,直到没有像素点可以合并位置。

不妨设上图的阈值为2,(b)中4个点和初始点的灰度差都不⼤于2,所以合并;(c)中只有部分满⾜条件,所以只合并满⾜条件的像素点,并且(c)区域周围邻域中没有点再满⾜条件,因此⽣长结束。

三、算法步骤通过上述⽰例,我们可以总结出区域增长法的⼀般步骤如下:1)对图像⾃上⽽下,⾃左⽽右扫描,找到第1个还没有访问过的像素, 设该像素为(x0, y0);2)以(x0, y0)为中⼼, 考虑(x0, y0)的8邻域像素(x, y),如果其邻域满⾜⽣长准则, 将(x, y)与(x0, y0)合并(在同⼀区域内), 同时将(x, y)压⼊堆栈; 3)从堆栈中取出⼀个像素, 把它当作(x0, y0)返回到上⼀步骤;4)当堆栈为空时返回到步骤1;5)重复步骤1 - 4直到图像中的每个点都被访问过时,算法结束。

图像分割方法

图像分割方法

图像分割方法图像分割是计算机视觉领域中的一个重要问题,它旨在将图像分成具有语义信息的区域。

图像分割在许多应用中都扮演着重要的角色,比如医学图像分析、自动驾驶、图像检索等。

针对不同的应用场景,有多种图像分割方法被提出并应用于实际问题中。

本文将介绍几种常见的图像分割方法,并对它们的原理和特点进行简要的分析。

1. 阈值分割。

阈值分割是一种简单而有效的图像分割方法。

其基本思想是将图像的灰度值按照设定的阈值进行划分,从而将图像分成不同的区域。

对于灰度图像,可以根据像素的灰度值与设定的阈值进行比较,将像素分为目标和背景两类。

阈值分割方法简单易行,但对光照变化和噪声敏感,对于复杂背景和多目标分割效果有限。

2. 边缘检测分割。

边缘检测分割是一种基于图像边缘信息的分割方法。

其基本思想是利用图像中目标与背景之间的边缘信息进行分割。

常用的边缘检测算子有Sobel、Prewitt、Canny等。

通过检测图像中的边缘信息,可以将图像分成具有明显边界的区域。

边缘检测分割方法对光照变化和噪声具有一定的鲁棒性,但在边缘连接处容易出现断裂和断点。

3. 区域生长分割。

区域生长分割是一种基于像素生长的分割方法。

其基本思想是从种子点开始,根据一定的生长准则逐步将与种子点相邻且满足条件的像素加入到同一区域中,直到满足停止准则为止。

区域生长分割方法适用于具有明显区域特征的图像,对于光照变化和噪声具有一定的鲁棒性,但对于种子点的选择和生长准则的确定比较敏感。

4. 基于深度学习的分割方法。

随着深度学习技术的发展,基于深度学习的图像分割方法逐渐成为研究热点。

深度学习模型如FCN、U-Net等在图像分割领域取得了显著的成果。

这些方法利用卷积神经网络对图像进行端到端的学习,能够有效地提取图像的语义信息,对于复杂背景和多目标分割效果较好。

总结。

图像分割是计算机视觉领域中的重要问题,有许多方法可以用来实现图像分割。

不同的方法适用于不同的应用场景,具有各自的特点和局限性。

区域分裂合并法在图像分割中的应用

区域分裂合并法在图像分割中的应用

区域分裂合并法在图像分割中的应用在图像处理的领域中,图像分割是一项关键的任务,其目的是将图像划分为具有不同特性的区域,以便于后续的分析和理解。

而区域分裂合并法作为一种重要的图像分割方法,凭借其独特的优势,在众多应用场景中发挥着重要作用。

要理解区域分裂合并法,首先得明白图像分割的基本概念。

简单来说,图像分割就是将一幅图像分成若干个有意义的区域,每个区域内部具有相似的特征,而不同区域之间的特征则存在明显差异。

这就好比我们在整理一堆杂物时,会把相似的物品放在一起,不同的物品分开存放。

区域分裂合并法的基本思想其实并不复杂。

它就像是在玩一个“拆解与组合”的游戏。

首先,从整幅图像开始,如果发现某个区域内部的差异较大,就将其分裂成更小的子区域,直到每个子区域内部的特性足够相似为止。

然后,再反过来看看这些子区域,把那些相似程度较高、应该属于同一类的子区域合并起来。

比如说,我们有一幅风景图像,其中有蓝天、白云、山脉和草地。

一开始,我们可能把整个图像看作一个大区域,但仔细一看,发现这个大区域内部的差异很大,蓝天和草地的颜色、纹理完全不同。

于是,我们就把这个大区域分裂成蓝天区域、白云区域、山脉区域和草地区域。

但再进一步观察,可能会发现某些相邻的白云区域其实非常相似,那就把它们合并成一个更大的白云区域。

这种方法的优点是显而易见的。

它对于复杂的图像,尤其是那些包含多种不同特征且分布不均的图像,具有很好的适应性。

而且,由于是基于区域的操作,所以在处理过程中能够较好地保留图像的空间信息。

在实际应用中,区域分裂合并法有着广泛的用途。

在医学图像处理中,比如对 X 光片、CT 扫描图像或者核磁共振图像进行分析时,医生们需要准确地分割出病变组织、正常组织以及各种器官。

区域分裂合并法就可以帮助他们将图像中不同的组织结构清晰地划分出来,为疾病的诊断和治疗提供有力的支持。

在卫星遥感图像的处理中,区域分裂合并法也大显身手。

通过对地球表面的遥感图像进行分割,可以区分出不同的土地类型,如森林、农田、城市、水域等,这对于资源监测、环境评估和城市规划等都具有重要的意义。

图像分割技术

图像分割技术

图像分割技术图像分割就是将一副数字图像分割成不同的区域,在同一区域内具有在一定的准则下可认为是相同的性质,如灰度、颜色、纹理等,而任何相邻区域之间器性质具有明显的区别。

主要包括:边缘分割技术、阈值分割技术和区域分割技术。

1.边缘分割技术边缘检测是检测图像特性发生变化的位置,是利用物体和背景在某种图像特性上的差异来实现的。

不同的图像灰度不同,边界处会有明显的边缘,利用此特征可以分割图像。

边缘检测分割法是通过检测出不同区域边界来进行分割的。

常见的边缘检测方法:微分算子、Canny算子和LOG算子等,常用的微分算子有Sobel算子、Roberts算子和Prewit算子等。

(1)图像中的线段对于图像的间断点,常用检测模板:-1 -1 -1 -1 8 -1 -1 -1 -1⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦对于图像中的线段,常用的检测模板:检测图像中的线段:close all;clear all;clc;I=imread('gantrycrane.png');I=rgb2gray(I);h1=[-1,-1,-1;2 2 2;-1 -1 -1];%模板h2=[-1 -1 2;-1 2 -1;2 -1 -1];h3=[-1 2 -1;-1 2 -1;-1 2 -1];h4=[2 -1 -1;-1 2 -1;-1 -1 2];J1=imfilter(I,h1);%线段检测J2=imfilter(I,h2);J3=imfilter(I,h3);J4=imfilter(I,h4);J=J1+J2+J3+J4;%4种线段相加figure,subplot(121),imshow(I);subplot(122),imshow(J);(2)微分算子○1Roberts算子的计算公式:采用edge()函数进行图像的边缘检测。

Roberts算子进行图像的边缘检测:close all; clear all;clc;I=imread('rice.png');I=im2double(I);%Roberts算法进行边缘检测[J,thresh]=edge(I,'roberts',35/255);figure,subplot(121),imshow(I);subplot(122),imshow(J);○2Prewitt算子对于复杂的图像,Roberts算子不能较好的得到图像的边缘,而需要采用更加复杂的3*3的算子,Prewittd算子如下,这两个分别表示图像的水平梯度和垂直梯度。

图像处理-区域分割ppt课件

图像处理-区域分割ppt课件

• 各个区域Zebkde的加权平均值即为图像分割一致性的评价标准。
1 M
Zeb

N
Nk zebk
k 1
• 以区域内方差为原则:
• 区域内一致性判定
归一因子E,wk为权值 以分割图像一致性判断
2

1 Nk
(
iRk
fi


fk )2
(max fi min fi )2
E ( wk) iRk Rk I
• 所有的聚类分割法都对初始值敏感,分割效果不稳定;如果不考虑图像空间上下文间 信息,容易出现分割效果不理想的情况。
7
K-均值聚类
执行步骤:
• 1、选择某种方法将N割样本分成c个聚类的初始划分,计算每个聚类的均值u1、u2、 u3...uc和Je
• 2、选择一个备选样本x,设其在Xj中。
• 3、若Ni=1,则转步骤2,否则继续。
TP 、准确度=TP FP
FP FN
、错误率=
TP FPTN FN

15
其他分割方式
基于参数活动轮廓模型的分割
• 传统的Snake模型 • GVF Snake模型
基于几何形变模型的分割
• 几何活动轮廓模型 • 测地活动轮廓模型 • Chan-Vese模型
16
Thank you
• 4、计算。
j

Nj

N
j Ni
1
Ni 1
xuj x ui
2
ji 2 ji
• 5、对于所有的j,如果ρk<ρj,则将x从Xi移到Xk中。
• 6、重新计算uk和ui的值,并修改Je。
• 7、若迭代N次,Je不变,则停止,否则转到步骤2。

图像分割的常用方法

图像分割的常用方法

图像分割的常用方法
1. 阈值分割:根据像素灰度值与预设阈值之间的大小关系将图片分成黑白两个部分,常用于二值化处理。

2. 区域生长:利用像素之间的空间连通关系,从种子像素开始,将与其相邻的像素逐步合并成同一个区域。

3. 全局图像分割:将图像分成多个颜色或灰度级别,然后根据图像亮度、颜色、纹理、空间信息等特征进行分类,常用于分类、检测、识别等任务。

4. 模型分割:使用先前训练好的模型对图像分类和分割。

例如,利用卷积神经网络(CNN) 对图像进行分类和分割。

5. 基于图的分割:将图像转换成图形结构,建立节点之间的连接关系,通过图形算法对图形进行分割。

6. 边缘检测:检测图像中的边缘线条并将其分割出来,常用于目标检测和识别。

7. 水平集分割:该方法使用曲线(水平集) 对图像进行分割,可以在不同曲线之间自由地移动,因此在较复杂的图像中可以得到更好的分割效果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、采用简单区域扩张法对下图实施图像的区域分割。

自行选定起始种子像素灰及灰度间隔度。

原理:以图像的某个像素为生长点,比较相邻像素的特征,将特征相似的相邻像素合并为同一区域;以合并的像素为生长点,继续重复以上操作,最终形成具有相似特征的像素的最大连通集合。

该法称简单(单一型)区域扩张法。

基于区域灰度差的方法主要有如下步骤:
(1)对图像进行逐行扫描,找出尚没有归属的像素;
(2)以该像素为中心检查它的邻域像素,如果灰度差小于预先确定的阈值,将它们合并;
(3)以新合并的像素为中心,重复步骤(2),检查新像素的邻域,直到区域不能进一步扩张;
(4)返回到步骤(1),继续扫描直到不能发现没有归属的像素,则结束整个生长过程。

下图给出已知种子点进行区域生长的一个示例。

图(a)给出需分割的图像,设已知种子像素(标为灰色方块),现要进行区域生长。

设这里采用的生长判断准则是:如果所考虑的像素与种子像素灰度值差的绝对值小于某个门限T,则将该像素包括进种子像素所在区域。

图(b)给出T=3时的区域生长结果,整幅图被较好地分成2个区域;图(c)给出T=2时的区域生长结果,有些像素无法判定;图(d)给出T=6时的区域生长结果,整幅图都被分在一个区域中了。

程序为:(一)
I=imread('p5-06.tif');
subplot(2,2,1),imshow(I),title('原始图像');
Ic=imcomplement(I) ;
BW=im2bw(Ic,graythresh(Ic)) ;
subplot(2,2,2),imshow(BW),title('阈值截取分割后图像');
se=strel('disk',6);
BWc=imclose(BW,se);
BWco=imopen(BWc,se);
subplot(2,2,3),imshow(BWco),title('对小图像进行删除后图像');
mask=BW&BWco;
subplot(2,2,4),imshow(mask),title( '检测结果的图像');
运行结果为:
程序为:(二)
A=imread('p5-06.tif');%读入图像
seed=[100,220];%选择起始位置
thresh=15;%相似性选择阈值
A=imadjust(A,[min(min(double(A)))/255,max(max(double(A)))/255],[]); A=double(A); %将图像灰度化
B=A;%将A赋予B
[r,c]=size(B); %图像尺寸 r为行数,c为列数
n=r*c;%计算图像所包含点的个数
pixel_seed=A(seed(1),seed(2));%原图起始点灰度值
q=[seed(1) seed(2)];%q用来装载起始位置
top=1;%循环判断flag
M=zeros(r,c);%建立一个与原图形同等大小的矩阵
M(seed(1),seed(2))=1;%将起始点赋为1,其余为0
count=1;%计数器
while top~=0%循环结束条件
r1=q(1,1);%起始点行位置
c1=q(1,2);%起始点列位置
p=A(r1,c1);%起始点灰度值
dge=0;
for i=-1:1%周围点的循环判断
for j=-1:1
if r1+i<=r & r1+i>0 & c1+j<=c & c1+j>0%保证在点周围范围之内
if abs(A(r1+i,c1+j)-p)<=thresh & M(r1+i,c1+j)~=1%判定条件?
top=top+1;%满足判定条件top加1,top为多少,则q的行数有多少行 q(top,:)=[r1+i c1+j];
%将满足判定条件的周围点的位置赋予q,q记载了满足判定的每一外点 M(r1+i,c1+j)=1;%满足判定条件将M中相对应的点赋为1
count=count+1;%统计满足判定条件的点个数,其实与top此时的值一样 B(r1+i,c1+j)=1;%满足判定条件将B中相对应的点赋为1
end
if M(r1+i,c1+j)==0;
%如果M中相对应点的值为0将dge赋为1,也是说这几个点不满足条件
dge=1;%将dge赋为1
end
else
dge=1;%点在图像外将dge赋为1
end
end
end %此时对周围几点判断完毕,在点在图像外或不满足判定条件则将dge赋为1,
%满足条件dge为0
if dge~=1%最后判断的周围点(i=1,j=1)是否满足条件,如dge=0,满足。

dge=1,不满足。

B(r1,c1)=A(seed(1),seed(2));%将原图像起始位置灰度值赋予B
end
if count>=n%如果满足判定条件的点个数大于等于n
top=1;
end
q=q(2:top,:);
top=top-1;
end
subplot(1,2,1),imshow(A,[]);
subplot(1,2,2),imshow(B,[]);
运行结果为:。

相关文档
最新文档