2158 IEEE TRANSACTIONS ON ANTENNAS AND PROP
低RCS宽带磁电偶极子贴片天线设计

低RCS宽带磁电偶极子贴片天线设计张晨;曹祥玉;高军;李思佳;黄河【摘要】该文设计了一种低雷达散射截面(RCS)的宽带磁电偶极子贴片天线,其中印刷在介质板上的金属贴片为电偶极子,3个金属过孔连接辐射贴片与金属地板构成磁偶极子。
整个天线采用“T”型渐变馈电结构同时激励电偶极子与磁偶极子,天线的频带范围为7.81~13.65 GHz,覆盖了整个X波段。
实测和仿真结果表明,通过在磁电偶极子贴片天线底面采用开槽技术并优化开槽的形状、大小、位置等变量,在天线工作频带范围内实现了RCS的减缩,最大缩减量达到了17.9 dB,同时天线保持了增益稳定不变,E面、H面方向图一致的特性。
%A low Radar Cross Section (RCS) and broadband Magneto-Electric (ME) dipole patch antenna from 7.81 GHz to 13.65 GHz covering the whole X band is designed and fabricated. Metal patches printed on the substrate form the electric dipoles, three metallic vias connected to the radiation patches and the metal ground account for the magnetic dipole radiation. The whole antenna is connected with a T-shaped feed structure which excites electric and magnetic dipoles simultaneously. Numericaland experimental results incident that the RCS of the ME dipole patch antenna can be reduced inthe whole bandwidth which the largest value is up to 17.9 dB by cutting slots on the ground and optimizing the size, shape, position of the slots. Also, the antenna shows advanced performances such as stable gain and almost consistent pattern in E and H plane.【期刊名称】《电子与信息学报》【年(卷),期】2016(038)004【总页数】5页(P1012-1016)【关键词】磁电偶极子天线;宽频带;开槽技术;低RCS;一致性【作者】张晨;曹祥玉;高军;李思佳;黄河【作者单位】空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;空军工程大学信息与导航学院西安 710077;西安通信学院西安 710106【正文语种】中文【中图分类】TN821 引言微带贴片天线以其低剖面、易共形等优点在战场通信、监视及其它作战平台上得到了广泛应用,但由于带宽窄,不能用于宽频天线系统,且E面、H面方向图差异较大,不易于组成天线阵[1,2]。
天线领域

天线领域主要期刊1.IEEE Transactions on Antennas and Propagation(TAP)(顶级期刊)IF:2.181 SCI 2区2.IEEE Transactions on Microwave Theory and Techniques(TMTT)(微波领域顶级)IF:2.243 SCI 2区3.IEEE Antennas and Wireless Propagation Letters(AWPL) IF:1.579 SCI-E 3区4.IEEE Microwave and Wireless Components Letters(MWCL) IF:1.703 SCI 3区5.Electronics Letters(EL) IF:0.93 SCI 4区6.Microwave and Optical Technology Letters(MOTL) IF:0.568 SCI-E 4区7.Progress In Electromagnetics Research(PIER) IF:1.229 4区8.Wireless Personal Communications IF:0.653 SCI-E 4区9.Chinese Journal of Electronics IF:0.319 SCI-E 4区天线领域会议1.International Symposium on Antennas and Propagation (ISAP) 国际天线与传播会议2.IEEE Antennas and Propagation Society International Symposium(APS) 国际天线和传播会议3.IEE International Conference on Antennas and Propagation(ICAP) IEE天线与传播国际会议-Pacific Conference on Antennas and Propagation(APCAP) 亚太天线与传播国际会议5.天线领域大牛:1.LEUNG, K W(香港城市大学) Editor-in-Chief of IEEE transactions on antennas and propagation。
通信类顶级会议及期刊

通信类权威会议:A类会议:本学科最顶尖级水平的国际会议1 IEEE International Conference on Acoustics, Speech and Signal Processing/ ICASAP/ IEEE声学、语音和信号处理国际会议2 IEEE International Conference on Image Processing/ ICIP/ IEEE图像处理国际会议3 International Conference on Pattern Recognition/ ICPR/ 模式识别国际会议4 IEEE International Conference on Communications/ ICC/ IEEE通信国际会议5 IEEE Global Telecommunications Conference/ Globecom/ IEEE全球电信会议6 IEEE International Conference on Intelligent TransportationSystem/ ITSC/ IEEE 智能交通系统国际会议7 Annual IEEE Conference on Computer Communications/ IEEEINFOCOM/ IEEE计算机通信会议8 IEEERadar Conference/ IEEE雷达会议B类会议:学术水平较高、组织工作成熟、按一定时间间隔系列性召开的国际会议。
1 International Conference On Natural Language Processing/ ICON/ 自然语言处理国际会议2 International Conference on Telecommunications/ ICT/ 电信国际会议3 International Geoscience and Remote Sensing Symposium/ IGARSS/ 地球科学与遥感国际研讨会4 Picture Coding Symposium/ PCS/ 图像编码研讨会5 ACM Conference on Computer and Communications Security/ CS/ ACM计算机与通信安全会议6 IEEEMilitary Communications Conference/ MILCOM/ IEEE军事通信会议66. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications中文名称:IEEE个人通信、室内通信与移动通信国际会议 PIMRC7 International Broadcasting Convention/ IBC/ 国际广播会议8 IEEE Wireless Communications & Networking Conference/ WCNC/ IEEE无线通信和网络会议9 SPIEConference on Visual Communications and Image Processing/ VCIP/ SPIE 视觉通信和图像处理会议10 International Symposium on Wireless PersonalMultimediaCommunications/ WPMC/ 无线个人多媒体通信国际研讨会11 IEEE International Conference on Third Generation Wireless and Beyond/3G andBeyond/IEEE第三代及以上无线通信国际会议12 ACMMobicom/ ACM/移动通信会议13 International Conference on Network Protocol/ ICNP/ 网络协议国际会议14 IEEE Speech Coding Workshop15 International Conference on Speech and Language Processing/ ICSLP/ 语音语言处理国际会议16 International Symposium on Chinese Spoken LanguageProcessing/ ISCSLP/ 中文口语语言处理国际会议17 MOBI COM & MOBI HOC/ 移动Ad hoc移动通信会议/ Ad hoc的顶级年会18 Vehicular Technology Conference/ VTC/ 国际传输技术会议/ 与产业界结合比较紧密的会2次/年19 ACMConference on Embedded Networked Sensor Systems Sensys/嵌入式网络传感系统/ WSN的顶级年会(Single Track的小会)20 Global Navigation Satellite Systems/ ION/IEEEGNSS/ 全球导航卫星系统会议/ IEEE和美国导航学会联合召开的年会21 International conference on Radar/ ICR/ 英美法中澳五国轮流召开22 IEEE Conference on Computer Vision and Pattern Recognition/ CVPR/ 计算机视觉与模式识别会议23 IEEE International Conference on Multimedia & Expo/ ICME/ 多媒体IEEE 国际会议及展览会/ 每年召开24 IEEE International conference on Computer Vision/ ICCV/ 计算机视觉IEEE国际会议/25 International Conference on Document Analysis and Recognition/ICDAR/文档分析和识别国际会议/文字识别领域最重要的会议通信期刊Journal of systems engineering and electronics SCIE1 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1.3282 IEEE COMMUNICATIONS MAGAZINE 1.2913 IEEE NETWORK 1.2884 RADIO SCIENCE 1.0595 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1.0116 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 0.8127 IEEE TRANSACTIONS ON COMMUNICATIONS 0.6818 TELECOMMUNICATIONS POLICY 0.5869 IEE PROCEEDINGS-OPTOELECTRONICS 0.54510 BT TECHNOLOGY JOURNAL 0.45411 IEEE TRANSACTIONS ON ELECTROMAGNETICCOMPATIBILITY 0.42112 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICSYSTEMS 0.38113 IEE PROCEEDINGS-MICROWAVES ANTENNAS ANDPROPAGATION 0.38014 IEEE TRANSACTIONS ON BROADCASTING 0.35315 IEICE TRANSACTIONS ON COMMUNICATIONS 0.35016 IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION 0.31317 SMPTE JOURNAL 0.26518 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 0.23319 ELECTRONICS & COMMUNICATION ENGINEERINGJOURNAL 0.20820 ANNALES DES TELECOMMUNICATIONS-ANNALS OFTELECOMMUNICATIONS 0.10521 JOURNAL OF COMMUNICATIONS TECHNOLOGY ANDELECTRONICS 0.084总结及心得:1.一般来说最顶级会议高于最顶级期刊,因为前者录取率变态的低(e.g. sigcomm/mobicom <10%),而顶级trans一般在20%左右,虽然前者连SCI都不算。
通信类顶级会议及期刊

通信类权威会议:A类会议:本学科最顶尖级水平的国际会议1 IEEE International Conference on Acoustics, Speech and Signal Processing/ ICASAP/ IEEE声学、语音和信号处理国际会议2 IEEE International Conference on Image Processing/ ICIP/ IEEE图像处理国际会议3 International Conference on Pattern Recognition/ ICPR/ 模式识别国际会议4 IEEE International Conference on Communications/ ICC/ IEEE通信国际会议5 IEEE Global Telecommunications Conference/ Globecom/ IEEE全球电信会议6 IEEE International Conference on Intelligent TransportationSystem/ ITSC/ IEEE 智能交通系统国际会议7 Annual IEEE Conference on Computer Communications/ IEEEINFOCOM/ IEEE计算机通信会议8 IEEERadar Conference/ IEEE雷达会议B类会议:学术水平较高、组织工作成熟、按一定时间间隔系列性召开的国际会议。
1 International Conference On Natural Language Processing/ ICON/ 自然语言处理国际会议2 International Conference on Telecommunications/ ICT/ 电信国际会议3 International Geoscience and Remote Sensing Symposium/ IGARSS/ 地球科学与遥感国际研讨会4 Picture Coding Symposium/ PCS/ 图像编码研讨会5 ACM Conference on Computer and Communications Security/ CS/ ACM计算机与通信安全会议6 IEEEMilitary Communications Conference/ MILCOM/ IEEE军事通信会议66. IEEE International Symposium on Personal, Indoor and Mobile Radio Communications中文名称:IEEE个人通信、室内通信与移动通信国际会议 PIMRC7 International Broadcasting Convention/ IBC/ 国际广播会议8 IEEE Wireless Communications & Networking Conference/ WCNC/ IEEE无线通信和网络会议9 SPIEConference on Visual Communications and Image Processing/ VCIP/ SPIE 视觉通信和图像处理会议10 International Symposium on Wireless PersonalMultimediaCommunications/ WPMC/ 无线个人多媒体通信国际研讨会11 IEEE International Conference on Third Generation Wireless and Beyond/3G andBeyond/IEEE第三代及以上无线通信国际会议12 ACMMobicom/ ACM/移动通信会议13 International Conference on Network Protocol/ ICNP/ 网络协议国际会议14 IEEE Speech Coding Workshop15 International Conference on Speech and Language Processing/ ICSLP/ 语音语言处理国际会议16 International Symposium on Chinese Spoken LanguageProcessing/ ISCSLP/ 中文口语语言处理国际会议17 MOBI COM & MOBI HOC/ 移动Ad hoc移动通信会议/ Ad hoc的顶级年会18 Vehicular Technology Conference/ VTC/ 国际传输技术会议/ 与产业界结合比较紧密的会2次/年19 ACMConference on Embedded Networked Sensor Systems Sensys/嵌入式网络传感系统/ WSN的顶级年会(Single Track的小会)20 Global Navigation Satellite Systems/ ION/IEEEGNSS/ 全球导航卫星系统会议/ IEEE和美国导航学会联合召开的年会21 International conference on Radar/ ICR/ 英美法中澳五国轮流召开22 IEEE Conference on Computer Vision and Pattern Recognition/ CVPR/ 计算机视觉与模式识别会议23 IEEE International Conference on Multimedia & Expo/ ICME/ 多媒体IEEE 国际会议及展览会/ 每年召开24 IEEE International conference on Computer Vision/ ICCV/ 计算机视觉IEEE国际会议/25 International Conference on Document Analysis and Recognition/ICDAR/文档分析和识别国际会议/文字识别领域最重要的会议通信期刊Journal of systems engineering and electronics SCIE1 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS 1.3282 IEEE COMMUNICATIONS MAGAZINE 1.2913 IEEE NETWORK 1.2884 RADIO SCIENCE 1.0595 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION 1.0116 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 0.8127 IEEE TRANSACTIONS ON COMMUNICATIONS 0.6818 TELECOMMUNICATIONS POLICY 0.5869 IEE PROCEEDINGS-OPTOELECTRONICS 0.54510 BT TECHNOLOGY JOURNAL 0.45411 IEEE TRANSACTIONS ON ELECTROMAGNETICCOMPATIBILITY 0.42112 IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONICSYSTEMS 0.38113 IEE PROCEEDINGS-MICROWAVES ANTENNAS ANDPROPAGATION 0.38014 IEEE TRANSACTIONS ON BROADCASTING 0.35315 IEICE TRANSACTIONS ON COMMUNICATIONS 0.35016 IEE PROCEEDINGS-RADAR SONAR AND NAVIGATION 0.31317 SMPTE JOURNAL 0.26518 IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 0.23319 ELECTRONICS & COMMUNICATION ENGINEERINGJOURNAL 0.20820 ANNALES DES TELECOMMUNICATIONS-ANNALS OFTELECOMMUNICATIONS 0.10521 JOURNAL OF COMMUNICATIONS TECHNOLOGY ANDELECTRONICS 0.084总结及心得:1.一般来说最顶级会议高于最顶级期刊,因为前者录取率变态的低(e.g. sigcomm/mobicom <10%),而顶级trans一般在20%左右,虽然前者连SCI都不算。
一种新型毫米波磁电偶极子天线阵列设计

一种新型毫米波磁电偶极子天线阵列设计陆贵文;李明鉴【摘要】该文将磁电偶极子天线作为辐射阵子,并应用一种共面波导馈电网络,研究并设计了一种新型4×4毫米波天线阵列。
这种设计不仅具有很宽的阻抗带宽和增益带宽,而且价格低廉易于生产。
仿真和测试结果表明,此天线阵列的相对阻抗带宽为54.5%,3 dB增益带宽为37.1%,在工作频带内(40.2~70.0 GHz),最大增益为18.1 dBi。
而基于其他技术设计的4×4毫米波天线阵列(如微带天线、偶极子天线)工作频带宽度一般在20%左右,增益一般在16~17 dBi。
所以该文提出的天线阵列设计具有明显的优势。
另外,仿真设计结果和实测的电参数数据有较好的一致性。
%This paper presents a new 4×4 millimeter-wave antenna array, which adopts the magneto-electric dipole as the radiating element and a type of coplanar waveguide feed network to excite the array. This design not only provides very wide impedance and gain bandwidths, but also has features of low cost and ease in fabrication. The simulated and measured results reveal that this array exhibits a wide impedance bandwidth of 54.5% and a wide 3 dB gain bandwidth of 37.1%. Over the operating frequency band (40.2~70.0 GHz), the maximum gain is 18.1 dBi. However, other 4×4 millimeter-wave antenna arrays, designed based on microstrip patch antenna or electric dipole antenna, have the operating bandwidth of about 20% and the gain of 16~17 dBi. Hence, the proposed antenna has an obvious advantage. In addition, the simulated and measured results have a good agreement.【期刊名称】《电子与信息学报》【年(卷),期】2015(000)010【总页数】4页(P2517-2520)【关键词】毫米波天线阵列;磁电偶极子天线;宽带天线【作者】陆贵文;李明鉴【作者单位】香港城市大学毫米波国家重点实验室中国香港;香港城市大学毫米波国家重点实验室中国香港【正文语种】中文【中图分类】TN821为了实现海量数据传输和弥补匮乏的可用频谱,提高载波频率是必然的解决方案。
投稿成功经验介绍

祝福+几篇论坛投稿至接收全过程小弟我是做阵列信号处理及在雷达、声纳、通信领域的应用,目前在IEEE Trans/Letters,IEE Proceedings,Elsevier Signal Processing/Digital Signal Processing,电子学报,电子与信息学报,通信学报,航空学报等期刊都有过灌水的记录。
MS我们这个领域不是很讲究IF,周围的很少谈论IF的问题,我也偷偷查过我发表文章的期刊没有IF>1的。
那些高IF大牛们别笑话小弟哈。
9月份以来又启动了新一轮灌水,在这里为自己祈祷一下,希望能再中个三五篇的。
1、IEEE Journal of Oceanic Engineering,目前状态 Waiting for Potential Reviewer Assignment2、IEEE Antennas and Wireless Propagation Letters 目前状态 Awaiting Reviewer Scores3、IEEE Signal Processing Letters 目前状态 In Peer Review4、IEEE Transactions on Aerospace and Electronic Systems 目前状态修改一次后又Under Review5、IET Signal Processing 目前状态 Under Review6、IET Radar, Sonar & Navigation 目前状态 Under Review7、IET Electronic Letters 目前状态 Under Review8、Elsevier Signal Processing 目前状态 Required Reviews Completed9、Science in China: F 目前状态外审中10、IEEE Transactions on Antennas Propagation 目前状态上传中小弟明年就该滚蛋了,将来可能不再从事科研工作了,曾经在小木虫潜水,收获颇丰,现在把几篇文章的投稿经历拿出来给大家分享。
电磁场与微波技术常见期刊

368
68 Journal Of The Optical Society Of America B: Optical Physics
351
电磁场与微波技术 电路与系统 电磁场与微波技术 信号与信息处理 电磁场与微波技术 电磁场与微波技术 信号与信息处理 电磁场与微波技术
电磁场与微波技术 电路与系统 电磁场与微波技术 电路与系统 电磁场与微波技术 电路与系统 电磁场与微波技术 信号与信息处理 电磁场与微波技术 电路与系统 电磁场与微波技术 电路与系统 信号与信息处理 电磁场与微波技术 信号与信息处理 电磁场与微波技术 电路与系统 电磁场与微波技术 电路与系统 电磁场与微波技术 信号与信息处理 电磁场与微波技术 电路与系统 电磁场与微波技术 信号与信息处理
电磁场与微波技术常用期刊一览表
依据EI检索结果,利用刊名分析,制作此表(按刊名排序),请在此基础上增删,以便改进!
序 号
期刊名称
EI08年以来 收录相关文
献量
涉及学科
1 Microwave And Optical Technology Letters
电磁场与微波技术
2896
电路与系统
信号与信息处理
2 Optics Express 3 Applied Physics Letters 4 Journal Of Applied Physics 5 Ieee Transactions On Antennas And Propagation
684
39 Journal Of The Acoustical Society Of America
679
40 Physics Of Plasmas
668
41
Guang Pu Analysis
投稿成功经验介绍

祝福+几篇论坛投稿至接收全过程小弟我是做阵列信号处理及在雷达、声纳、通信领域的应用,目前在IEEE Trans/Letters,IEE Proceedings,Elsevier Signal Processing/Digital Signal Processing,电子学报,电子与信息学报,通信学报,航空学报等期刊都有过灌水的记录。
MS我们这个领域不是很讲究IF,周围的很少谈论IF的问题,我也偷偷查过我发表文章的期刊没有IF>1的。
那些高IF大牛们别笑话小弟哈。
9月份以来又启动了新一轮灌水,在这里为自己祈祷一下,希望能再中个三五篇的。
1、IEEE Journal of Oceanic Engineering,目前状态 Waiting for Potential Reviewer Assignment2、IEEE Antennas and Wireless Propagation Letters 目前状态 Awaiting Reviewer Scores3、IEEE Signal Processing Letters 目前状态 In Peer Review4、IEEE Transactions on Aerospace and Electronic Systems 目前状态修改一次后又Under Review5、IET Signal Processing 目前状态 Under Review6、IET Radar, Sonar & Navigation 目前状态 Under Review7、IET Electronic Letters 目前状态 Under Review8、Elsevier Signal Processing 目前状态 Required Reviews Completed9、Science in China: F 目前状态外审中10、IEEE Transactions on Antennas Propagation 目前状态上传中小弟明年就该滚蛋了,将来可能不再从事科研工作了,曾经在小木虫潜水,收获颇丰,现在把几篇文章的投稿经历拿出来给大家分享。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[11] F. D’Agostino, F. Ferrara, C. Gennarelli, R. Guerriero, and G. Riccio, “An effective technique for reducing the truncation error in the nearfield-far-field trnasformation with plane-polar scanning,” Progr. Electromagn. Res., vol. 73, pp. 213–238, 1996.
[3] M. G. Cote an of bistatic electromagnetic scattering measurements by spherical near-field scanning,” in Proc. AMTA Symp., 1993, p. 191.
[13] F. Ferrara, C. Gennarelli, R. Guerriero, G. Riccio, and C. Savarese, “Extrapolation of the outside near-field data in the cylindrical scanning,” Electromagnetics, vol. 28, pp. 333–345, 2008.
[5] R. A. Marr, U. H. W. Lammers, T. B. Hansen, T. J. Tanigawa, and R. V. McGahan, “Bistatic RCS calculations from cylindrical near-field measurements–Part II: Experiments,” IEEE Trans Antenna Propag., vol. 54, no. 12, pp. 3857–3864, Dec. 2006.
[8] D. Zahn and K. Sarabandi, “Near-field measurements of bistatic scattering from random rough surfaces,” in Proc. IEEE Antennas Propag. and URSI Symp., Salt Lake City, Utah, Jul. 2001, pp. 1730–1733.
[6] B. J. Cown and C. E. Ryan Jr., “Near-field scattering measurements for determining complex target RCS,” IEEE Trans Antenna Propag., vol. 37, no. 5, pp. 576–585, May 1989.
[2] J. Appel-Hansen, J. D. Dyson, and T. G. Hickman, “The Handbook of Antenna Design,” in , A. W. Rudge, Ed. et al. London: Peter Peregrinus, 1986, vol. 1.
[9] O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans Antenna Propag., vol. 37, no. 7, pp. 918–926, Jul. 1989.
[14] A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977. [15] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd ed. Bal-
timore: The Johns Hopkins Univ. Press, 1996. [16] G. T. Ruck, D. E. Barrick, W. D. Stuart, and C. K. Krichbaum, Radar
[7] E. G. Farr, R. B. Rogers, G. R. Salo, and T. N. Truske, “Near-field bistatic RCS measurements” Rome Air Development Center, Tech. Rep., RADC-TR-89-198, Oct. 1989.
Cross Section Handbook. New York: Plenum, 1970, vol. 1. [17] S. Pivnenko, Private Communication, Oct. 2008.
Abstract—Calculation of electromagnetic cross sections from surface integral equation simulations, a popular approach in microwave studies and recently also in optics and plasmonics, requires only a single postprocessing step, which can, however, be very sensitive to the precision of the simulation result. We investigate the accuracy and robustness of two methods for cross section calculation, displaying when and why errors may occur, in certain cases even unphysical behavior. A calculation recipe which avoids unphysical results is given, ensuring convergence of all obtained cross sections. This study will help judge the accuracy of performed simulations and can prevent misinterpretation of modeling results.
Pitfalls in the Determination of Optical Cross Sections From Surface Integral Equation Simulations
Andreas M. Kern and Olivier J. F. Martin
REFERENCES
[1] A. D. Yaghjian, “An overview of near-field antenna measurements,” IEEE Trans Antenna Prop, vol. 34, no. 12, pp. 435–445, Jul. 1986.
Index Terms—Absorbing media, boundary element methods, integral equations, scattering.
I. INTRODUCTION
Integral equation (IE) methods have proved especially suitable for electromagnetic scattering calculations as they require discretization only of the scatterer and not of the surrounding space while intrinsically supplying the field distribution in the scatterer’s far field [1]–[9]. This far field information is particularly valuable when comparing simulations to experimental results. For example, the optical extinction cross section determined from a scattering simulation can be directly compared to optical transmission measurements, forming a direct link between simulation and experiment [10]. Similar approaches are taken at microwave and radio frequencies, where IE formulations are used to study radar cross section minimalization and radar absorbing materials [11]–[13]. We will see, however, that the post-processing steps used to calculate cross-sections in IE formulations can be extremely sensitive to small errors in the simulation results.
[4] T. B. Hansen, R. A. Marr, U. H. W. Lammers, T. J. Tanigawa, and R. V. McGahan, “Bistatic RCS calculations from cylindrical near-field measurements–Part I: Theory,” IEEE Trans Antenna Propag., vol. 54, no. 12, pp. 3846–3856, Dec. 2006.