双容水箱液位流量串级控制系统设计
双容水箱串级控制系统设计

双容水箱串级控制系统设计设计总说明液位控制问题是工业生产过程中的一类常见问题, 例如在饮料、食品加工、溶液过滤,化工生产等多种行业的生产加工过程都需要对液位进行适当的控制。
双容水箱串级控制在工业过程控制中应用非常广泛。
在水箱水位的控制中,液体首先进人第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。
本次设计采用串级控制,可以有效调节过程动态性能,大大克服系统的容积延迟。
采用PID控制器对模型进行整定以达到理想的控制效果。
选用PLC作为现场的控制设备,用于数据采集和控制,通过组态软件对整定过程及曲线进行实时监控,直至达到主、副回路的最佳整定参数。
关键词:双容水箱,PID,串级控制,组态王,PLCOuble Let Tank Cascade Control System DesignDesign DescriptionLiquid level control problem is a kind of common industrial production process, For example in beverage, food processing, chemical production, the solution of the production process were industry needs to properly control level.Cascade double-capacity water tank in industrial process control is used widely. In the control of water tank, the advanced water tank, who first and then through the second tank, compared with a tank, due to the increased a tank, is the response time is more backward step, that is, causing the delay in volume of the process is difficult to control.This design uses cascade control, can regulate the process effectively, greatly overcome system dynamic performance of volume. Adopts PID controller in order to achieve the ideal of setting control effect to model. Choose a scene of PLC control device for data acquisition and control, Through the kingview software for setting process and the curve of the real-time monitoring, until it reaches the main circuitd and the vice loop optimal setting parameters.Key words: Double-capacity Water Tank, PID, cascade control, kingview, PLC目录1绪论 (1)1.1PLC技术 (1)1.2组态技术 (3)1.3 PID算法 (3)2设计背景 (5)2.1设计内容及原理 (5)2.2系统软硬件组成 (5)2.2.1硬件组成 (5)2.2.2软件组成 (5)3串级控制系统介绍 (6)3.1串级控制系统的定义及组成 (6)3.2串级控制系统的设计思路 (6)3.3串级控制系统的参数整定 (7)3.4串级控制系统的工业应用 (8)4西门子s7-200系列PLC介绍 (10)4.1西门子s7-200系列PLC简介 (10)4.2西门子s7-200系列PLC的组成 (10)5组态软件介绍 (12)5.1组态的基本概念 (12)5.1.1组态的含义 (12)5.1.2数据采集的方式 (12)5.1.3脚本的功能 (12)5.1.4组态软件的开放性 (13)5.1.5组态软件的可扩展性 (13)5.1.6组态软件的控制功能 (13)5.2.组态软件特点 (13)5.3系统的设计与实现 (14)6系统设计 (15)6.1对象选择及其工作原理 (15)6.2调节器的选择及其正反作用的确定 (15)6.3传感器、变送器、执行器的选择 (16)6.4系统的参数整定 (16)6.5 S7-200系列PLC的CPU模块选择 (17)6.6设备清单 (17)7 PLC设计流程 (19)7.1系统设计基本步骤 (19)7.2系统设计流程图 (19)8组态王的设计 (21)8.1组态王的制作的基本过程 (21)8.2组态王画面的制作 (23)9系统调试 (27)9.1组态软件调试 (27)9.2整体调试 (27)总结 (28)致谢 (29)附录双容水箱串级控制程序 (31)1绪论液位控制问题是工业生产过程中的一类常见问题,例如在饮料、食品加工,溶液过滤、工生产等多种行业的生产加工过程当中都需要对液位进行适当的控制。
双容水箱液位串级控制系统的设计

目录摘要 (1)Abstract: (2)1 概述 (3)1.1 过程控制介绍 (3)1.2 液位串级控制系统介绍 (4)1.3 MATLAB软件介绍 (4)1.4 MCGS组态软件介绍 (5)2 被控对象建模 (7)2.1 水箱模型分析 (7)2.2 阶跃响应曲线法建立模型 (7)3 系统控制方案设计与仿真 (13)3.1 PID控制原理 (13)3.2 系统控制方案设计 (15)3.2 控制系统仿真 (16)4 建立仪表过程控制系统 (20)4.1 过程仪表介绍 (20)4.2 仪表过程控制系统的组建 (21)4.3 仪表过程控制系统调试运行 (24)5 建立计算机过程控制系统 (26)5.1 计算机过程控制系统硬件设计 (26)5.2 MCGS软件工程组态 (28)5.3 计算机过程控制系统调试运行 (38)6 结论 (40)双容水箱液位串级控制系统的设计摘要:本论文的目的是设计双容水箱液位串级控制系统。
在设计中充分利用自动化仪表技术,计算机技术,通讯技术和自动控制技术,以实现对水箱液位的串级控制。
首先对被控对象的模型进行分析,并采用实验建模法求取模型的传递函数。
其次,根据被控对象模型和被控过程特性设计串级控制系统,采用动态仿真技术对控制系统的性能进行分析。
然后,设计并组建仪表过程控制系统,通过智能调节仪表实现对液位的串级PID控制。
最后,借助数据采集模块﹑MCGS组态软件和数字控制器,设计并组建远程计算机过程控制系统,完成控制系统实验和结果分析。
关键词:液位模型 PID控制仪表过程控制系统计算机过程控制系统1.2液位串级控制系统介绍在工业实际生产中,液位是过程控制系统的重要被控量,在石油﹑化工﹑环保﹑水处理﹑冶金等行业尤为重要。
在工业生产过程自动化中,常常需要对某些设备和容器的液位进行测量和控制。
通过液位的检测与控制,了解容器中的原料﹑半成品或成品的数量,以便调节容器内的输入输出物料的平衡,保证生产过程中各环节的物料搭配得当。
双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。
2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。
3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。
4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。
5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。
二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。
PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。
2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。
然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。
3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。
液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。
4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。
控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。
5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。
可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。
6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。
三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。
其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。
双容水箱液位控制系统设计

双容水箱液位控制系统设计首先,双容水箱液位控制系统的基本原理是根据水位信号的反馈来控制水泵的启停。
当水箱液位低于设定值时,水泵启动,开始抽水;当液位达到设定值时,水泵停止运行。
这样就可以实现水箱液位的自动控制。
第一,确定水箱的容积和设计液位。
容积和设计液位的确定需要根据实际应用情况来选择,一般要考虑水泵的流量和工作时间等因素。
容积大的水箱可以减少水泵启停的频率,但其建设和维护成本也较高。
第二,确定水位传感器的选择和安装。
水位传感器是检测水箱液位的关键部件,可以选择浮子式传感器、超声波传感器等。
选择合适的传感器需要考虑其精度、可靠性、成本和使用环境等因素。
安装传感器时要确保其与水箱的接触良好,避免信号干扰。
第三,确定控制器的选择和编程。
控制器是实现水位控制的核心部件,可以选择PLC、单片机等。
控制器的选择要考虑其处理能力、输入输出接口和编程灵活性等因素。
编程时需要设置液位设定值和控制逻辑,使得系统能够准确地控制水泵的启停。
第四,确定水泵的选择和安装。
水泵是水箱液位控制系统的关键设备,可以选择离心泵、自吸泵等。
选择合适的水泵需要考虑其流量、扬程、功率和效率等因素。
水泵的安装要确保其与水箱的连接可靠,并考虑水泵的防护和维护问题。
第五,确定报警和保护措施。
对于水箱液位控制系统,需要设置相应的报警和保护机制,以及应急措施。
例如,当水泵故障或水箱液位异常时,系统应该能够及时发出报警,并采取相应的措施避免设备损坏或事故发生。
最后,测试和调试系统。
在系统设计和安装完成后,需要进行全面的测试和调试工作。
首先测试传感器和控制器的工作是否正常,然后测试水泵的启停控制是否准确。
同时,还需要进行系统的稳定性和灵敏度测试,确保系统能够稳定运行和满足实际需求。
总之,双容水箱液位控制系统的设计需要综合考虑容积、液位传感器、控制器、水泵、报警保护和测试调试等方面的因素。
只有设计合理并正确配置这些部件,才能实现高效、稳定的液位控制。
双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计
在双容水箱液位串级控制系统中,通常有两个水箱,分别称为主水箱
和副水箱。
主水箱通常是较大的水箱,副水箱是较小的水箱。
系统的目标
是保持主水箱和副水箱的液位稳定在设定值附近。
系统的控制过程可以分为以下几个步骤:
1.流程测量:系统通过测量主水箱和副水箱的液位,获取当前的液位
信号。
2.控制计算:根据测量值和设定值,计算需要调节的阀门开度。
3.阀门控制:根据计算结果,控制阀门的开度,调节水的流入和流出
速度,以实现液位的控制。
4.反馈调整:根据阀门控制后的效果,不断调整阀门开度,使液位稳
定在设定值附近。
在实际的设计中,双容水箱液位串级控制系统通常采用PID控制器来
实现。
PID控制器包括比例(P)、积分(I)和微分(D)三个部分。
比
例部分根据偏差的大小进行调整,积分部分根据偏差的持续时间进行调整,微分部分根据偏差的变化速率进行调整。
通过不断调整PID参数,实现系
统的稳定性和响应速度的平衡。
另外,在实际的设计中,还需要考虑到系统的动态响应、稳定性、静
差和抗干扰性等因素。
可以采用仿真软件进行系统的建模和分析,优化系
统的设计参数。
总之,双容水箱液位串级控制系统作为一种常见的控制系统,在工业、农业和民用领域有着广泛的应用。
通过合理设计和调节控制参数,可以实
现液位的稳定控制,提高系统的稳定性和安全性。
同时,与实际的实验和仿真相结合,可以进一步优化系统的设计和控制策略。
双容水箱液位串级控制系统设计

双容水箱液位串级控制系统设计
设计一个双容水箱液位串级控制系统需要考虑以下几个方面:水箱容量、水泵的流量、液位传感器的安装位置以及液位控制算法的选择。
首先,需要确定主水箱和辅助水箱的容量。
容量的选择应该根据实际
需求和使用场景来决定。
主水箱通常较大,以保证在较长时间内可以提供
稳定的水源。
辅助水箱的容量通常较小,主要用于补充主水箱的水源。
其次,确定水泵的流量。
水泵的流量应该能够满足系统的需求。
水泵
的选择应该考虑到系统的最大需求量以及水泵的工作效率等因素。
然后,需要确定液位传感器的安装位置。
液位传感器通常安装在水箱内,并通过传感器来检测水位的变化。
液位传感器的选择应该考虑到传感
器的精度、可靠性以及适应环境的能力。
最后,需要选择合适的液位控制算法。
常用的液位控制算法包括比例
控制、PID控制等。
液位控制算法的选择应该根据系统的需求、控制精度
以及系统的动态特性来决定。
在系统的实现过程中,还需要考虑到管道的设计、水泵的控制与保护、液位反馈的处理以及系统的安全性等方面。
总之,双容水箱液位串级控制系统的设计需要综合考虑水箱容量、水
泵流量、液位传感器安装位置以及液位控制算法的选择。
通过合理设计和
配置,可以实现水箱液位的稳定控制,满足实际需求。
双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。
试设计串级控制系统以维持下水箱液位的恒定。
1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。
要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。
4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。
对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。
在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。
双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计引言:双容水箱液位流量串级控制系统是一种用于控制液位和流量的自动化系统。
该系统通过对水泵和阀门的控制,实现对水箱液位和流量的精确调节。
在工业生产中,液位和流量的稳定控制对于保证生产过程的正常运行至关重要。
因此,设计一个可靠的双容水箱液位流量串级控制系统具有重要的实际意义。
系统设计:1.系统硬件组成-水泵:负责将水从源头输送至水箱中。
-水箱:承装和储存水,通过液位传感器测量液位。
-液位传感器:用于测量水箱液位,将测量结果传输给控制器。
-流量传感器:用于测量水流量,将测量结果传输给控制器。
-控制阀:通过控制水流量来调节水箱液位。
-控制器:根据液位和流量传感器的反馈信号,控制水泵和控制阀的启停和开关。
2.系统工作原理双容水箱液位流量串级控制系统的工作原理是通过液位和流量传感器实时监测水箱液位和水流量的变化,并将测量结果传输给控制器。
控制器根据设定的目标液位和流量值,计算出所需的水泵和控制阀的工作状态。
当实际液位或流量低于目标值时,控制器启动水泵和控制阀以增加水流量,从而提高液位;反之,当实际液位或流量高于目标值时,控制器关闭水泵和控制阀以减少水流量,以降低液位。
3.系统控制策略双容水箱液位流量串级控制系统的控制策略可以采用PID控制器。
PID控制器是一种常用的控制算法,它通过对比实际测量值和目标值,计算出一个控制量,然后对被控对象进行控制。
其算法由比例(P)、积分(I)和微分(D)三个部分组成,可以有效地控制系统稳定性和响应速度。
在双容水箱液位流量串级控制系统中,可以将液位作为主要控制量,流量作为辅助控制量。
首先,通过对液位传感器和流量传感器的测量值进行PID控制,控制水泵的启动和停止,以满足目标液位和流量的要求。
接下来,根据控制阀的反馈信号,通过控制阀的开关来实现对水箱液位的精确调节。
4.系统安全性和可靠性双容水箱液位流量串级控制系统设计中,应考虑系统的安全性和可靠性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:双容水箱液位流量串级控制系统设计1.设计任务
如图1所示的两个大容量水箱。
要求水箱2水位稳定在一定高度,水流量经常波动,作为扰动量存在。
试针对该双容水箱系统设计一个液位流量串级控制方案。
水箱2
图1 系统示意图
2.设计要求
1)已知主被控对象(水箱2水位)传递函数W1=1/(100s+1), 副被控对象(流量)传递函数W2=1/(10s+1)。
2)假设液位传感器传递函数为Gm1=1/(0.1s+1),针对该水箱工作过程设计单回路PID调节器,要求画出控制系统方框图及实施方案图,并给出PID参数整定的方法与结果;
3)假设流量传感器传递函数为Gm2=1/(0.1s+1),针对该水箱工作过程设计液位/流量串级控制系统,要求画出控制系统方框图及实施方案图,并给出主、副控制器的结构、参数整定方法及结果;
4)在进口水管流量出现阶跃扰动的情况下,分别对单回路PID控制与串级控制进行仿真试验结果比较,并说明原因。
3. 设计任务分析
(1)液位控制系统是以改变进水大小作为控制手段,目的是控制下水箱液位处于一个稳定值。
(2)单回路控制系统:对于此系统,若采用单回路控制系统控制液位,以液
位主控制信号反馈到控制器PID,直接去控制进水阀门开度,在无扰动情况下可以采用,但对于有扰动情况,由于控制过程的延迟,会导致控制不及时,造成超调量变大,稳定性下降,控制系统很难获得满意效果
(3)串级控制系统采用两套回路,其中内回路起粗调作用,外回路用来完成细调作用。
对液位控制系统,内回路以流量作为前导信号控制进水阀开度,在有扰动情况下可以提早反应消除扰动引起的波动,从而使主控对象不受干扰,另外内回路的给定值受外回路控制器的影响,根据改变更改给定值,从而保证负荷扰动时,仍能使系统满足要求
1
()T s G
2()T s G --主副控制器的传递函数 ()u s G --控制阀的传递函数
()z s G --执行器的传递函数 1
2()()m m s s G
G --主副变送器传递函数
01
()s G
02()s G --主副对象的传递函数
4.单回路PID 控制的设计
(1)无干扰下的单回路PID 仿真方框图
PID整定与仿真曲线,采用衰减曲线法,整定依据是纯比例下的实验数据,取衰减比为4:1。
设置积分时间Ti=∞,微风时间Td=0,改变比例带δ,找出最佳整定曲线,根据经验公式求出δ,Ti,Td的数值
衰减曲线法整定计算公式(4:1情况下)
调节规律比例度δ(%) 积分时间T i(min) 微分时间T d(min)
P δS
PI 1.2δS0.5T S
PID 0.8δS0.3T S0.1T S
Kp=33时,衰减比接近9:1 不符合
Kp=38时衰减比接近8:1,不符
Kp=42时衰减比接近6:1,不符
Kp=44时衰减比接近4:1符合。
测得Ts=30s ,δ=44*5/4=55,Ti=0.3Ts=9s,Td=0.1Ts=3s
(2)干扰下的单回路PID仿真方框图
Kp=38时曲线不稳定
Kp=42时曲线不稳定
Kp=42时曲线不稳定
单回路系统分析:在单回路中,无干扰情况下系统可以趋于稳定,但当加入干扰后,由仿真曲线可知,系统很难稳定,出现了小幅震荡过程。
由此考虑串级控制。
5.串级控制的设计
(1)无干扰下的串级控制仿真方框图
在串级控制系统中,主回路是定值控制系统,为了主变量的稳定通常采用PI 控制器,而副控制器是随动系统,采用P 控制器就可以满足要求。
在调整过程中采用一步法即可
无干扰下仿真曲线
Kt1=44,Ti =10,Td=2,Kt2=2
Kt1=44,Ti =10,Td=2,Kt2=4
与单闭环比较可知,串级控制操作周期可以缩短,过渡时间也相对缩短了,而且系统更加稳定
(2)干扰下的串级控制仿真方框图干扰下仿真曲线
Kt1=44,Ti =10,Td=2,Kt2=1.3
Kt1=44,Ti =10,Td=2,Kt2=2
Kt1=44,Ti =10,Td=2,Kt2=4
Kt1=47,Ti =10,Td=2,Kt2=2
Kt1=50,Ti =10,Td=2,Kt2=2
串级系统分析:比较上面的曲线,当加大Kt2时,调节时间缩短,控制作用更加
及时响应速度更快,当加大Kt1时,系统超调量加大。
6.单回路和串级对流量扰动抑制作用比较
根据单回路与串级控制的曲线相比,可以得出串级控制操作周期短,过渡时间小,控制品质更加良好,对流量带来的扰动抑制作用更加及时有效,系统稳定性更高,抗干扰能力更强,最大偏差更小
7.设计总结
通过这次课程设计,让我学到了许多知识,例如系统建模的一般步骤,掌握了分析简单系统特性的一般方法,并对系统中的控制器、执行器、控制对象等各个部分有了更加直观的认识,巩固了课本上的很多内容,使得在课程学习的过程中一些相关的掌握不全面的知识有了进一步的了解,对于相关的公式和方法有了更新的理解和认识。
此次的设计,基本掌握了简单系统模型的PID参数整定方法和串级控制的整定,对PID调节器中的P、I、D各个参数的功能、特性有了更加深刻的认识,通过实验验证的方式仿真过程中也熟悉了控制系统中MATLAB仿真的基本方法。
另外这次设计使我对串级控制系统的特点以及其在工业过程上的广泛的应用优势也有了更加深刻的认识。
单回路控制用在被控量不经常波动的情况下,而串级控制恰好相反。
PID整定的关键是选取Kp,Ti 及TD,参数的选择对系统稳态和动态性能有很大的影响。
另外,对PID整定中衰减曲线法,我能够很熟练进行运用。
另一方面也加强了我的实际动手能力。
对过程控制在生产实际中的运用,我也有了一定的了解。
虽然在设计中我遇到了很多问题,但通过自己的努力我成功的完成了此次设计,这次设计让我受益匪浅,在以后的学习中,我会继续加强自己实际动手能力。