双容水箱液位串级控制系统课程设计

合集下载

双容水箱串级控制系统设计

双容水箱串级控制系统设计

双容水箱串级控制系统设计设计总说明液位控制问题是工业生产过程中的一类常见问题, 例如在饮料、食品加工、溶液过滤,化工生产等多种行业的生产加工过程都需要对液位进行适当的控制。

双容水箱串级控制在工业过程控制中应用非常广泛。

在水箱水位的控制中,液体首先进人第一个水箱,然后通过第二个水箱流出,与一个水箱相比,由于增加了一个水箱,使得被控量的响应在时间上更落后一步,即存在容积延迟,从而导致该过程的难以控制。

本次设计采用串级控制,可以有效调节过程动态性能,大大克服系统的容积延迟。

采用PID控制器对模型进行整定以达到理想的控制效果。

选用PLC作为现场的控制设备,用于数据采集和控制,通过组态软件对整定过程及曲线进行实时监控,直至达到主、副回路的最佳整定参数。

关键词:双容水箱,PID,串级控制,组态王,PLCOuble Let Tank Cascade Control System DesignDesign DescriptionLiquid level control problem is a kind of common industrial production process, For example in beverage, food processing, chemical production, the solution of the production process were industry needs to properly control level.Cascade double-capacity water tank in industrial process control is used widely. In the control of water tank, the advanced water tank, who first and then through the second tank, compared with a tank, due to the increased a tank, is the response time is more backward step, that is, causing the delay in volume of the process is difficult to control.This design uses cascade control, can regulate the process effectively, greatly overcome system dynamic performance of volume. Adopts PID controller in order to achieve the ideal of setting control effect to model. Choose a scene of PLC control device for data acquisition and control, Through the kingview software for setting process and the curve of the real-time monitoring, until it reaches the main circuitd and the vice loop optimal setting parameters.Key words: Double-capacity Water Tank, PID, cascade control, kingview, PLC目录1绪论 (1)1.1PLC技术 (1)1.2组态技术 (3)1.3 PID算法 (3)2设计背景 (5)2.1设计内容及原理 (5)2.2系统软硬件组成 (5)2.2.1硬件组成 (5)2.2.2软件组成 (5)3串级控制系统介绍 (6)3.1串级控制系统的定义及组成 (6)3.2串级控制系统的设计思路 (6)3.3串级控制系统的参数整定 (7)3.4串级控制系统的工业应用 (8)4西门子s7-200系列PLC介绍 (10)4.1西门子s7-200系列PLC简介 (10)4.2西门子s7-200系列PLC的组成 (10)5组态软件介绍 (12)5.1组态的基本概念 (12)5.1.1组态的含义 (12)5.1.2数据采集的方式 (12)5.1.3脚本的功能 (12)5.1.4组态软件的开放性 (13)5.1.5组态软件的可扩展性 (13)5.1.6组态软件的控制功能 (13)5.2.组态软件特点 (13)5.3系统的设计与实现 (14)6系统设计 (15)6.1对象选择及其工作原理 (15)6.2调节器的选择及其正反作用的确定 (15)6.3传感器、变送器、执行器的选择 (16)6.4系统的参数整定 (16)6.5 S7-200系列PLC的CPU模块选择 (17)6.6设备清单 (17)7 PLC设计流程 (19)7.1系统设计基本步骤 (19)7.2系统设计流程图 (19)8组态王的设计 (21)8.1组态王的制作的基本过程 (21)8.2组态王画面的制作 (23)9系统调试 (27)9.1组态软件调试 (27)9.2整体调试 (27)总结 (28)致谢 (29)附录双容水箱串级控制程序 (31)1绪论液位控制问题是工业生产过程中的一类常见问题,例如在饮料、食品加工,溶液过滤、工生产等多种行业的生产加工过程当中都需要对液位进行适当的控制。

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计

双容水箱液位流量串级控制系统设计一、系统结构1.水箱:系统中最重要的元件之一,用于存储和供应水资源。

2.控制阀:用于调节水箱出口的流量,根据传感器检测到的液位信号来控制阀门的开度。

3.液位传感器:用于检测水箱内部的液位变化,并将其转换为电信号供控制系统使用。

4.流量传感器:用于检测水箱出口的流量,并将其转换为电信号供控制系统使用。

5.控制器:整个系统的核心部分,根据传感器采集到的液位和流量信号,通过控制阀门的开度来调节水箱的液位和流量。

二、系统设计1.控制策略的选择:双容水箱液位流量串级控制系统的控制策略一般选择PID控制算法。

PID控制器可根据传感器采集到的控制量和设定值之间的误差来调节阀门的开度,实现液位和流量的闭环控制。

2.系统参数的确定:首先需要确定水箱的容积和液位范围,以便合理地选择传感器的量程。

然后需要根据水箱的工作条件和流量要求来确定控制阀的参数,如最大流量、最小可调节流量等。

3.传感器的选择与安装:根据系统的要求和工作环境的特点,选择适合的液位传感器和流量传感器,并将其正确安装在水箱中。

液位传感器一般安装在水箱的顶部,流量传感器安装在水箱的出口处。

4.控制器的设计与配置:根据系统需求和控制策略的选择,选择适合的PID控制器,并按照系统参数进行配置。

控制器应具备良好的控制性能和稳定性,能够根据传感器采集到的信号及时调节阀门的开度。

5.控制策略的调整与优化:系统设计完成后,需要通过实际的试验和调整来优化控制策略,提高系统的控制性能。

可以通过调整PID控制器的参数来实现系统的稳定运行和准确控制。

6.故障检测与保护措施:在设计系统时,应考虑到可能发生的故障,如传感器故障、控制阀失效等,并设计相应的故障检测和保护措施,以确保系统的安全可靠运行。

三、系统应用总结:双容水箱液位流量串级控制系统是一种重要的控制系统,在工业生产中起到关键作用。

其设计需要根据实际需求和系统参数进行合理设置,并通过优化控制策略来实现系统的稳定运行和优质控制效果。

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计
在双容水箱液位串级控制系统中,通常有两个水箱,分别称为主水箱
和副水箱。

主水箱通常是较大的水箱,副水箱是较小的水箱。

系统的目标
是保持主水箱和副水箱的液位稳定在设定值附近。

系统的控制过程可以分为以下几个步骤:
1.流程测量:系统通过测量主水箱和副水箱的液位,获取当前的液位
信号。

2.控制计算:根据测量值和设定值,计算需要调节的阀门开度。

3.阀门控制:根据计算结果,控制阀门的开度,调节水的流入和流出
速度,以实现液位的控制。

4.反馈调整:根据阀门控制后的效果,不断调整阀门开度,使液位稳
定在设定值附近。

在实际的设计中,双容水箱液位串级控制系统通常采用PID控制器来
实现。

PID控制器包括比例(P)、积分(I)和微分(D)三个部分。


例部分根据偏差的大小进行调整,积分部分根据偏差的持续时间进行调整,微分部分根据偏差的变化速率进行调整。

通过不断调整PID参数,实现系
统的稳定性和响应速度的平衡。

另外,在实际的设计中,还需要考虑到系统的动态响应、稳定性、静
差和抗干扰性等因素。

可以采用仿真软件进行系统的建模和分析,优化系
统的设计参数。

总之,双容水箱液位串级控制系统作为一种常见的控制系统,在工业、农业和民用领域有着广泛的应用。

通过合理设计和调节控制参数,可以实
现液位的稳定控制,提高系统的稳定性和安全性。

同时,与实际的实验和仿真相结合,可以进一步优化系统的设计和控制策略。

双容水箱液位串级控制系统设计

双容水箱液位串级控制系统设计

双容水箱液位串级控制系统设计
设计一个双容水箱液位串级控制系统需要考虑以下几个方面:水箱容量、水泵的流量、液位传感器的安装位置以及液位控制算法的选择。

首先,需要确定主水箱和辅助水箱的容量。

容量的选择应该根据实际
需求和使用场景来决定。

主水箱通常较大,以保证在较长时间内可以提供
稳定的水源。

辅助水箱的容量通常较小,主要用于补充主水箱的水源。

其次,确定水泵的流量。

水泵的流量应该能够满足系统的需求。

水泵
的选择应该考虑到系统的最大需求量以及水泵的工作效率等因素。

然后,需要确定液位传感器的安装位置。

液位传感器通常安装在水箱内,并通过传感器来检测水位的变化。

液位传感器的选择应该考虑到传感
器的精度、可靠性以及适应环境的能力。

最后,需要选择合适的液位控制算法。

常用的液位控制算法包括比例
控制、PID控制等。

液位控制算法的选择应该根据系统的需求、控制精度
以及系统的动态特性来决定。

在系统的实现过程中,还需要考虑到管道的设计、水泵的控制与保护、液位反馈的处理以及系统的安全性等方面。

总之,双容水箱液位串级控制系统的设计需要综合考虑水箱容量、水
泵流量、液位传感器安装位置以及液位控制算法的选择。

通过合理设计和
配置,可以实现水箱液位的稳定控制,满足实际需求。

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计

双容水箱液位串级控制系统_毕业设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计串级控制系统以维持下水箱液位的恒定。

1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。

要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性: 111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。

双容水箱液位串级控制系统课程设计教学总结

双容水箱液位串级控制系统课程设计教学总结

双容水箱液位串级控制系统课程设计双容水箱液位串级控制系统课程设计1. 设计题目双容水箱液位串级控制系统设计2. 设计任务图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计串级控制系统以维持下水箱液位的恒定。

1图1 双容水箱液位控制系统示意图3. 设计要求1) 已知上下水箱的传递函数分别为:111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+。

要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

4.设计任务分析系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

在该液位控制系统中,建模参数如下:控制量:水流量Q ;被控量:下水箱液位;控制对象特性:111()2()()51p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆===∆∆+(下水箱传递函数)。

双容水箱液位控制系统设计课程设计任务书

双容水箱液位控制系统设计课程设计任务书
水箱液位控制系统水箱液位器水箱液位控制器课程设计任务书图书管理系统任务书水箱液位控制水箱液位计课程设计任务书模板plc课程设计任务书液位控制系统
重庆科技学院
课程设计任务书
设计题目:双容水箱液位控制系统设计
学生姓名
课程名称化工过程控制系统设计Fra bibliotek专业班级
自动化2009
地点
I502
起止时间
2012.12.3~2012.12.21
教研室主任:指导教师:年月日
进度
要求
1.A3000系统组成、功能、使用简介(第一周:周1)
2.对各设计项目工艺流程、工艺要求的理解;(第一周:周2)
3.控制系统流程图、控制系统框图设计(第一周:周3)
4.双容水箱对象特性测定(第一周:周4)
5.控制系统方案设计:被控量、控制量的选择;检测装置选择;执行器选择;控制器选择。(第一周:周5)
6.绘制电气连接图(用Protel绘制)(第二周:周1)
7.了解监控软件(组态)(第二周:周2)
8.控制系统运行及参数整定;.撰写设计报告(第二周:周3~周4)
9.撰写、提交设计报告(第二周:周5)


资料
A3000实验指导书
过程控制工程,邵裕森,机械工业出版社,2010.1
其他
说明
1.本表应在每次实施前一周由负责教师填写二份,院系审批后交院系办备案,一份由负责教师留用。2.若填写内容较多可另纸附后。3.一题多名学生共用的,在设计内容、参数、要求等方面应有所区别。
6.撰写设计报告
性能要求:无余差,衰减比5,最大超调30%。
设计
参数
设计报告正文至少包含以下内容:工艺及要求说明;控制系统流程图及说明;控制框图及说明;实验数据、曲线、图表等;方案设计所涉各项的选择依据(原则)及所选设备的型号、技术指标;系统电气连接图(用Protel绘制);参数整定方法、步骤及整定响应曲线(至少2条);系统控制质量说明(余差、衰减率、最大振幅、过渡时间)

DCS课程设计水箱液位串级控制解析

DCS课程设计水箱液位串级控制解析

目录1 题目背景与意义 01.1 题目背景 01.2 课题意义 02 设计题目简介 (1)2.1设计内容和规定 (1)2.2 集散控制系统基本构成 (1)2.3 设计原理及分析 (4)3 系统设计方案 (7)3.1双容水箱控制 (8)3.2串级控制 (8)4 系统硬件设计 (10)4.1数据采集模块 (10)4.1.1 模拟量输入模块 (10)4.1.2 模拟量输出模块 (11)4.2仪表和执行机构选型 (13)4.3系统连线 (13)4.3.1 模拟量输入模块FM148A接线 (13)4.3.2模拟量输出模块FM151A接线 (14)5 系统软件设计 (15)5.1组态画面旳设计 (13)5.2通讯设置 (15)6 系统仿真调试 (17)7 结论 (16)参照文献........................................... 错误!未定义书签。

71 题目背景与意义1.1 题目背景集散控制系统(Distributed control system), 是以多种微处理机为基础运用现代网络技术、现代控制技术、图形显示技术和冗余技术等实现对分散控制对象旳调整、监视管理旳控制技术。

其特点是以分散旳控制适应分散旳控制对象, 以集中旳监视和操作到达掌握全局旳目旳。

系统具有较高旳稳定性、可靠性和可扩展性。

该系统将若干台微机分散应用于过程控制, 所有信息通过通信网络由上位管理计算机监控, 实现最优化控制, 整个装置继承了常规仪表分散控制和计算机集中控制旳长处, 克服了常规仪表功能单一, 人-机联络差以及单台微型计算机控制系统危险性高度集中旳缺陷, 既实现了在管理、操作和显示三方面集中, 又实现了在功能、负荷和危险性三方面旳分散。

DCS系统在现代化生产过程控制中起着重要旳作用。

伴随工业自动化水平旳不停提高, 计算机旳广泛运用, 人们对工业自动化旳规定也越来越高。

而DCS又有延续性和可扩充性, 易学易用性和通用性, 使得DCS得到长足旳发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

双容水箱液位串级控制系统课程设计
1. 设计题目
双容水箱液位串级控制系统设计
2. 设计任务
图1所示双容水箱液位系统,由水泵1、2分别通过支路1、2向上水箱注水,在支路一中设置调节阀,为保持下水箱液位恒定,支路二则通过变频器对下水箱液位施加干扰。

试设计串级控制系统以维持下水箱液位的恒定。

1
图1 双容水箱液位控制系统示意图
3. 设计要求
1) 已知上下水箱的传递函数分别为:
111()2()()51p H s G s U s s ∆==∆+,22221()()1()()()201
p H s H s G s Q s H s s ∆∆===∆∆+。

要求画出双容水箱液位系统方框图,并分别对系统在有、无干扰作用下的动态过程进行仿真(假设干扰为在系统单位阶跃给定下投运10s 后施加的均值为0、方差为0.01的白噪声);
2) 针对双容水箱液位系统设计单回路控制,要求画出控制系统方框图,并分别对控制系统在有、无干扰作用下的动态过程进行仿真,其中PID 参数的整定要求写出整定的依据(选择何种整定方法,P 、I 、D 各参数整定的依据如何),对仿真结果进行评述;
3) 针对该受扰的液位系统设计串级控制方案,要求画出控制系统方框图及实施方案图,对控制系统的动态过程进行仿真,并对仿真结果进行评述。

4.设计任务分析
系统建模基本方法有机理法建模和测试法建模两种,机理法建模主要用于生产过程的机理已经被人们充分掌握,并且可以比较确切的加以数学描述的情况;测试法建模是根据工业过程的实际情况对其输入输出进行某些数学处理得到,测试法建模一般较机理法建模简单,特别是在一些高阶的工业生产对象。

对于本设计而言,由于双容水箱的数学模型已知,故采用机理建模法。

在该液位控制系统中,建模参数如下:
控制量:水流量Q ;
被控量:下水箱液位;
控制对象特性: 111()
2()()51
p H s G s U s s ∆==∆+(上水箱传递函数); 22221()()1()()()201p H s H s G s Q s H s s ∆∆=
==∆∆+(下水箱传递函数)。

控制器:PID ;
执行器:控制阀;
干扰信号:在系统单位阶跃给定下运行10s 后,施加均值为0、方差为0.01的白噪声 为保持下水箱液位的稳定,设计中采用闭环系统,将下水箱液位信号经水位检测器送至控制器(PID ),控制器将实际水位与设定值相比较,产生输出信号作用于执行器(控制阀),从而改变流量调节水位。

当对象是单水箱时,通过不断调整PID 参数,单闭环控制系统理论上可以达到比较好的效果,系统也将有较好的抗干扰能力。

该设计对象属于双水箱系统,整个对象控制通道相对较长,如果采用单闭环控制系统,当上水箱有干扰时,此干扰经过控制通路传递到下水箱,会有很大的延迟,进而使控制器响应滞后,影响控制效果,在实际生产中,如果干扰频繁出现,无论如何调整PID 参数,都将无法得到满意的效果。

考虑到串级控制可以使某些主要干扰提前被发现,及早控制,在内环引入负反馈,检测上水箱液位,将液位信号送至副控制器,然后直接作用于控制阀,以此得到较好的控制效果。

设计中,首先进行单回路闭环系统的建模,系统框图如下:
可发现,在无干扰情况下,整定主控制器的PID 参数,整定好参数后,分别改变P 、I 、D 参数,观察各参数的变化对系统性能的影响;然后加入干扰(白噪声),比较有无干扰两
种情况下系统稳定性的变化。

然后,加入前馈控制,在有干扰的情况下,比较单回路控制、前馈-反馈控制系统性能的变化,前馈-反馈控制系统框图如下:
系统实施方案图如下:
5.设计内容
1)单回路PID控制的设计
MATLAB仿真框图如下(无干扰):
01
先对控制对象进行PID参数整定,这里采用衰减曲线法,衰减比为10:1。

A.将积分时间Ti调为最大值,即MA TLAB中I参数为0,微分时间常数TD调为零,比
例带δ为较大值,即MA TLAB中K为较小值。

B.待系统稳定后,做阶跃响应,系统衰减比为10:1时,阶跃响应如下图:
参数:K1=9.8,Ti=无穷大,TD=0
经观测,此时衰减比近似10:1,周期Ts=14s,K=9.8
C.根据衰减曲线法整定计算公式,得到PID参数:K1=9.8*5/4=12.25,取12;Ti=1.2Ts=16.8s (注:MA TLAB中I=1/Ti=0.06);TD=0.4Ts=5.6s.
使用以上PID整定参数得到阶跃响应曲线如下:
参数:K1=12,Ti=16.8,TD=5.6
观察以上曲线可以初步看出,经参数整定后,系统的性能有了很大的改善。

现用控制变量法,分别改变P、I、D参数,观察系统性能的变化,研究各调节器的作用。

A.保持I、D参数为定值,改变P参数,阶跃响应曲线如下:
参数:K1=16,Ti=16.8,TD=5.6
参数:K1=20,Ti=16.8,TD=5.6
比较不同P参数值下系统阶跃响应曲线可知,随着K的增大,最大动态偏差增大,余差减小,衰减率减小,振荡频率增大。

B.保持P、D参数为定值,改变I参数,阶跃响应曲线如下:
参数:K1=12,Ti=10,TD=5.6
参数:K1=12,Ti=1,TD=5.6
比较不同I参数值下系统阶跃响应曲线可知,有I调节则无余差,而且随着Ti的减小,最大动态偏差增大,衰减率减小,振荡频率增大。

C.保持P、I参数为定值,改变D参数,阶跃响应曲线如下:
参数:K1=12,Ti=16.8,TD=8.6
参数:K1=12,Ti=16.8,TD=11.6
比较不同D参数值下系统阶跃响应曲线可知,而且随着D参数的增大,最大动态偏差减小,衰减率增大,振荡频率增大。

现向控制系统中加入干扰,以检测系统的抗干扰能力,系统的仿真框图如下:
阶跃响应曲线如下:
参数:K1=12,Ti=16.8,TD=5.6
观察以上曲线,并与无干扰时的系统框图比较可知,系统稳定性下降较大,在干扰作用时,很难稳定下来,出现了长时间的小幅震荡,由此可见,单回路控制系统,在有干扰的情况下,很难保持系统的稳定性能,考虑串级控制。

2)串级控制系统的设计
系统的MA TLAB仿真框图如下(有噪声):
当无噪声时,系统的阶跃响应如下图所示:
参数:K1=12,Ti=16.8,TD=5.6,K2=0.3
比较单回路控制系统无干扰阶跃响应可知,串级控制降低了最大偏差,减小了振荡频率,大大缩短了调节时间。

现向系统中加入噪声,观察不同P条件下的系统阶跃响应曲线:
参数:K1=12,Ti=16.8,TD=5.6,K2=0.5
参数:K1=12,Ti=16.8,TD=5.6,K2=1.0
参数:K1=12,Ti=16.8,TD=5.6,K2=1.5
观察以上曲线可知,当副回路控制器,调节时间都有所缩短,系统快速性增强了,在干扰作用下,当增益相同时,系统稳定性更高,提高了系统的抗干扰能力,最大偏差更小。

可以取得令人满意的控制效果。

6.设计总结
1)通过本次设计,学会了系统建模的一般步骤,掌握了分析简单系统特性的一般方法,并对系统中的控制器、执行器、控制对象等各个部分有了更加直观的认识。

2)基本掌握了简单系统模型的PID参数整定方法,对PID调节器中的P、I、D各个参数的功能、特性有了更加深刻的认识,通过实验验证的方式,很多内容印象非常深刻。

3)通过仿真验证了串级控制对干扰的强烈抑制能力,仿真过程中也熟悉了控制系统中MATLAB仿真的基本方法,相信对以后的学习会有所帮助。

4)从设计内容来讲,或许学习的是仅仅过程控制,学习的仅仅是MA TLAB的操作,但设计过程中,从设计思想,到研究方法,再到结论总结都培养了自己的学习研究能力,这也许更重要。

在以后的学习生活中我将继续努力,争取更大的进步。

相关文档
最新文档