核磁共振成像测井

合集下载

核磁共振测井技术CMR及应用

核磁共振测井技术CMR及应用

2.核磁共振测井仪器简介
- CMR(Combinable Magnetic Resonance) 组合式磁共振仪(斯仑贝谢)
- MRIL(Magnetic Resonance Image Logging) 磁共振成像测井仪(阿特拉斯\哈里伯顿)
- CMR仪器简介
CMR下井仪器主要由电子线路短节及探测器等部分组成。 主要特点: (1)外径5.3“; (2)贴井壁测量; (3)采用永久磁铁产生均匀磁场,场强为500G; (4) 探 测 体 积 小 , 探 测 区 域 约 为
MRIL下井仪器包括电子线路短节、储能短节及探 头等几个部分。
MRIL井下仪器的核心部件是磁体和天线。
下面就C型仪器的仪器特点作些介绍
(1) 外径为6“探头适用于7.5-13”的井眼;外径为 4.5“探头适用于5-7”的井眼
(2) 采用居中测量; (3) 永久磁铁产生梯度磁场,中心磁场强度为179G, 磁场梯度为17G/cm; (4) 可采用多频操作,中心频率750kHz,对地层有层析 作用;
12.问核题磁的共提振出测井发展概况
1)1945年发现了核磁共振现象;to 1991年有12位科 学家在此方面作出了卓越贡献,应用领域广阔;
2)50年代有人建议探讨开发NMR(Nuclear Magnetic Resonance)的可能性,60年代研制出样机,1978年美国 Jasper博士提出合理的建议,1983年Miller Dr.创办 Numar公司设计开发了MRIL,于1991年7月正式投入油田服 务。Schlumber1995年将CMR推向商业服务;
1cm(长)×1cm(宽)×15cm(高)的小圆柱体; (5)探测深度浅,仅2.5cm; (6)对地层的纵向分辨能力可达20cm。

核磁共振测井不止用于井下测量_还可在地面测量岩芯

核磁共振测井不止用于井下测量_还可在地面测量岩芯

82023年4月上 第07期 总第403期能源科技| TECHNOLOGY ENERGY3月4日至13日,中国石油集团测井有限公司(简称中油测井)使用该企业自主知识产权的移动式全直径岩心核磁共振设备,在大港油田张巨河某重点评价井完成现场应用和全部解释评价任务,标志着该企业车载快速岩石物理实验室在大港油田首战告捷。

核磁共振技术作为一种重要的现代分析手段已经广泛应用于各个领域。

其中核磁测井(核磁共振测井),是测量地层中的氢核在地磁场中自由旋进的测井方法。

在传统的核磁测井中,现场作业人员需要将核磁仪器使用电缆下入井筒中。

中油测井天津分公司解释评价工程师宋宏业介绍传统核磁测井方法时表示,在地磁场的作用下,地层中那些自旋轴与地磁场不完全重合的氢核绕地磁场旋进。

如果在下井仪器中用极化线圈产生与地磁场垂直的强脉冲磁场(与地磁场比较而言),迫使氢核的自旋轴离开地磁场的方向,当极化磁场去掉后,它们绕地核磁共振测井不止用于井下测量 还可在地面测量岩芯通讯员 常洁芮磁场旋进并逐渐恢复到原有状态。

氢核的旋进在感应线圈中产生逐渐衰减的射频信号,其幅度取决于地层中自由流体的氢核数,称自由流体指数,而束缚水或死油对核磁测井不起明显作用。

井眼产生的信号衰减很快,可以通过延迟测量时间将其影响减至最小。

根据自由流体指数可获得岩石的自由流体孔隙度,配合其他资料可计算渗透率。

如果进而测量热弛豫时间,则可以区别油和水。

较传统的核磁测井方法相比,移动式全直径岩心核磁共振测井是车载岩石物理实验室搭载的移动式全直径岩心核磁共振测井仪器,能够实现在现场对刚出筒的岩心进行快速、连续、无损、高精度的一维T2与二维T1-T2核磁共振测量与资料快速处理解释,并获取可靠的地层孔隙度、孔隙结构、流体性质、含油饱和度等信息。

打个最恰当的比喻,在医院是把患者推进医疗核磁检测仪进行检测,而在井场,是把从地层取得的岩芯有序排入核磁共振测井仪进行检测。

在此次施工中,技术人员对钻井取心所获得的岩芯进行核磁共振测量,细化岩性综合分析,并结合显示情况,优化后续测量模式和井段,对于进一步系统掌握该区域产层岩性特点、分析储层物性主控因素有着重要意义。

核磁共振成像测井新技术

核磁共振成像测井新技术

OUT”思想。
第二节 核磁共振测井发展史
1983年,NUMAR公司成立。
1991年7月, NUMAR公司研制的MRIL仪器正式投入油
田商业服务
1995年ATLAS公司与NUMAR公司合作,将MRIL挂接在
ECLIPS-5700上。
1995年SCHLUMBERGER公司的CMR研制成功。 1997年HALLIBURTON收购NUMAR公司。 1998年HALLIBURTON推出MRIL-Prime 型仪器。
流体特性 医用MRI要求把特定的医学条件或者人体的器官 与不同的核磁共振结果联系起来。采用同样的方法, 我们可以用MRIL仪器对井壁以外几英寸内的区域进 行研究。MRIL仪器可以确定不同的流体(水、油和 气)的存在及含量,同时还可以确定流体的某些特 性(如粘度)。
孔径
储层岩石孔隙空间中的流体的核磁共振响应与 体积形式的流体的核磁共振响应是不同的。因此从 MRIL数据中可以非常容易地提取到孔径的信息,从 而极大地改进一些重要的岩石物理特性的估算,如
孔隙空间指岩石中未被颗粒、胶结物或杂质填充的空间, 可分为:孔隙和喉道。孔隙空间体积可以分为水体积和油气体积,
其中水体积包括可自由流动的可动水和由于表面张力束缚于骨架岩 石的不可动束缚水两部分。油气体积同样分为可自由流动的可动油 气和不可动残余油气。
骨架岩石的泥质组分可以包含一种或多种粘土、粉砂、圈 闭水和进入粘土矿物中的束缚水。
1945年BLOCH教授和PURCELL教授两个小组各自独立
地发现了核磁共振现象。
1948年,VARIAN发现了地磁场中核的自由进动。
50年代初,三家公司联合研究发现,核磁只探测地层中
的孔隙流体。

核磁共振成像测井应用

核磁共振成像测井应用

面 . 核 磁 测 井 能 够 提 供 自由 水 、 泥质 束 缚 水 、毛 管 柬缚 水 和 烃 的 饱 和 度 , 而 毛 管 束 缚 水 恰 恰 是 引起 油 藏 低 电 阻率 的 重要 原 因之 一 、 .
在储层产能评价 方面 , 通过 对核 磁回波 串的处理和孔 隙流体 氢核的驰豫 、扩散 等机 理的研 究 , 核磁 可以提 供孔 隙类型、孔 径大小 、 孔 径 结 构 、 孔 隙 流 体 类 型 等特 性 . 这 对 于 油 气评 价 和 产 能预 测 具有 指 导性 的 意 义
在利用 谱分析 计算储层有效孔隙度 、柬缚水孔隙 度和 可动流体 孔隙度时 ,准确的L 止值是正确计算这些参数的前提 。在砂 泥岩地 截
涩6 ★ 一 井
寸 {一 = } + +_ 止 卅 :
① 自由流体峰幅度明显增高 .而束缚流体 峰则相对较低 ;孔隙度 曲线反映 为总的 有效孔隙 度增 高 ,而且 自由流 体孔隙度所 占比例较
( ) 2 针对一些复杂岩性 非均 质储 层 ,获取准确的地层孔隙度 . 划分有效 的渗透层和 定性 确定孔隙结 构及储层 的流体的流 动能 力, 如 商7 1 的火 成岩和凝灰岩及火 山碎 屑岩 。 4块 ( 3)有效识别砂泥岩剖 面的低 电阻细砂 岩储层及薄互层的孔隙
() 1 为储层评价提供可靠 的地 质参数 ,如孔隙度 、渗透率 、 饱
和度等。
() 1 有效孔隙度M H : PE m =r’( e ̄ PE M H : s ,T r A () 2 毛管束缚流体孔隙度M V: BI [ () B IM V= d
() 3 可动流体孔隙度M V M V r ~ B M: BM= =[ ()
关键词 核磁共振 孔 隙 度 渗 透 率 储 层 测 井

《核磁共振测井全》课件

《核磁共振测井全》课件

储层表征
核磁共振测井提供了详细的储 层性质描述,包括孔隙结构、 孔隙度分布和岩石类型,有助 于优化开发和生产侵入性测量
核磁共振测井是一种非 侵入性测量技术,不需 要采集样品,可以在井 内直接获取地层信息。
2 高分辨率
核磁共振测井具有高分 辨率,可以获取细微的 地质和储层参数变化, 提供精确的地质解释。
3 仪器限制
核磁共振测井仪器的尺 寸和功耗限制了其在特 定井眼中的应用,需要 克服相关的工程和技术 问题。
核磁共振测井的案例研究
1
海上油气勘探
核磁共振测井在海上油气勘探中的应用,帮助发现油气藏和优化产能,提高勘探 和开发效率。
2
储层评估
核磁共振测井在储层评估方面的应用,提供可靠的地质参数和流体信息,指导油 气勘探和开发决策。
3
井间连通性
核磁共振测井用于评估油井间的连通性,检测压力变化和流体移动,帮助优化油 藏生产。
核磁共振测井的未来发展
先进测井技术
未来的核磁共振测井技术将更 加先进,实时、高分辨率、多 参数测量等特性将得到进一步 增强。
人工智能应用
结合人工智能技术,核磁共振 测井可以进行更精确的数据处 理和解释,提高解释的速度和 准确性。
环境友好型
未来的核磁共振测井技术将更 加环境友好,减少对地下水资 源和环境的影响。
《核磁共振测井全》PPT 课件
核磁共振测井是一种用于获取地下岩石和流体性质的非侵入性测量技术。通 过应用核磁共振原理,可以获得有关地下油气储层的重要信息。
什么是核磁共振测井?
1 原理解释
2 数据获取
核磁共振测井利用原子核的自旋和磁矩之 间的相互作用来研究储层的性质。它基于 核磁共振现象,通过识别和分析样品中的 核自旋状态来获取相关信息。

核磁共振成像(MREX)测井仪及其应用

核磁共振成像(MREX)测井仪及其应用

文献标识码 : B
文 章 编 号 : 0 49 3 ( 07 0 .0 40 10 -14 2 0 ) 10 5-5
0 引 言
核磁共 振成像 测井 技术 的发展 为储层 物性 分 析和
流体 识别提 供 了有力 的手段 。核磁 共振成像 测井发 展
2 工 作 测 量 模 式 及特 点
2 1 仪器 工作 测量模 式 .
产的核磁共振成像 测井仪进行 了分析 对比; 结合该仪器在 河南油田的使 用情况 , 文章 重点描述 了核 磁共振成像 ( E MR X)
测井资料 的解释和处理方法 。
关 键 词 : 磁 共 振 ;成像 测 井 ;工作 原理 ; 术性 能指 标 ; 用 实例 核 技 应
中 图 法分 类 号 :P 3 . 6 18
集和测量参数上与 F OL略有差别 , E+ I 以保证测量信 息包含有更多的气体信息 , 利用这种测量模式可 以得
到储 层 中气 、 、 三种 流 体 的 2 布谱 , 观 显 示 油 水 分 直
储 层流 体性 质 。
2 2 仪器特 点 .
同流体 中氢 核 元 素 的核 磁 共 振 性 质所 受 到 的影 响不 同, 区分储 层孔 隙 中的流 体性质 , 并根据 不 同流 体 的弛
MR X测井 仪器共 有 三种 测 量 模式 : E模 式 ,E E F F +O L模式 和 F I E+G S模 式 。F A E测 量 模式 属 于 地层
至今 , 以国际三大测 井 公 司 ( 伦 贝谢 、 斯 哈里 伯顿 和 阿 特拉 斯 ) 主分别 研制 开发 了具有 自己特 色 的 核磁 共 为 振 成像测井 仪器 。河南 油 田引进 的核磁共 振成像 测井
维普资讯

核磁共振测井的基本原理

核磁共振测井的基本原理

核磁共振测井的基本原理
核磁共振测井(NMR)的基本原理是利用原子核在外磁场
中的磁矩为零或自旋为零,即自转的变化率为零,在外加磁场中与外加电场发生作用,使原子核受到磁场力而发生磁化。

当原子核在外加磁场中运动时,其周围就产生一系列感应电流(自转),这些感应电流与磁场力方向相同,就会使原子核发生位移,其位移量与原子核磁矩成正比。

核磁共振测井正是根据原子核在外加磁场中的自转变化率来研究原子核的运动和核外电子运动的。

核磁共振测井仪器有两个重要部件:一个是感应线圈;另一个是接收线圈。

感应线圈的作用是把发射出去的核磁共振信号接收下来。

一般情况下,感应线圈处于待测井段井眼的周围,在井下有很多的铁屑或其他杂质和岩石颗粒存在。

这些铁屑和颗粒对核磁共振信号会产生很大的干扰。

当井眼打开后,由于井壁对核磁共振信号有屏蔽作用,使核磁共振信号在井眼周围产生一个很强的磁场。

在这个强磁场下,原子核就会发生位移,在原子核的自转轴方向上形成一个脉冲磁场(核磁共振脉冲)。

—— 1 —1 —。

核磁共振测井

核磁共振测井

核磁共振测井与录井对比班级:勘查技术与工程07-1 姓名:学号:0701********摘要:石油工程中的核磁共振技术是利用油和水中的氢原子在磁场中具有共振并产生信号的特征来探测和评价岩石特性。

核磁共振测井是在井筒中测量井周地层的物性参数.核磁共振录井是在地而(钻井现场)分析岩心、岩屑和井壁取心的物性参数(随钻分析)。

对同深度13 u 井中的核磁共振测井孔隙度、渗透率参数与核磁共振录井分析岩心、岩屑和井壁取心样品得到的孔隙度、渗透率参数进行对比分析表明.两者虽存在定差异.但整体有较好的趋势致性。

关键词:核磁共振;测井;录井;孔隙度;渗透率Abstract:The hydrogen atoms in oil and water are able to resonate and generate signalsin the magnetic field,which is used by the NMR (nuclear magnetic resonance) technolo-gy in petroleum engineering to research and uate rock characteristics. NMR welllogging was used to measure the physical property parameters of the strata in well bore,whereas NMR mud logging was used to analyze(while drilling) the physical propertyparameters of cores,cuttings and sidewall coring samples on surface(drilling site).Based on the comparative analysis of the porosity and permeability parameters obtainedby NMR well logging and those from analysis of the cores,cuttings and sidewall coringsamples by NMR mud logging in the same depth of 13 wells,these two methods are ofcertain difference,but their integral tendency is relatively good.Key words:nuclear magnetic resonance;well logging;mud logging;porosity;permea-Bility1基本原理自然界元素的同位素中将近一半能够产生核磁共振r2,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一种是阿特拉斯公司和哈利伯顿公司采用NUMAR专利技术推 出的系列核磁共振成像测井仪MRIL;
一种是斯仑贝谢公司推出的组合式脉冲核磁共振测井仪CMR; 一种是以俄罗斯为主生产和制造的大地磁场型系列核磁测井 仪RMK923。 这些核磁共振测井仪器的具体测量方式存在一些差异,但在 测量原理上大同小异。
a
8
8
2.2 用核磁共振测井研究岩石孔隙结构
核磁共振测井测量的信号是由不同大小的孔隙内地层水的信号叠加 ,经过复杂的数学拟合得到核磁共振T2 分布。这就是利用核磁共振测 井资料研究储层岩石孔隙结构的基础。目前利用核磁共振测井资料研究 地层孔隙结构的方法都是进行室内实验, 将岩心的压汞毛管压力曲线和 核磁共振T2 分布对比, 建立其相关性, 进而通过核磁共振T2 分布, 间 接地利用岩石的毛管压力分布曲线来研究岩石的孔隙结构。【2】
5
5
核磁共振测井应用
图三[5] 为单井柱状图:
a
6
6
2.1 直接探测储层孔隙
不同的原子核有不同的共振频率,所以可通过选择共振频率确定 观测对象,核磁共振测井研究对象为氢核。氢核在地层中有两种存在 环境,即固体骨架和孔隙流体,在这两种环境中氢核的核磁共振特性 有很大差别,可以通过选择适当的测量参数,来观测只来自孔隙流体 而与岩石骨架无关的信号。宏观磁化矢量在观测对象确定之后,在给 定强度的静磁场和恒温下,磁化矢量的大小与单位体积内的核自旋数 成正比,即与地层孔隙流体中的含氢量成正比,可直接标定为地层孔 隙度。因此,核磁共振可直接探测地层孔隙度而不受岩石骨架的影响。
时间,M0、T1、T2就是核磁共振测井要测量和研究的对象。【1】
z
z
B0
B0
y
x
横向弛豫(T2)。在XY平面, 旋转开始,并逐步发散开去。
y
x
纵向弛豫(T1)也开始在磁场 方向重新排列(重极化)。
a
3
3
核磁共振测井原理
完整的过程如下:
a
4
4
核磁共振测井应用
目前,在全世界范围内提供商业服务的核磁共振测井仪主要 有3种类型:
a
2
2
核磁共振测井原理
当交变磁场B1快速切断时,M0将向B0方向恢复,释放能量,在此
恢复过程中存在二种机制:① My(M0在y轴的分量)以时间常数T2按指
数形式extp /T2 ()衰减为零;②Mz (M0在z轴的分量)以时间常数T1按指
数形式1ex t/p T 1)(恢复为M0 ,T2表示横向弛豫时间,T1表示纵向弛豫
a
9
9
2.2 用核磁共振测井研究岩石孔隙结构
实验研究表明:岩石孔隙流体的T2与孔隙直径相对应,小孔对应 短T2 ,大孔对应长T2 。当孔隙中为单相流体时,可直接刻度为孔隙 孔径大小,进而通过T2分布确定不同孔径大小的孔隙度。【1】
a
10
10
2.3 测量可动流体、毛细管束缚水和泥质束缚水
根据不同的孔径大小,利用实验分析确定的截止值,确定地层束缚 流体体积和自由流体体积,进而确定地层渗透率。【1】核磁测井估算渗 透率的前提是,核磁测井信息必须真实反映地层的孔隙度参数。【4】
不同流体有不同的核磁共振特性,表1【3】是某地区在一定条 件下测得的不同流体的核磁共振特性,从中不难看出,水与烃(油、 气)的差别很大,油与气的差别很大,液体(油、水)与气体的扩散 系数差别也很大,利用流体的这些差别,以不同的方式观测和识别 孔隙流体类型。【1】
a
12
12
文献参考
[1] 赵永刚等.核磁共振测井技术在储层评价中的应用.天然气工业,2007,27(7) :42-44. [2] 陈杰等.储层岩石孔隙结构特征研究方法综述.特种油气藏,2005,12(4),11-15. [3] 齐宝权. NMR测井识别储层流体性质的方法及应用.西南石油学院学报,2001,23(1),18-21. [4] 莫修文.核磁测井资料的解释方法与应用.测井技术,1997,21(6):424-431. [5] 周红涛.核磁共振和MDT测井在塔河油田碎屑岩储层评价中的应用. 石油物探,2011,50(5 ),526-530. [6]原宏壮等,测井技术新进展综述。地球物理学进展.2005,20(3),786-795.
汇报内容
1.核磁共振测井原理 2.核磁共振测井应用 3.参考文献
a
1
1
核磁共振测井原理
原子核在外加静磁场B0的作用 下磁化沿外加磁场B0方向产生宏观 磁化矢量M0。在垂直于B0方向加一 交变磁场B1且交变磁场的频率w1与 原子核进动频率w0相同时,原子核 会吸收交变磁场的能量,宏观磁化 矢量M0偏转一定角度【1】。如图1所 示。
幅度 孔吼分布频率
孔吼半径(um)
1
1.6
2.5
4
6.3
10
16
25
40
10
50
岩样号:NP1-布
6
30
毛管束缚水体积
4
20
粘土束缚水体积
2
10
0
0
0.5
1
2
4
8
16
32
64
128 256 512 1024 2048
T2(ms)
a
11
11
2.4 识别地层孔隙中的流体类型
a
13
13
[1]
a
7
7
2.1 直接探测储层孔隙
a
图2 [1]是一口井两段储层 (岩性为碳酸盐岩)的两类 孔隙度对比图, 可以看出, 除有3个点两种孔隙度值相 差较大(因岩心破裂导致化 验分析孔隙度误差很大)外, 整体上核磁共振成像测井 解释的孔隙度与岩心化验 分析的孔隙度相当吻合。 说明了核磁共振成像测井 解释的地层孔隙度的准确 性。[1]
相关文档
最新文档