含参不等式的恒成立问题

合集下载

【高一函数培优班】6含参不等式恒成立问题

【高一函数培优班】6含参不等式恒成立问题

第六讲含参不等式恒成立问题定理:αα>⇔∈>min )()(x f I x x f 恒成立对一切;max ()()f x x I f x αα<∈⇔<对一切恒成立。

参数和主元:题中给定区间的字母为主元,求取值范围的未知量当做参数。

例1:对任意]1,1[-∈a ,不等式024)4(2>-+-+a x a x 恒成立,求x 的取值范围。

分析:题中的不等式是关于x 的一元二次不等式,因为[1,1]a ∈-,所以把a 看成主元,则问题可转化为一次不等式044)2(2>+-+-x x a x 在]1,1[-∈a 上恒成立的问题。

解:令44)2()(2+-+-=x x a x a f ,则原问题转化为0)(>a f 恒成立(]1,1[-∈a )。

当2=x 时,可得0)(=a f ,不合题意。

当2≠x 时,应有⎩⎨⎧>->0)1(0)1(f f 解之得31><x x 或。

故x 的取值范围为),3()1,(+∞-∞ 。

例2:对于满足40≤≤p 的所有实数p ,使不等式342-++p x px x >恒成立的x 的取值范围。

13-<或>x x 1.若不等式()1122--x m x >对满足22≤≤-m 的所有m 都成立,求x 的取值范围。

112-+<X<132+2.已知不等式0122<+--m x mx ;(1)若对所有的实数x ,不等式恒成立,求m 的取值范围;(2)设不等式对满足2≤m 的一切m 的值都成立,求x 的取值范围。

3.已知不等式442-++m x mx x >;(1)若对于40≤≤m 的所有实数m ,不等式恒成立,求实数x 的取值范围。

(2)若对于1≤x 的所有实数x ,不等式恒成立,求实数m 的取值范围。

秒杀秘籍:一次函数型:y例3:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

含参不等式恒成立问题例题

含参不等式恒成立问题例题

含参不等式恒成立问题例题在数学的世界里,有一种“含参不等式恒成立”的问题,听起来有点复杂,但实际上就像生活中的一些小窍门,掌握了就能轻松应对。

想象一下,数学就像一场舞会,里面有各种各样的舞步,有的简单易学,有的则需要你慢慢去摸索。

这些含参不等式就像那些你在舞会里需要学的舞步,只要掌握了,你就能在任何场合中游刃有余。

先说说什么是“含参不等式”。

简单来说,就是不等式中有参数,这些参数就像是调味料,放多少,怎么放,都会影响最终的结果。

参数就像是调皮的小孩子,让不等式变得难以捉摸。

可是,只要你找到合适的调味方式,不论参数怎么变化,不等式都能保持“和谐”的状态,听起来是不是很神奇?拿一个简单的例子来说吧,想象一下你在做饭,盐、糖、醋,每一样都要掌握好分量,才能做出美味的菜肴。

如果你在一道菜里放了太多盐,那就惨了,味道会让人皱眉;可是如果放得刚刚好,哇,绝对让人回味无穷。

这就是不等式的精髓,参数调得好,一切都能顺理成章。

在这道问题中,我们会遇到一些技巧,比如要学会“化简”。

有些东西,表面上看起来复杂,实际上只要你用对了方法,往往就能简单明了。

就像你在穿衣服的时候,挑选一件合适的外套,有时候那件看似简单的衣服,搭配得当,反而能让你瞬间提升气场。

其实数学也有同样的道理,化繁为简,才能找到最优解。

还有一些不等式的常用形式,比如“阿莫尔不等式”,听起来很高大上,其实就像在说:“伙计,学会了这招,你就能在不等式的海洋中畅游无阻。

”它帮助我们理解不同参数之间的关系,打下坚实的基础。

就好比你在乐队里,如果每个人都能把自己的乐器演奏得当,那整个乐队就会和谐得像一首动人的交响曲。

哦,咱们得聊聊例子了。

举个例子吧,假如有一个不等式 (a + b geq 2sqrt{ab),听上去像是个难题,但实际上它是在说:只要你把 (a) 和 (b) 搞得好,它们的和总是大于等于它们的几何平均。

这就像你和朋友一起出去玩,不论你们买了多少东西,只要快乐是最重要的。

含参不等式恒成立问题的求解策略

含参不等式恒成立问题的求解策略

含参不等式恒成立问题的求解策略不等式是数学中的基础知识,它涉及到关系的研究,常用于数学等学科的计算。

它的解决方案可以用来帮助解决复杂的问题,或者提出观点并影响结果。

今天,我们将讨论如何解决含参不等式恒成立问题。

首先,让我们来讨论这种问题,即不等式含参恒成立问题,是指一个不等式变量以及一些参考变量满足不等式恒成立(比如x+y<5,当x=3,y=2时恒成立)的问题。

解决这类问题的思路主要有三种,分别是数学解法、程序求解法和证明方法。

1.学解法。

数学解法是常用的解决含参不等式恒成立问题的方法,通常需要先将输入的参数值代入不等式,然后利用求解方程的方法求解问题。

例如,当给定不等式为x+y<5,求解x=3,y=2时恒成立,则可以分别代入x=3和y=2,得到x+y<5,因此恒成立。

2.序求解法。

程序求解法是更加实用的方法,特别是在需要处理大量数据时。

它需要把不等式构造成一个程序,然后通过程序求解。

例如,当给定不等式为x+y<5时,可以用程序编写一段代码,把输入的参数代入不等式,并判断结果是否满足不等式,从而解决问题。

3.明方法。

证明方法是解决含参不等式恒成立的另外一种方法,即通过证明不等式恒成立来解决问题。

证明方法需要对不等式或者相关公式进行证明,以达到满足不等式恒成立的目的。

例如,当给定不等式为x+y<5时,可以通过证明x=3,y=2时,x+y也小于5,从而解决问题。

从以上内容可以看出,解决含参不等式恒成立的问题的策略有三种,分别是数学解法、程序求解法和证明方法。

其中,数学解法是最常用的方法,而程序求解法和证明方法则能够更加实用地解决复杂的问题。

因此在解决含参不等式恒成立问题时,要根据问题的复杂程度选择适当的策略,从而有效解决问题。

综上所述,解决含参不等式恒成立问题的策略有三种,分别是数学解法、程序求解法和证明方法,根据不等式的复杂程度来选择适当的策略,从而有效求解问题。

把握这些解决含参不等式恒成立问题的策略,能够帮助我们有效解决复杂的问题,从而更快提出观点,影响结果。

含参不等式恒成立问题

含参不等式恒成立问题

一、 判别式法:1.R x c bx ax ∈>++对02恒成立⎩⎨⎧<∆>⎩⎨⎧>==⇔000a c b a 或;R x c bx ax ∈<++对02恒成立⇔*R x c bx ax ∈≥++对02恒成立⇔;R x c bx ax ∈≤++对02恒成立⇔2. 02>++c bx ax 有解⇔;*02<++c bx ax 有解⇔3. 02>++c bx ax 无解⇔;*02<++c bx ax 无解⇔例1:关于x 的不等式01)1(2<-+-+a x a ax 对于R x ∈恒成立,求a 的取值范围.解:(1)当0=a 时,原不等式化为01<--x ,不符合题意,∴0≠a .(2)当0≠a 时,则⎩⎨⎧>--<⇒⎩⎨⎧<---=∆<012300)1(4)1(022a a a a a a a 310)1)(13(0-<⇒⎩⎨⎧>-+<⇒a a a a ∴a 的取值范围为)31,(--∞练习:1.若函数)8(6)(2++-=k kx kx x f 的定义域为R ,求实数k 的取值范围.2. 已知函数])1(lg[22a x a x y +-+=的定义域为R ,求实数a 的取值范围.3. 若不等式210ax ax --<的解集为R ,求实数a 的取值范围.4.已知关于x 的不等式01)3()32(22<-----x m x m m 的解集为R ,求实数m 的取值范围.〖练习答案〗:1.解:由题意得:0)8(62≥++-k kx kx 对R x ∈恒成立, (1)当0=k 时,8)(=x f 满足条件.(2) 当0≠k 时,则102)8(43602≤<⇒⎩⎨⎧≤+-=∆>k k k k k . 综合(1)(2)得:k 的取值范围是]1,0[ 2.解:由题意得:不等式0)1(22>+-+a x a x 对R x ∈恒成立,即有04)1(22<--=∆a a ,解得311>-<a a 或. 所以实数a 的取值范围为),31()1,(+∞--∞3.解: (1)当0=a 时,原不等式可化为10-<,显然成立(2)当0a ≠,则240a a a <⎧⎨∆=+<⎩,得04<<-a 综上(1)(2)得:a 的取值范围]0,4(-. 4.解:(1)若0322=--m m ,则13-==m m 或, 当3=m 时,原不等式可化为10-<,显然成立; 当1-=m 时,原不等式可化为014<-x ,显然不成立.3=∴m(2)若0322≠--m m ,则⎪⎩⎪⎨⎧<+=∆<03-2m -m 43)-(m 03-2m -m 222, 解得:得351<<-m 综上(1)(2)得:m 的取值范围]3,51(-二、最值法:将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:(1)a x f >)(恒成立a x f >⇔min )((或)(x f 的下界a ≥);a x f <)(恒成立⇔(或)(x f 的上界a ) (2)a x f ≥)(恒成立⇔(或)(x f 的下界a );a x f ≤)(恒成立⇔(或)(x f 的上界a )注:(1)上界的定义:M x f <)(恒成立, 且当a x →(∞±也可以是a )时,M x f →)(,则)(x f M 为的上界.(2)下界的定义:m x f >)(恒成立,且当a x →(∞±也可以是a )时,m x f →)(,则)(x f m 为的下界.(m x f →)(读作m x f 趋向于)()(1) a x f >)(有解a x f >⇔max )((或)(x f 的上界a >);a x f <)(有解⇔(或)(x f 的下界a ) (2) a x f ≥)(有解⇔(或)(x f 的上界a );a x f ≤)(有解⇔(或)(x f 的下界a例2:若[]2,2x ∈-时,不等式23x ax a ++≥恒成立,求a 的取值范围.解:设()23f x x ax a =++-,则问题转化为当[]2,2x ∈-时,)(x f 的最小值非负。

求解含参不等式恒成立问题的几个“妙招”

求解含参不等式恒成立问题的几个“妙招”

乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸乸思路探寻含参不等式恒成立问题的常见命题形式有:(1)证明含参不等式恒成立;(2)在确保某个含参不等式恒成立的情况下,求参数的取值范围;(3)在已知变量的约束条件的情况下,求含参不等式中参数的取值范围.含参不等式恒成立问题具有较强的综合性,其解法灵活多变,常常令考生头疼不已.对此,笔者将结合实例,介绍求解含参不等式恒成立问题的几个“妙招”.一、分离参数分离参数法是求解含参不等式恒成立问题的常用方法,该方法适用于求参数和变量可分离的情形.运用分离参数法解题的一般步骤为:1.根据不等式的性质将参数分离出来,得到一个一端含有参数、另一端含有变量的不等式;2.将含有变量一侧的式子当成一个函数,判断出函数的单调性,并根据函数的单调性求出函数在定义域内的最值;3.将问题进行等价转化,建立新的不等式,如将a ≥f (x )恒成立转化为a ≥f (x )max ;将a ≤f (x )恒成立转化为a ≤f (x )min .例1.已知函数f (x )=1+ln xx,当x ≥1时,不等式f (x )≥k x +1恒成立,求实数k 的取值范围.解:由f (x )≥k x +1,得1+ln x x ≥k x +1,将其变形可得(x +1)(1+ln x )x≥k ,设g (x )=(x +1)(1+ln x )x,则g ′(x )=[(x +1)(1+ln x )]′·x -(x +1)(1+ln x )x 2=x -ln xx 2,令h (x )=x -ln x ,则h ′(x )=1-1x,当x ≥1时,h ′(x )≥0,所以函数h (x )在[)1,+∞上单调递增,所以h (x )min =h (1)=1>0,从而可得g ′(x )>0,故函数g (x )在[)1,+∞上单调递增,所以g (x )min =g (1)=2,因此k 的取值范围为k ≤2.观察不等式1+ln x x ≥k x +1,发现参数k 可以从中分离出来,于是采用分离参数法,先将参数、变量分离,使不等式变形为(x +1)(1+ln x )x≥k ;再构造函数g (x ),对其求导,根据导函数与函数的单调性判断出函数的单调性,即可求出g (x )在x ∈[)1,+∞上的最小值,使k ≤g (x )min ,即可得到实数的取值范围.通过分离参数,便将含参不等式恒成立问题转化为函数最值问题来求解,这样便可直接利用函数的单调性来解题.二、数形结合数形结合法是解答数学问题的重要方法.在解答含参不等式问题时,将数形结合起来,可有效地提升解题的效率.有些含参不等式中的代数式为简单基本函数式、曲线的方程、直线的方程,此时可根据代数式的几何意义,画出相应的几何图形,通过研究函数图象、曲线、直线、点之间的位置关系,确定临界的情形,据此建立新不等式,从而求得参数的取值范围.例2.已知f (x )=ìíî3x +6,x ≥-2,-6-3x ,x <-2,若不等式f (x )≥2x -m 恒成立,求实数m 的取值范围.解:由题意可设g (x )=2x -m ,则函数g (x )、f (x )的图象如图所示.要使对任意x ,f (x )≥g (x )恒成立,则需使函数f (x )的图象恒在g (x )图象的上方,由图可知,当x =-2时,f (x )的图象与g (x )的图象有交点,而此时函数f (x )取最小值,即f (-2)=0,因此,只需使g (-2)=-4-m ≤0,解得m ≥-4.故实数m 的取值范围为m ≥-4.函数f (x )与g (x )都是常见的函数,容易画出其图象,于是采用数形结合法,画出两个函数的图象,将问题转化为函数f (x )的图象恒在g (x )图象的上方时,求参数的取值范围.运用数形结合法求解含参不等式恒成立问题,需将数形结合起来,将问题进行合理的转化,如若对∀x ∈D ,f (x )<g (x )恒成立,则需确保函数f (x )的图象始终在g (x )的下方;若对∀x ∈D ,f (x )>g (x )恒成47立,则确保函数f(x)的图象始终在的上方即可.三、变更主元我们常常习惯性地将x看成是主元,把参数看成辅元.受定式思维的影响,在解题的过程中,我们有时会陷入解题的困境,此时不妨换一个角度,将参数视为主元,将x看作辅元,通过变更主元,将问题转化为关于新主元的不等式问题,这样往往能够取得意想不到的效果.例3.对任意p∈[-2,2],不等式(log2x)2+p log2x+1> 2log2x+p恒成立,求实数x的取值范围.解:将不等式(log2x)2+p log2x+1>2log2x+p变形,得:p(log2x-1)+(log2x)2-2log2x+1>0,设f(p)=p(log2x-1)+(log2x)2-2log2x+1,则问题等价于对任意p∈[-2,2],f(p)>0恒成立,由于f(p)是关于p的一次函数,所以要使不等式恒成立,只需使ìíîf(-2)=-2(log2x-1)+(log2x)2-2log2x+1>0, f(2)=2(log2x-1)+(log2x)2-2log2x+1>0,解得:x>8或0<x<12,故实数x的取值范围为x>8或0<x<12.若将x当成主元进行求解,那么解题的过程将会非常繁琐.由于已知p的取值范围,要求满足不等式条件的实数x的取值范围,所以考虑采用变更主元法,将p看成是主元,构造关于p的一次函数,根据函数的图象建立使不等式恒成立的不等式组,即可求出实数x的取值范围.通过变更主元,便可从新的角度找到解题的思路,从而化难为易.四、分类讨论当不等式左右两边的式子较为复杂,且含有较多的不确定因素时,就需采用分类讨论法来解题.用分类讨论法求解含参不等式恒成立问题,需先确定哪些不确定因素会对参数的取值有影响;然后将其作为分类的对象,并确定分类的标准,对每一种情形进行分类讨论;最后综合所有的结果,就可以得到完整的答案.例4.已知f(x)=x|x-a|-2,若当x∈[0,1]时,恒有f(x)<0成立,求实数a的取值范围.解:①当x=0时,f(x)=-2<0,不等式显然成立,此时,a∈R;②当x∈(0,1]时,由f(x)<0,可得x-2x<a<x+2x,令g(x)=x-2x,h(x)=x+2x,则g′(x)=1+2x2>0,可知g(x)为单调递增函数,因此g(x)max=g(1)=-1;则h′(x)=1-2x2<0,可知h(x)为单调递减函数,因此h(x)min=h(1)=3,此时-1<a<3.综上可得,实数a的取值范围为-1<a<3.本题的函数式中含有绝对值,需对x的取值进行分类讨论,即分为x=0和x∈(0,1]这两种情况进行讨论,建立使不等式恒成立的关系,如当x∈(0,1]时,需使æèöøx-2x max<a<æèöøx+2x min,即可解题.五、利用判别式法判别式法通常只适用于求解二次含参数不等式恒成立问题.运用该方法解题的一般步骤为:首先根据不等式的特点构造一元二次方程;然后运用一元二次方程的判别式对不等式恒成立的情形进行讨论、研究;最后得出结论.一般地,对于二次函数f(x)=ax2+bx+c (a≠0,x∈R),有:(1)若对任意x∈R,f(x)>0恒成立,则ìíîa>0,Δ=b2-4ac<0;(2)对任意x∈R,f(x)<0恒成立,则{a<0,Δ=b2-4ac<0.例5.设f(x)=x2-2mx+2,当x∈[-1,+∞)时,f(x)≥m 恒成立,求实数m的取值范围.解:设F(x)=x2-2mx+2-m,令x2-2mx+2-m=0,则Δ=4m2-4(2-m),当Δ≤0,即-2≤m≤1时,F(x)≥0显然恒成立;当Δ=4m2-4(2-m)>0时,F(x)≥0恒成立的充要条件为:ìíîïïïïΔ>0,F(-1)≥0,--2m2<-1,解得:-3≤m<-2,所以实数m的取值范围为-3≤m≤1.运用判别式法求解含参二次不等式恒成立问题,关键是确保在定义域范围内,二次函数F(x)的图象恒在x轴的上方或下方,根据方程F(x)=0无解,建立关于判别式的关系式.本文介绍了几种求解含参不等式恒成立问题的方法,这些方法的适用情形各不相同.但不论采用何种方法,都要对问题进行具体的分析,针对实际情况,选用最恰当的方法,才能达到事半功倍的效果.(作者单位:广东省东莞市第一中学)思路探寻48。

含参不等式恒成立问题—任意性与存在性

含参不等式恒成立问题—任意性与存在性
一、基础知识点:
1、f(x)=ax+b,x ∈ [α,β],则:
f(x)>0恒成立<

f()>0
f()>0
f(x)<0恒成立<

f()<0
f()<0
1、一次函数型问题,利用一次函数的图像特征求解。
y
α
o
β
x
2、ax2+bx+c>0在R上恒成立的充要条件是:
a=b=0
a >0

C>0
Δ=b2-4ac<0
例:已知函数 f ( x) 8 x 2 16 x k ,g ( x) 2 x3 5 x 2 4 x ,其中 k 为实数 .
3] ,使 f ( x) g ( x) 恒成立,
(3) 若对 x [3,
求k的取值范围;
3] ,使 f ( x0 ) g ( x0 ) 能成立,
3] ,使 f ( x) g ( x) 恒成立,
(3) 若对 x [3,
求k的取值范围;
3] ,使 f ( x1 ) g ( x若 x1,x2 [3,
例:已知函数 f ( x) 8 x 2 16 x k ,g ( x) 2 x3 5 x 2 4 x ,其中 k 为实数 .
(4) 若 x0 [3,
求k的取值范围;
x D :
x0 D :
f ( x) g ( x)]min 0 f ( x ) g ( x ) [____________
f ( x) g ( x)]max 0
f ( x) g ( x) [____________
f min ( x) 0

“含参数不等式的恒成立”问题及其解法

“含参数不等式的恒成立”问题及其解法

“含参数不等式的恒成立”问题及其解法“含参数不等式的恒成立”问题,是近几年高中数学以及高考的常见问题,它一般以函数、数列、三角函数、解析几何为载体,具有一定的综合性。

解决这类问题的主要方法是最值法:若函数()x f 在定义域为D ,则当x ∈D 时,有()M x f ≥恒成立()M x f ≥⇔min ;()M x f ≤恒成立()M x f ≤⇔max .因而,含参数不等式的恒成立问题常根据不等式的结构特征,恰当地构造函数,等价转化为含参数的函数的最值讨论.例一 已知函数()()1112>⎪⎭⎫ ⎝⎛+-=x x x x f .①求()x f 的反函数()x f 1-;②若不等式()()()x a a x f x ->--11对于⎥⎦⎤⎢⎣⎡∈41,161x 恒成立,求实数a 的取值范围.分析:本题的第二问将不等式()()()x a a x f x ->--11转化成为关于t 的一次函数()()211a t a t g -++=在⎥⎦⎤⎢⎣⎡∈21,41t 恒成立的问题. 那么,怎样完成这个转化呢?转化之后又应当如何处理呢? 【解析】 ①略解()()10111<<-+=-x xx x f②由题设有()()x a a xx x->-+-111,∴x a a x ->+21,即()0112>-++a x a 对于⎥⎦⎤⎢⎣⎡∈41,161x 恒成立. 显然,a ≠-1令x t =,由⎥⎦⎤⎢⎣⎡∈41,161x 可知⎥⎦⎤⎢⎣⎡∈21,41t则()()0112>-++=a t a t g 对于⎥⎦⎤⎢⎣⎡∈21,41t 恒成立.由于()()211a t a t g -++=是关于t 的一次函数.(在⎥⎦⎤⎢⎣⎡∈21,41t 的条件下()()211a t a t g -++=表示一条线段,只要线段的两个端点在x 轴上方就可以保证()()0112>-++=a t a t g 恒成立)∴()()451011210114102104122<<-⇒⎪⎩⎪⎨⎧>-++>-++⇒⎪⎪⎩⎪⎪⎨⎧>⎪⎭⎫ ⎝⎛>⎪⎭⎫ ⎝⎛a a a a a g g例二 定义在R 上的函数()x f 既是奇函数,又是减函数,且当⎪⎭⎫⎝⎛∈2,0πθ时,有()()022sin 2cos 2>--++m f m f θθ恒成立,求实数m 的取值范围.分析: 利用函数的单调性和奇偶性去掉映射符号f ,将“抽象函数”问题转化为常见的含参的二次函数在区间(0,1)上恒为正的问题.而对于()≥x f 0在给定区间[a ,b]上恒成立问题可以转化成为()x f 在[a ,b]上的最小值问题,若()x f 中含有参数,则要求对参数进行讨论。

27用含参不等式恒成立问题的解法

27用含参不等式恒成立问题的解法

例1、对于不等式(1-m)x2+(m-1)x+3>0
................
(*)
(1)当| x | ≤2,不等式恒成立,求实数m的取值范围 ;
求谁,谁就是参数; 另一个是自变量
(2)当| m | ≤2,不等式恒成立,求实数x的取值范围 .
变更“主元” 解(2) : 设g(m)=(-x2+x)m+(x2-x+3) (m∈[-2,2])法
(Ⅱ){a|a≥-4}
练 习
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x) (1)当x∈R时,f(x)≥a恒成立,求a的取值范围; (2)若g(x)的值域为R,求a的取值范围; (3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1){a|-2≤a≤1}; (2){a|a≥ 或a≤2 }2
例1:已知关于x的不等式: (a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 ( a 2) 4( a 2) 0
练 已知不等式x2+mx>4x+m-4. 习 (1)若对于0≤m≤4的所有实数m,不等式恒成立,求实数x的取值范围.
(2)若对于x≤1的所有实数x,不等式恒成立,求实数m的取值范围. (1)实数x的取值范围为:(-∞,0)∪(0,2)∪(2,+∞); (2)实数m的取值范围是:{m|m<4}. 求谁,谁就是参数; 另一个是自变量
f 0 >0 则 f 4 >0
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒成立

a

0 0

a b 0 c 0
ax2 bx c 0
恒成立

a

0 0

a b 0 c 0

f (x) ax b 0 在区间
[m, n]上恒成立


f f
(m) 0 (n) 0

f (x) ax b 0
3
3
又因为 f (x)在(0,2] 上递减
所以 2 a 2 a 3 3
法4.3x2 2ax
2
在同一直角坐标系内作函数 y 3x2 , y 2ax 的图像
3. 法1. 因为 y x 2 2(a 1)x 2 在 [4,) 上是增函数 所以 y 2x 2(a 1) 0 在 [4,) 上恒成立 故 a 1 x 在 [4,) 上恒成立 所以 a 3 法2. 因为y x2 2(a 1)x 2 在 [1 a, ) 上是增函数 所以 1 a 4 所以 a 3

a恒成立,则
a
的取值范围是________
2. 设函数 f (x) mx 2 mx 1
①若对于一切实数 x,f (x) 0 恒成立,求m 的取值范围。 ②若对于 m [2,2] ,f (x) m 5 恒成立,求 x 的取值范围。
变式2:
解:(1)当 m 0 时,显然成立; 当 m 0 时,应有 m 0, m2 4m 0

函数
f
(
x)
在区间(
2 3
,
1) 3
内是减函数,
f (x) 3x2 2ax 1 0
对一切
x ( 2 , 1) 33
成立
只需

f
(
2 3
)

0

f
(
1) 3

0
解得 a 2
故 a 的取值范围为 [2,)
解法2. (分离参数法)
f (x) x3 ax2 x 1 f (x) 3x 2 2ax 1
法2 法3.
a

f
3x 2 ( x)
在 (0, 2] 3x2 2ax
上恒成立
0
即 a3 x(3x 2a)

0

x

0或x

2 3
a
当 a 0, x 0 时,f (x) 0 f (x)在(0, )上递增,不合题意
当 a 0, 2 a x 0时,f (x) 0 f (x)在(0,2 a] 上递减
A.[3,) B.(,3] C.[3,) D.(,5]
1.转化成求 x 1 x 2 的最小值
法1.距离法
1
2
P1
P2
P3
x 构造数轴上的点P,其坐标为 定点A、B坐标分别为1,2,
则原不等式左端即 PA PB
法2.利用 a b a b
3
x 1 x 2 (x 1) (x 2) 3


f
函数 f (x)
(x) 在区间 3x2 2ax
( 2 , 3
1 0
1) 内是减函数 3 对一切 x (
2 3
,
1 3
)
成立
当 4(a 2 3) 0, 即 3 a 3 时,
不等式
3x 2

2ax
1
0对一切
x (
2 3
,
1) 3
均不成立;
33
3
3
a a2 3 1
于是

3
3
a a2 3 2
3
3
解得 a 2
故 a 的取值范围为 [2,)
解法4. (数形结合法)
f (x) x3 ax2 x 1 f (x) 3x 2 2ax 1

函数 f (x) 在区间 ( 2 , 1) 内是减函数 33
-1
2
法3.设 f (x) x 1 x 2
2x 1, (x 1) 则 f (x) 3, (1 x 2)
2x 1, (x 2)
2.法1 f (x) 3x2 2ax 0 在 (0, 2] 上恒成立
因为 f (0) 0 只需 f (2) 0 即 a 3
当 4(a2 3) 0, 即 a 3 或 a 3 时,
不等式 3x2 2ax 1 0 的解集为:( a
a2 3 a ,
a2 3 )
3
3
要使 f (x) 3x2 2ax 1 0
对一切
x ( 2 , 1) 33
成立
则有 ( 2 , 1) ( a a2 3 , a a2 3 )
21
f (x) 3x2 2ax 1 0
对一切
x ( , ) 33

3x 2
1
2ax
对一切
x (
2 , 1) 33
成立.
成立
A B
2 1 33
在同一直角坐标系内作函数 y 3x2 1 与 y 2ax 的图像,如图:
设点 A( 2 , 7 ), B( 1 , 4)
其中 f (x) 是 f (x) 的导函数,对满足 1 a 1 的一切 a 的值,
都有 g(x) 0 ,求实数 x 的取值范围.
都有 f (x) c2 成立,求 c 的取值范围。 6.(09银川一摸)已知 f (x) 2x3 3x2 ,若在区间[0, m] (m 0) 上
恒有 f (x) x 成立,求 m 的取值范围.
7.(06四川21)已知函数 f (x) x3 3ax 1, g(x) f (x) ax 5 ,
解之得 4 m 0 综上:m 的取值范围为 4 m 0 (2)将f (x) m 5 变换成关于 m的不等式 m(x2 x 1) 6 0
则命题等价于m [2, 2] 时,g(m) m(x2 x 1) 6 0 Q x2 x 1 0 g(m)在m [2, 2] 上单调递增 只需 g(2) 2(x2 x 1) 6 0
B. k 1
C. k 1
D. k 1
2.如果对x2 ( y 1)2 1上的任意一点 P(x, y) ,不等式x y c 0 恒成立, 则 c 的取值范围是( )
A. c 2 B. c 2 1 C. c 0
D. c 1 2
3.设 f (x) x 2 mx 1 ,分别在下列条件下求 m 的取值范围。
33
33
直线 l : y 2ax ,由题意可知 (a 0)
且点B应在直线 l 上或下方.
当直线 l经过点 B( 1 , 4)时,a 2 由图像可知当 a 2 时,符合题意
33
故 a
1.
(2010山东)若对任意
x>0
, x
2
x 3x
1
⑴若对于任意 x 都有 f (x) 0 成立;
⑵当 x [1,2] , f (x) 0 恒成立; ⑶当 x (0, 1] , f (x) 0 恒成立.
2
4.(09江西.17)设函数 f (x) x3 9 x2 6x a ,若对于任意 x , 2
f (x) m 恒成立,求 m 的取值范围。 5.(07全国I.20)设函数 f (x) 2x3 9x2 12 x 8c,若对于任意 x [0,3] ,
A. k 3 B. k 3 C. k 3 D. k 3
2.已知函数 f (x) x3 ax2 1在区间 (0,2] 内单调递减,则实数 a 的取值范围是(
A. a 3 B. a 3 C. a 3 D. 0 a 3 3.已知函数y x2 2(a 1)x 2 在 [4,) 上是增函数,则实数 a 的取值范围是( )


b 2a

m
f (m) 0

b n 2a
f (n) 0

f (x) ax2 bx c 0(a 0) 在区间
[m, n]
上恒成立,

f f
(m) 0 (n) 0
⑦已知函数 f (x)的值域为 [m, n] ,则 f (x) a 恒成立 f (x)min a m a f (x) a 恒成立 f (x)max a n a
⑧若 f (x, a) m 对任意 x D恒成立,则 f (x, a)min m
若 f (x, a) m对任意 x D恒成立,则 f (x, a)max m
作业
1.若不等式 x 4 x 3 k 对一切 x R 恒成立,则实数 k 的取值范围是( )
A. k 1
学习目标:
学生掌握确定恒成立不等式中参数范围的常见求解策略与方法。
学习重难点:
根据不同条件选择恰当的方法确定不等式恒成立中的参数范围。
数学思想方法:
转化与化归、函数与方程、数形结合等思想方法。
【诊断训练】
1. 若不等式 x 1 x 2 k 对一切 x R 恒成立,则实数的取值范围是( ).
【例题讲解】
(08全国I.21)已知函数 f (x) x3 ax2 x 1 , x R ,设函数 f (x) 在区间
( 2 , 1) 33
内是减函数,求 a 的取值范围.
解法1. (函数最值法)
f (x) x3 ax2 x 1 f (x) 3x 2 2ax 1
相关文档
最新文档