初中数学二次函数的应用教案

合集下载

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

《二次函数》教案

《二次函数》教案

《二次函数》教案《二次函数》教案篇一通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系;(2)分解因式的结果要以积的形式表示;(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数;(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知例题学习:P166例1、例2(略)在教师的`引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习1.P167练习;2. 看谁连得准x2-y2 (x+1)29-25 x 2 y(x -y)x 2+2x+1 (3-5 x)(3+5 x)xy-y2 (x+y)(x-y)3.下列哪些变形是因式分解,为什么?(1)(a+3)(a -3)= a 2-9(2)a 2-4=( a +2)( a -2)(3)a 2-b2+1=( a +b)( a -b)+1(4)2πR+2πr=2π(R+r)学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业课本P一⑦0习题的第1、4大题。

学生自主完成通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)壹伍.4.1提公因式法例题1.因式分解的定义2.提公因式法《二次函数》教案篇二教学目标:1. 1. 理解二次函数的意义;会用描点法画出函数y=ax2的图象,知道抛物线的有关概念;2. 2. 通过变式教学,培养学生思维的敏捷性、广阔性、深刻性;3. 3. 通过二次函数的教学让学生进一步体会研究函数的一般方法;加深对于数形结合思想认识。

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

初中数学_二次函数的应用教学设计学情分析教材分析课后反思

6.3二次函数的应用教学设计一、教材的地位和作用本节课主要是在学生学习了二次函数的图像和性质的基础上,研究现实生活中抛物线型的物体的有关性质,引导学生建立适当的直角坐标系,向学生渗透数形结合的数学思想,以使学生借助直观的图形,生动形象的变化来求出抛物线所标示的二次函数的解析式,然后在根据具体问题、具体要求研究这个抛物线的性质。

培养学生主动学习、主动探索、合作学习的能力。

二、教学目标、重点的确定教学目标是教学的出发点和归宿。

因此,我根据新课标的知识、能力和德育目标的要求,以学生的认知点,心理特点和本课的特点来制定教学目标。

知识目标学生能将一些简单的实际问题转化为数学问题,根据题中的条件建立较为优化的二次函数模型,并求出抛物线所表示的二次函数的解析式。

能力目标学生能够运用二次函数的知识求出实际问题的最值,并能根据具体问题、具体要求研究现实生活中抛物线型物体的性质,发展问题解决能力。

情感目标通过对实际问题的研究,认识到二次函数是刻画和解决实际问题的重要工具。

学生在解决问题的过程中,学会合作、交流、分享、反思总结,学会进行解题分析。

学习过程:教学重点、难点引导学生自由建系,并求出抛物线所表示的二次函数的解析式,是本节课的重点。

根据具体问题、具体要求研究这个抛物线的性质,是本节课的难点。

关键是通过学生的直观感知、动手操作、合作交流归纳其规律。

三、评价设计1.及时反馈学习信息,诊断学生在学习中遇到的问题;(2)及时鼓励学生,激励学生学习的积极性;(3)重视学习过程的评价。

四、教学方式我采用自主探究—→合作交流式教学,让学生动手操作,主动去探索,小组合作交流。

而互动式教学将顾及到全体学生,让全体学生都参与,达到优生得到培养,后进生也有所收获的效果。

五、教学过程教学环节 学生活动 活动说明教学过程第一环节: 知识链接 1.说说如何求下列抛物线的解析式?2.打高尔夫球时,球的飞行路线可以看成是一条抛物线,如果不考虑空气的阻力,某次球的飞行高度y (单位:米)与飞行距离x (单位:百米)满足二次函数:y =-5x 2+20x .(1)这个球飞行的水平距离是1百米时距离地面的高度是米.(2)这个球飞行到最高点时移动的水平距离是 米.学生先独立思考各个问题,再就教师提出的问题进行分析和讨论,试图给出问题的解答。

初中数学八九年级下册二次函数的实际应用教案Word版

初中数学八九年级下册二次函数的实际应用教案Word版

北师大版初中数学八九年级下册《二次函数的实际应用》教案(1)【教学目标】1、知识与技能:学会把一些简单的实际生活中的二次函数问题抽象转化为数学问题,并能应用二次函数的相关性质解决问题,能进一步熟练掌握二次函数解析式的各种求法。

2、过程与方法:(1)以学生已有的生活经验出发,让学生亲身经历将实际问题抽象成数学模型,并进行解释与应用的过程,进而使学生获得对数学理解的同时,培养学生分析问题和解决问题的能力。

(2)通过小组合作探索,获得一些研究问题与合作交流的方法与经验。

3、情感态度与价值观:体验函数知识的实际应用价值,感受数学与人类生活的密切联系,从实践动手当中,让学生产生对数学的兴趣,从而培养学生观察和推理能力,体验主动探究的成功快乐。

【重点和难点】重点:理解实际问题中的问题背景,弄清问题中相关量的关系,建立适当的数学模型,并把实际问题转化为数学问题。

难点:如何把实际问题抽象转化为数学问题。

【教学方法】学生在教师创设的情景中以问题为中心进行自主探究。

【教学过程】二次函数在实际中的应用十分广泛,利润问题在我们的生活中又无处不在,它们都与二次函数密不可分,今天就让我们一起来探索与二次函数有关的实际应用问题。

(一)师生协作,探索问题。

例1:为配合科技下乡工作全面开展,市场调研部对“大棚西瓜”去年的市场行情和生产情况进行了调查,提供了如下两个信息图,如甲、乙两图。

注甲乙两图中的每个黑心点所对应的纵坐标分别指相应月份的售价和成本,生产成本6月份最低,甲图的图像是线段,乙图的图像是抛物线段。

请你根据图像提供的信息说明。

(1)在6月份出售这种西瓜,每千克的收益是多少元?(2)如果你是调研员,为了每千克有最大收益,你会指导瓜农最好在哪个月出售这种西瓜?说明理由。

在教师的引导下,学生自主研究、解答本题,并请学生说出解题思路以及答案,师生共同研究,引导学生解决实际问题,在此同时,培养用动态的观点看待一些事情,提高学生的建模能力,以及渗透数形结合的思想方法。

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案

初中数学《二次函数的应用》教案2.3二次函数的应用教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计由于本节课是应用问题,重在通过学习总结解决问题的方法,故而本节课以“启发探究式”为主线开展教学活动,解决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

初中数学_《二次函数的应用》(复习)教学设计学情分析教材分析课后反思

初中数学_《二次函数的应用》(复习)教学设计学情分析教材分析课后反思

《二次函数的应用》教学设计35321212++-=x x y 3532121-2++=x x y 教学环节教学内容 学生活动环节目标 创设情境问题引入 1.已知二次函数 ,求出抛物线的顶点坐标与对称轴。

2.已知二次函数图象的顶点坐标是(6,2.6),且经过点(0,2),求这个二次函数的表达式 。

3.抛物线 c bx x y ++=261-经过点(0,4)经过点(3,217),求抛物线的关系式。

问题:(1)求二次函数顶点坐标的方法 (2)设表达式的思路(3)如何求二次函数与x 轴及y 轴的交点坐标课前布置,独立完成,上课时没完成的继续完成,之后组内批阅,找学生上台板演,并回答老师提出的问题。

这三个小题是后面实际应用问题的答案,学生在复习二次函数基础知识的同时,把后面的计算提到前面来,便于后面把教学重点放在解题思路的分析与掌握上,减少学生的计算量。

探索交流获得新知1例题解析例 1 :这是王强在训练掷铅球时的高度y (m)与水平距离x(m)之间的函数图像,其关系式为 ,则铅球达到的最大高度是_____米,此时离投掷点的水平距离是____米。

铅球出手时的高度是_____米,此次掷铅球的成绩是____米。

2、跟踪练习:如图,排球运动员站在点O 处练习发球,将球从1、学生独立思考后回答问题答案。

2、根据图像回答解题思路。

(前面已经求过前两个空,只计算后面两个即可)引导学生得到解决问题的方法:这四个问题都是求线段的长度,共同点为已知点的一个坐标,可将其代入表达式求另一个坐标,再把坐标转化成线段的长。

O点正上方2 m的A处发出,把球看成点,出手后水平运行6米达到最大高度2.6米,(1) 运行的高度记为y(m),运行的水平距离记为x(m),建立平面平面直角坐标系如图,求y 与x的函数表达式(不要求写出自变量x的取值范围);(2) 若球网与O点的水平距离为9 m,高度为2.43 m,球场的边界距O点的水平距离为18 m。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中数学《二次函数的应用》教案 2.3二次函数的应用
教学目标设计1.知识与技能:通过本节学习,巩固二次函数y=ax2+bx+c(a0)的图象与性质,理解顶点与最值的关系,会用顶点的性质求解最值问题。

能力训练要求1、能够分析实际问题中变量之间的二次函数关系,并运用二次函数的知识求出实际问题的最大(小)值发展学生解决问题的能力,学会用建模的思想去解决其它和函数有关应用问题。

2、通过观察图象,理解顶点的特殊性,会把实际问题中的最值转化为二次函数的最值问题,通过动手动脑,提高分析解决问题的能力,并体会一般与特殊的关系,培养数形结合思想,函数思想。

情感与价值观要求1、在进行探索的活动过程中发展学生的探究意识,逐步养成合作交流的习惯。

2、培养学生学以致用的习惯,体会体会数学在生活中广泛的应用价值,激发学生学习数学的兴趣、增强自信心。

教学方法设计
由于本节课是应用问题,重在通过学习总结解决问题的方页1 第
法,故而本节课以“启发探究式”为主线开展教学活动,解
决问题以学生动手动脑探究为主,必要时加以小组合作讨论,充分调动学生学习积极性和主动性,突出学生的主体地位,达到“不但使学生学会,而且使学生会学”的目的。

为了提高课堂效率,展示学生的学习效果,适当地辅以电脑多媒体技术。

教学过程导学提纲设计思路:最值问题又是生活中利用二次函数知识解决最常见、最有实际应用价值的问题之一,它生活背景丰富,学生比较感兴趣,对九年级学生来说,在
学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

目的在于让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题,此部分内容既是学习一次函数及其应用后的巩固与延伸,又为高中乃至以后学习更多函数打下坚实的理论和思想方法基础。

页 2 第
(一)前情回顾:
1.复习二次函数y=ax2+bx+c(a0)的图象、顶点坐标、对
称轴和最值
2.(1)求函数y=x2+ 2x-3的最值。

(2)求函数y=x2+2x-3的最值。

(0 3)3、抛物线在什么位置取最值?
(二)适当点拨,自主探究 1.在创设情境中发现问题:请你画一个周长为40厘米的矩形,算算它的面积是多少?再和同学比比,发现了什么?谁的面积最大?
2、在解决问题中找出方法
:某工厂为了存放材料,需要围一个周长40米的矩形场地,问矩形的长和宽各取多少米,才能使存放场地的面积最大?(问题设计思路:把前面矩形的周长40厘米改为40米,变成一个实际问题,目的在于让学生体会其应用价值我们要学有用的数学知识。

学生在前面探究问题时,已经发现了面积不唯一,并急于找出最大的,而且要有理论依据,这样首先要建立函数模型,合作探究中在选取变量时学生可能会有困难,这时教师要引导学生关注哪两个变量,就把其中的一个主要变量设为x,另一个设为y,其它变量用含x的代数式表示,找等量关系,建立函数模型,实际问题还要考虑页 3 第
定义域,画图象观察最值点,这样一步步突破难点,从而让学生在不断探究中悟出利用函数知识解决问题的一套思路和方法,而不是为了做题而做题,为以后的学习奠定思想方
法基础。


3、在巩固与应用中提高技能
例1:小明的家门前有一块空地,空地外有一面长10米的围墙,为了美化生活环境,小明的爸爸准备靠墙修建一个矩形花圃,他买回了32米长的不锈钢管准备作为花圃的围栏(如图所示),花圃的宽AD究竟应为多少米才能使花圃的面积最大?
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。


解:设垂直于墙的边AD=x米,则AB=(32-2x)米,设矩形面积为y米2,得到:
页 4 第
Y=x(32-2x)= -2x2+32x
[错解]由顶点公式得: x=8米时,y最大=128米2而实
际上定义域为11x ﹤16,由图象或增减性可知x=11米时, y 最大=110米2
(设计思路:例1的设计也是寻找了学生熟悉的家门口的生活背景,从知识的角度来看,求矩形面积也较容易,我在此设计了一个条件墙长10米来限制定义域,目的在于告诉学生一个道理,数学不能脱离生活实际,估计大部分学生在求解时还会在顶点处找最值,导致错解,此时教师再提醒学生通过画函数的图象辅助观察、理解最值的实际意义,体会顶点与端点的不同作用,加深对知识的理解,做到数与形的完美结合,通过此题的有意训练,学生必然会对定义域的意义有更加深刻的理解,这样既培养了学生思维的严密性,又为今后能灵活地运用知识解决问题奠定了坚实的基础。

)(三)总结交流:
(1)同学们经历刚才的探究过程,想想解决此类问题的思路是什么?.
引导学生分析解题循环图:
(2)在探究发现这些判定方法的过程中运用了什么样的数学方法?
(四)掌握应用:图中窗户边框的上半部分是由四个全等页5 第
扇形组成的半圆,下部分是矩形。

如果制作一个窗户边框的材料总长为15米,那么如何设计这个窗户边框的尺寸,使
透光面积最大(结果精确到0.01m2)?(设计思路:先出示如图图形,然后引伸到课本中的图形,让学生有一个思考递进的空间。


(五)我来试一试:如图在Rt△ABC中,点P在斜边AB上移动,PMBC,PNAC,M,N分别为垂足,已知AC=1,AB=2,求:
(1)何时矩形PMCN的面积最大,把最大面积是多少?(2)当AM平分CAB时,矩形PMCN的面积.
(六)智力闯关:如图,用长20cm的篱笆,一面靠墙围成一个长方形的园子,怎样围才能使园子的面积最大?最大面积是多少?
作业:课本随堂练习、习题1,2,3
板书设计二次函数的应用面积最大问题
课后反思二次函数的应用本身是学习二次函数的图象与性质后,检验学生应用所学知识解决实际问题能力的一个综合考查。

新课标中要求学生能通过对实际问题的情境的分析确定二次函数的表达式,体会其意义,能根据图象的性质解决简单的实页 6 第
际问题。

本节课充分运用导学提纲,教师提前通过一系列问题串的设置,引导学生课前预习,在课堂上通过对一系列问题串的解决与交流,让学生通过掌握求面积最大这一类题,学会用建模的思想去解决其它和函数有关应用问题。

教材中设计先探索最大利润问题,对九年级学生来说,在学习了一次函数和二次函数图象与性质以后,对函数的思想已有初步认识,对分析问题的方法已会初步模仿,能识别图象的增减性和最值,但在变量超过两个的实际问题中,还不能熟练地应用知识解决问题,而面积问题学生易于理解和接受,故而在这儿作此调整,为求解最大利润等问题奠定基础。

从而进一步培养学生利用所学知识构建数学模型,解决实际问题的能力,这也符合新课标中知识与技能呈螺旋式上升的规律。

所以在例题的处理中适当的降低了梯度,让学生思维有一个拓展的空间,也有收获快乐和成就感。

在训练的过程中,通过学生的独立思考与小组合作探究相结合,使学生的分析能力、表达能力及思维能力都得到训练和提高。

同时也注重对解题方法与解题模式的归纳与总结,并适当地渗透
转化、化归、数形结合等数学思想方法。

就整节课看,学生的积极性得以充分调动,特别是学困生,在独立思考和小组合作中改变以往的配角地位,也能积极参与到课堂学习活动中,今后继续发扬从学生出发,从学生的
页 7 第
需要出发,把问题梯度降低,设计让学生在能力范围内掌握新知识,有了足够的热身运动之后再去拓展延伸。

页 8 第。

相关文档
最新文档