双容水箱液位自动控制系统的整定-任务书
试验三双容水箱液位定值控制系统试验-化工控制工程试验中心

试验三双容水箱液位定值控制系统试验-化工控制工程试验中心过程控制系统与工程实验指导书沈阳工业大学工程学院目录实验一单容自衡水箱液位特性测试实验 (3)实验二单容液位定值控制系统实验 (6)实验三双容水箱液位定值控制系统实验 (8)实验四水箱液位串级控制系统实验 (10)实验五下水箱液位前馈-反馈控制系统实验 (12)实验一单容自衡水箱液位特性测试实验一、实验目的1.掌握单容水箱的阶跃响应的测试方法,并记录相应液位的响应曲线。
2.根据实验得到的液位阶跃响应曲线,用相关的方法确定被测对象的特征参数T 和传递函数。
二、实验设备1.THJ-2型高级过程控制系统实验装置2.计算机、MCGS 工控组态软件、RS232/485转换器1只、串口线1根3.万用表一只三、实验原理所谓单容指只有一个贮蓄容器。
自衡是指对象在扰动作用下,其平衡位置被破坏后,不需要操作人员或仪表等干预,依靠其自身重新恢复平衡的过程。
图1-1所示为单容自衡水箱特性测试结构图及方框图。
阀门F1-1、F1-2和F1-8全开,设下水箱流入量为Q1,改变电动调节阀V1的开度可以改变Q1的大小,下水箱的流出量为Q2,改变出水阀F1-11的开度可以改变Q2。
液位h 的变化反映了Q1与Q2不等而引起水箱中蓄水或泄水的过程。
若将Q1作为被控过程的输入变量,h 为其输出变量,则该被控过程的数学模型就是h 与Q1之间的数学表达式。
根据动态物料平衡关系有Q 1-Q 2=A dtdh (1-1) 将式(1-1)表示为增量形式ΔQ 1-ΔQ 2=Adt h d ? (1-2) 式中:ΔQ1,ΔQ2,Δh ——分别为偏离某一平衡状态的增量; A ——水箱截面积。
在平衡时,Q 1=Q 2,dtdh =0;当Q1发生变化时,液位h 随之变化,水箱出口处的静压也随之变化,Q2也发生变化。
由流体力学可知,流体在紊流情况下,液位h 与流量之间为非线性关系。
但为了简化起见,经线性化处理后,可近似认为Q2与h 成正比关系,而与阀F1-11的阻力R 成反比,即ΔQ 2=R h ? 或 R=2Q ??h (1-3) 式中:R —阀F1-11的阻力,称为液阻。
双容水箱液位定值控制系统实验

双容水箱液位定值控制系统实验双容水箱液位定值控制系统一、实验目的1( 通过实验,进一步了解双容对象的特性。
2( 掌握调节器参数的整定与投运方法。
3( 研究调节器相关参数的改变对系统动态性能的影响。
二、实验设备1( THJ-2型高级过程控制系统装置。
2( 计算机、上位机MCGS组态软件、RS232-485转换器1只、串口线1根3( 万用表一只三、实验原理本实验系统以中水箱与下水箱为被控对象,下水箱的液位高度为系统的被图6-1 双容液位定值控制系统结构图控制量。
基于系统的给定量是一定值,要求被控制量在稳态时等于给定量所要求的值,所以调节器的控制规律为PI或PID。
本系统的执行元件既可采用电动调节阀,也可用变频调速磁力泵。
如果采用电动调节阀作执行元件,则变频调速磁图6-2 双容液位定值控制系统方框图力泵支路中的手控阀F2-4或F2-5打开时可分别作为中水箱或下水箱的扰动。
图6-1为实验系统的结构图,图6-2为控制系统的方框图。
四、实验内容与步骤1( 图6-1所示,完成实验系统的接线。
2( 接通总电源和相关仪表的电源。
3( 打开阀F1-1、 F1-2、F1-7、F1-10和F1-11,且使F1-10的开度大于F1-11的开度。
4( 用实验四(上册)中所述的临界比例度法或4:1衰减振荡法整定调节器的相关参数。
5( 设置系统的给定值后,用手动操作调节器的输出,控制电动调节阀给中水箱打水,待中水箱液位基本稳定不变且下水箱的液位等于给定值时,把调节器切换为自动,使系统投入自动运行状态。
6( 启动计算机,运行MCGS组态软件软件,并进行下列实验:1)当系统稳定运行后,突加阶跃(给定量增加5%,15%),观察并记录系统的输出响应曲线。
2)待系统进入稳态后,启运变频器调速的磁力泵支路,分别适量改变阀F2-4或阀F2-5的开度(加扰动),观察并记录被控制量液位的变化过程。
7.通过反复多次调节PI的参数,使系统具有较满意的动态性能指标。
双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。
2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。
3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。
4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。
5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。
二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。
PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。
2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。
然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。
3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。
液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。
4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。
控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。
5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。
可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。
6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。
三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。
其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。
双容水箱液位控制系统设计

双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。
当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。
这样就可以实现水箱液位的自动控制。
第一,确定水箱的容积和设计液位。
容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。
容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。
第二,确定水位传感器的选择和安装。
水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。
选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。
安装传感器时要确保其与水箱的接触良好,避免信号干扰。
第三,确定控制器的选择和编程。
控制器是实现水位控制的核心部件,可以选择PLC、单片机等。
控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。
编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。
第四,确定水泵的选择和安装。
水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。
选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。
水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。
第五,确定报警和保护措施。
对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。
例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。
最后,测试和调试系统。
在系统设计和安装完成后,需要进行全面的测试和调试工作。
首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。
同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。
总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。
只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。
实验五、串接双容下水箱液位PID整定实验

1.4.2二阶水箱对象PID控制
实验五串接双容中水箱液位PID整定
一、实验目的
(1)熟悉单回路双容液位控制系统的组成和工作原理。
(2)熟悉用P、PI和PID控制规律时的过渡过程曲线。
(3)定性分析不同PID控制器参数对双容系统控制性能的影响。
二、实验设备
CS2000型过程控制实验装置、计算机、DCS控制系统与监控软件。
(7)改变控制规律,时间允许的情况下,对于P、PI、PID,分别得到2条合理的过渡过程曲线(对应不同参数)。注意:每当做完一次试验后,必须待系统稳定后再做另一次试验。
五、实验报告要求
(1)画出双容水箱液位控制实验系统的结构图。
(2)画出PID控制时的阶跃响应曲线,并分析微分D对系统性能的影响。
六、思考题
三、实验原理
二阶双容水箱液位PID控制方框图
上图为双容水箱液位控制系统。这也是一个单回路控制系统,它与实验四不同的是有两个水箱相串联,控制的目的是使中水箱的液位高度等于给定值所期望的高度,具有减少或消除来自系统内部或外部扰动的影响功能。显然,这种反馈控制系统的性能完全取决于控制器(DCS)的结构和参数的合理选择。由于双容水箱的数学模型是二阶的,故系统的稳定性不如单容液位控制系统。
对于阶跃输入(包括阶跃干扰),这种系统用比例(P)调节器去控制,系统有余差,且与比例度成正比。若用比例积分(PI)调节器去控制,不仅可实现无余差,而且只要调节器的参数δ和TI调节的合理,也能使系统具有良好的动态性能。比例积分微分(PID)调节器是在PI调节器的基础上再引入微分D的控制作用,从而使系统既无余差存在,阀,将CS2000 实验对象的储水箱灌满水(至最高高度)。
实验三 双容水箱液位定值控制

实验三双容液位定值控制实验原理:本实验以中水箱与下水箱串联作为被控对象,下水箱的液位高度为系统的被控制量。
要求下水箱液位稳定至给定量,将压力传感器LT3检测到的下水箱液位信号作为反馈信号,在与给定量比较后的差值通过调节器控制电动调节阀的开度,以达到控制下水箱液位的目的。
实验系统控制方框图如下所示:图3-1 双容液位定值控制系统方框图实验内容一:观察系统在PI控制参数下的动态响应曲线1、按要求设定参数,液位给定值SV=80mm,PI参数为P=20,I=60。
2、设置好系统的给定值后,用手动操作AI智能调节仪的输出,通过电动调节阀给上水箱打水,待其液位达到给定量所要求的值,且基本稳定不变时,把输出切换为自动,使系统投入自动运行状态。
其总貌图如下图所示:图3-2 双容液位定值控制系统总貌图上图曲线中所示,恒定不变的曲线线为下水箱液位的设定值,上面一条曲线为下水箱液位的的测量值,下面一条曲线为中水箱液位的测量值。
3、 观察系统在设定的控制参数下的动态响应曲线,如下图所示:图3-3 双容液位定值控制系统动态响应曲线由上图可知,其最大测量值为PV max =119.35mm ,由此可得出其最大超调量δ=(119.35-80)/80*100%,δ=50% 。
又由实时数据知:t 1=09:59:15,t 2=10:04:43则其上升时间t =t 2-t 1=328s 。
由以上可知,该双容控制系统的动态响应不如单容液位定值控制系统的动态响应,并且,在双容定值控制系统中,系统的响应还有一定的滞后,其滞后时间为T=94s 。
分析以上现象可得出以下的结论:本实验中被测对象由两个不同容积的水箱相串联组成,故称其为双容对象。
根据前一实验单容水箱液位定值控制的原理,可知双容水箱数学模型是两个单容水箱数学模型的乘积,即双容水箱的数学模型可用一个二阶惯性环节来描述:G(s)=G 1(s)G 2(s)=)1s T )(1s T (K 1s T k 1s T k 212211++=+⨯+ (3-1) 式中K =k 1k 2,为双容水箱的放大系数,T 1、T 2分别为两个水箱的时间常数。
双容水箱液位定值控制系统实验报告

双容水箱液位定值控制系统实验报告实验目的:通过搭建双容水箱液位定值控制系统,了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
实验器材:1.液位控制综合实验台2.电子积分器PID控制器3.水泵4.液位传感器5.两个水箱6.电压表和电流表实验步骤:1.将两个水箱放在实验台上,一个用作上升水箱,一个用作下降水箱。
2.将水泵安装在上升水箱中,并通过输水管连接两个水箱。
3.将液位传感器安装在上升水箱和下降水箱中,并将其连接到电子积分器PID控制器。
4.将电子积分器PID控制器连接到电源,并连接电压表和电流表来监测相应的电压和电流。
5.打开水源,使用电子积分器PID控制器调节水泵的运行方式和水泵的转速。
6.观察液位传感器的反馈信号,并根据反馈信号调整PID控制器的参数,使得液位保持在设定值附近。
7.记录不同设定值下液位的控制效果,并分析数据。
8.关闭水源,停止实验。
实验结果:根据实验数据,可以观察到双容水箱液位控制系统的控制效果。
当设定值改变时,PID控制器能够调整水泵的运行方式和水泵的转速,以使得液位保持在设定值附近。
实验结果表明,在合适的PID控制器参数设置下,液位的稳定性和控制精度较高。
实验分析:在双容水箱液位定值控制系统中,PID控制器起到了关键作用。
P项(比例项)根据液位的偏差来调节水泵的转速,I项(积分项)根据液位的积累偏差来调整水泵的运行方式,D项(微分项)根据液位的变化速度来预测液位的变化趋势。
通过PID控制器的联合作用,可以实现对液位的稳定控制。
从实验结果分析可以看出,PID控制器的参数设置非常重要。
当P参数过大或过小时,会导致液位振荡或调节速度缓慢;当I参数过大或过小时,会导致液位超调或稳态误差;当D参数过大时,系统可能产生过冲。
因此,需要根据具体的系统要求和实验条件来合理设置PID控制器的参数。
结论:通过搭建双容水箱液位定值控制系统,并对其进行实验研究,我们可以了解液位控制的基本原理和方法,掌握PID控制器在液位控制中的应用。
双容水箱液位控制系统设计课程设计任务书

重庆科技学院
课程设计任务书
设计题目:双容水箱液位控制系统设计
学生姓名
课程名称化工过程控制系统设计Fra bibliotek专业班级
自动化2009
地点
I502
起止时间
2012.12.3~2012.12.21
教研室主任:指导教师:年月日
进度
要求
1.A3000系统组成、功能、使用简介(第一周:周1)
2.对各设计项目工艺流程、工艺要求的理解;(第一周:周2)
3.控制系统流程图、控制系统框图设计(第一周:周3)
4.双容水箱对象特性测定(第一周:周4)
5.控制系统方案设计:被控量、控制量的选择;检测装置选择;执行器选择;控制器选择。(第一周:周5)
6.绘制电气连接图(用Protel绘制)(第二周:周1)
7.了解监控软件(组态)(第二周:周2)
8.控制系统运行及参数整定;.撰写设计报告(第二周:周3~周4)
9.撰写、提交设计报告(第二周:周5)
参
考
资料
A3000实验指导书
过程控制工程,邵裕森,机械工业出版社,2010.1
其他
说明
1.本表应在每次实施前一周由负责教师填写二份,院系审批后交院系办备案,一份由负责教师留用。2.若填写内容较多可另纸附后。3.一题多名学生共用的,在设计内容、参数、要求等方面应有所区别。
6.撰写设计报告
性能要求:无余差,衰减比5,最大超调30%。
设计
参数
设计报告正文至少包含以下内容:工艺及要求说明;控制系统流程图及说明;控制框图及说明;实验数据、曲线、图表等;方案设计所涉各项的选择依据(原则)及所选设备的型号、技术指标;系统电气连接图(用Protel绘制);参数整定方法、步骤及整定响应曲线(至少2条);系统控制质量说明(余差、衰减率、最大振幅、过渡时间)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计任务书
2012—2013学年第一学期
专业:测控技术与仪器学号:姓名:
课程设计名称:过程控制系统课程设计
设计题目:双容水箱液位自动控制系统的整定
完成期限:自2012 年11 月12 日至2012 年11 月23 日共2 周一、设计依据
在我国随着社会的发展,很早就实行了自动化控制。
而在我国液位控制系统也得到了广泛应用,特别是水箱液位控制还在黄河治水中得到了利用,通过液位控制系统检测黄河的水位高低,以免黄河水位过高而在不了解的情况下,给我们人民带来生命危险和财产损失。
本设计目的是使学生通过该实践环节,能对经典控制理论有较全面的了解和掌握,同时能熟悉和掌握自动控制的基本理论在过程控制中的应用,掌握过程控制系统的组成原理及分析方法,加深理解调节器参数对控制系统质量的影响,掌握过程控制系统的工程整定方法,从而增加解决实际问题的能力,并为今后的学习和工作打下良好的基础。
二、要求及主要内容
1、说明双容水箱液位自动控制系统的工作原理,并详细画出控制系统结构图,根据被控对象的工作原理进行动态特性的测取。
2、分别对双容水箱单回路和串级控制系统进行整定。
3、根据参数整定情况,检查系统性能是否满足给定指标要求。
如若不满足要求,应根据测试结果,进行适当调整,如果因系统原因不能满足的指标和要求要给出分析的结果,并最后记录相关的性能指标。
4、撰写课程设计的技术报告,应将全部分析、设计、调试的结果,进行系统的总结,分章节撰写成文。
报告中应书写工整,图表齐全,对调试结果要有分析说明。
三、途径和方法
1、熟悉双容水箱自动调节装置
2、通过动态特性试验,对双容水箱对象的模型参数进行测取。
3、对单回路控制系统调节器参数进行整定并实现要求
4、对串级控制系统参数调节器参数进行整定并实现要求;
5、完善两个控制系统的参数整定和调试
四、时间安排
1.课题讲解:2小时。
2.阅读资料:10小时。
3.撰写设计说明书:12小时。
4.修订设计说明书:6小时。
五、主要参考资料
[1] 胡寿松自动控制原理科学出版社2011
[2] 邵裕森.过程控制工程.北京:机械工业出版社2000
[3] 于海生。
微型计算机控制技术。
北京:清华大学出版社。
2004
[4] 郑阿奇。
MATLAB实用教程。
电子工业出版社。
2005
[5] 金以慧。
过程控制。
清华大学出版社。
2003
[6] 刘金琨。
先进PID控制及MA TLAB仿真。
电子工业出版社。
2004
[7] 陈桂明。
应用MATLAB建模与仿真。
科学出版社。
2001
[8] MCGS用户指南。
北京昆仑通态自动化有限公司。
2004
指导教师(签字):教研室主任(签字):
批准日期:年月日。