触摸IC在应用上的技术解决办法
浅谈电容触摸技术的各类解决方案

浅谈电容触摸技术的各类解决方案摘要:各类家电的操作器普遍采用触摸按键的方式对设备进行控制,在抗干扰以及响应速度上有不错的表现,结构上不易损坏,而且也有整体性的外观亮点。
其中电容式触摸按键响应快被广泛使用,本文针对电容触摸方式探讨了各公司提出和设计的电容触摸按键解决方案以及设计所需注意事项。
关键词:电容;触摸按键;Brief discussion on various solutions of capacitive touch technology(TCL Air Conditioner(ZhongShan)Co.,Ltd, 528400)Abstract:The operators of all kinds of household appliances generally use touch keys to control the equipment, in the anti-interference and response speed has a good performance, the structure is not easy to damage, but also has the overall appearance of bright spots. Capacitive touch key response is widely used. This paper discusses the capacitive touch key solutions proposed and designed by various companies and the matters needing attention in design.Key words: capacitance; Touch key;引言电容传感器可以解决许多不同类型的传感和测量问题。
它们能够被集成到一个印刷电路板或一个微芯片中,并且具有非常优秀的精确性,对温度良好的稳定性,以及很少的耗电量。
触摸灯触摸开关芯片解决方案

触摸灯、触摸开关芯片解决方案一、触摸开关的原理:触摸开关的原理是当手指接触或接近到触摸开关的感应部位时,触摸开关将会根据手指接触的不同距离输出幅值不同的电压信号,根据触摸开关输出的不同电压信号来控制其他电路的工作状态。
二、触摸开关的优点:触摸开关没有金属触点,不放电不打火,大量的节约铜合金材料,同时对于机械结构的要求大大减少。
它直接取代传统开关,操作舒适、手感极佳、控制精准且没有机械磨损。
三、触摸开关芯片简介:触摸及接近感应开关,其用途是替代传统的机械型开关。
系列芯片采用CMOS工艺制造,结构简单,性能稳定,可用于玻璃、陶瓷、塑料等介质表面,防止普通开关产品过久使用后容易出现的机械性故障,并帮助设计时造型更方便,产品外观更美观,使用时人体感觉更舒适、轻便。
系列芯片通过引脚可配置成多种模式,可广泛应用于灯光控制、玩具、家用电器等产品。
四、触摸开关芯片可调设置:1、可选择快速和省电(低功耗)模式:低功耗模式下触摸检测响应时间将变长。
2、可设计多种输出模式:1)输出高电平有效2)输出低电平有效3、可设置采样时间,通常为1.5ms或3ms4、感应灵敏度可通过外围电容调节5、可选择保持模式和同步模式:选择同步模式,此时PIN脚OUT及ODO的状态与触摸响应同步:只有检测到触摸时有输出响应;当触摸消失时,OUT及ODO的状态恢复为初始状态。
选择保持模式,此时PIN脚OUT及ODO的状态受在触摸响应控制下保持,当触摸消失后仍保持为响应状态;再次触摸并响应后恢复为初始状态,如下图所示。
<同步模式示意图><保持模式示意图> 注:Td1为TOUCH响应延迟时间,Td2为TOUCH撤销延迟。
五、单键触摸开关芯片简单应用示意图:<单键应用电路示意图>PCB供应参考说明:.1 Cj指调节灵敏度的电容,电容值大小0pF~75pF。
.2 VDD与GND间需并联滤波电容C0以消除噪声,建议值10uF或更大。
ST08B触摸芯片应用要点

触摸芯片应用的要点感应系统的组成:除芯片以外,主要组成部分包括:绝缘的面板,按键感应盘和连接线。
使用者的手指接触面板的敏感区域可以触发按键;面板敏感区域的背后是按键感应盘;连接线把感应电极和芯片连接起来。
面板的选择:面板必须选用绝缘材料,可以是玻璃、聚苯乙烯、聚氯乙烯(pvc)、尼龙、树脂玻璃等。
在生产过程中,要保持面板的材质和厚度不变,面板的表面喷涂必须使用绝缘的油漆。
在电极不变的情况下,面板的厚度和材质决定灵敏度。
比如,3.2mm厚的尼龙(Nylon)相当于2.8mm厚的树脂玻璃(Plexi glas)。
通常,在厚度、面积相同的情况下,介电常数越大,灵敏度越高。
但是在正常应用中,我们推荐使用介电常数适中的材质,比如树脂玻璃等。
介电常数过小,会导致灵敏度差;介电常数过大,发生误动作的几率会变大。
材料介电常数Air 1.0Common Glass 7.6-8.0Mylar 3.0-3.2Plexiglas 2.8Nylon 3.2ABS 3.8-4.5按键感应盘的选择:按键感应盘材料:根据应用场合可以选择PCB铜箔、金属片、平顶圆柱弹簧、导电棉、导电油墨、导电橡胶、导电玻璃的ITO层等。
不管使用什么材料,按键感应盘必须紧密贴在面板上,中间不能有空气间隙。
按键感应盘形状:原则上可以做成任意形状,中间可留孔或镂空。
我们推荐做成边缘圆滑的形状,如圆形或六角形,可以避免尖端放电效应。
按键感应盘面积大小:最小4mmX4mm, 最大30mmX30mm。
实际面积大小根据灵敏度的需求而定,面积大小和灵敏度成正比。
一般来说,按键感应盘的直径要大于面板厚度的4倍,并且增大电极的尺寸,可以提高信噪比。
各个感应盘的形状、面积应该相同,以保证灵敏度一致。
按键感应盘之间的距离:各个感应盘间的距离要尽可能的大一些(大于5mm),这样可以减少它们形成的电场之间的相互干扰。
当用PCB铜箔做感应盘时,若感应盘间距离较近(5MM~10MM),感应盘必须用铺地隔离,如图(1)所示。
触摸ic方案

触摸 IC 方案介绍触摸 IC(Integrated Circuit,集成电路)是一种集成了触摸检测、信号处理和控制功能的芯片。
它可以实现触摸输入设备与计算机或其他电子设备的交互,被广泛应用在智能手机、平板电脑、智能家居等领域。
本文将介绍触摸 IC 的原理、分类以及应用。
原理触摸 IC 的工作原理主要是通过感应触摸操作产生的电容变化来完成触摸信号的检测。
常见的触摸 IC 包括电位降容式触摸 IC 和电容传感器式触摸 IC。
•电位降容式触摸 IC:该类型的触摸 IC 通过触摸对象和 IC 之间的电容变化来检测触摸信号。
当触摸对象接近触摸面板时,触摸位置周围的电势降低,从而触发触摸 IC 的工作。
该方案具有较高的灵敏度和稳定性,可适用于各种触摸对象。
•电容传感器式触摸 IC:该类型的触摸 IC 利用触摸面板上的电容传感器来感知触摸操作。
触摸面板上的电容传感器可以是单层结构或双层结构,通过测量电容的变化来判断触摸位置。
该方案具有较低的成本和较好的透明度,适用于大面积触摸应用。
分类根据触摸技术的不同,触摸 IC 可以分为以下几类:1.电阻屏触摸 IC:电阻屏触摸 IC 是最早广泛应用的触摸 IC,通过测量触摸屏上导电涂层之间的电阻变化来检测触摸信号。
该方案具有较高的精度和稳定性,但对触摸力度较为敏感。
2.电容屏触摸 IC:电容屏触摸 IC 使用电容传感器来感知触摸操作,具有较好的透明度和灵敏度。
根据电容屏的结构不同,可以分为单层电容屏和多层电容屏。
多层电容屏可以实现多点触控功能。
3.表面声波触摸 IC:表面声波触摸 IC 利用超声波传感器来感知触摸位置。
触摸面板上通过表面贴装技术布置超声波传感器,当触摸对象接触到触摸面板时,超声波传感器可以检测到声波的变化,并转化为触摸信号。
4.光学触摸 IC:光学触摸 IC 利用红外线或激光传感器来感知触摸操作。
触摸面板上通过红外线或激光发射器和接收器的组合来实现触摸信号的检测。
电容式触摸感应按键技术及常见问题解决办法

电容式触摸感应按键技术及常见问题解决办法浅谈电容式触摸感应按键技术及常见问题解决办法市场上的消费电子产品已经开始逐步采用触摸感应按键,以取代传统的机械式按键。
针对此趋势,Silicon Labs公司推出了内置微控制器(MCU)功能的电容式触摸感应按键(Capa citive Touch Sense)方案。
电容式触摸感应按键开关,内部是一个以电容器为基础的开关。
以传导性物体(例如手指)触摸电容器可改变电容,此改变会被内置于微控制器内的电路所侦测。
图1:电容式触摸感应按键的基本原理一种可侦测因触摸而改变的电容的方法电容式触摸感应按键的基本原理就是一个不断地充电和放电的张弛振荡器。
如果不触摸开关,张弛振荡器有一个固定的充电放电周期,频率是可以测量的。
如果我们用手指或者触摸笔接触开关,就会增加电容器的介电常数,充电放电周期就变长,频率就会相应减少。
所以,我们测量周期的变化,就可以侦测触摸动作。
具体测量的方式有二种:(一)可以测量频率,计算固定时间内张弛振荡器的周期数。
如果在固定时间内测到的周期数较原先校准的为少,则此开关便被视作为被按压。
(二)也可以测量周期,即在固定次数的张弛周期间计算系统时钟周期的总数。
如果开关被按压,则张弛振荡器的频率会减少,则在相同次数周期会测量到更多的系统时钟周期。
Silicon Labs推出的C8051F9xx微控制器(MCU)系列,可通过使用芯片上比较器和定时器实现触摸感应按键功能,连接最多23个感应按键。
而且无须外部器件,通过PCB走线/开关作为电容部分,由内部触摸感应按键电路进行测量以得知电容值的变化。
图2:Silicon Labs推出的C8051F9xx微控制器(MCU)系列以Silicon Labs的MCU实现触摸感应按键利用Silicon Labs其它MCU系列,仅需搭配无源器件,即可实现电容式触摸感应按键方案。
与C8051F93x-F92x方案相比,唯一所需的外部器件是(3+N)电阻器,其中N是开关的数目,以及3个提供反馈的额外端口接点。
触摸芯片方案

触摸芯片方案简介触摸芯片是一种集成电路,用于检测和响应人体触碰的设备。
它被广泛应用于手机、平板电脑、家用电器、自动化设备等各种电子产品中。
本文将介绍触摸芯片的工作原理、常见应用领域以及一种常用的触摸芯片方案。
工作原理触摸芯片通过感应和分析人体触碰的电流、电压或电容变化来实现触摸的检测和定位。
常见的触摸芯片工作原理包括电阻式、电容式和声表面波(SAW)式。
•电阻式触摸芯片:利用触摸点与电阻层之间的电阻变化来检测触摸。
它结构简单,成本较低,但对触摸笔等精细触控工具的支持较差。
•电容式触摸芯片:通过读取触摸面上的电容变化来检测触摸,具备较好的精准度和触摸体验。
它分为电容静电感应式和电容投射式两种类型。
•声表面波触摸芯片:利用超声波声表面波在玻璃或塑料上传播时的衰减来检测触摸。
它具备较高的精准度和可靠性,但成本较高。
应用领域触摸芯片在各个领域都有广泛的应用。
手机和平板电脑触摸芯片是手机和平板电脑上触摸操作的核心组件。
它使得用户可以通过手指或触摸笔在屏幕上进行滑动、点击、捏合等操作,实现人机交互。
家用电器在家庭电器中,触摸芯片可以被用于控制和操作不同的功能。
例如,冰箱、洗衣机和空调等家电产品都可以通过触摸芯片来实现触摸控制面板,用于调节温度、选择模式等操作。
汽车触摸芯片在汽车领域的应用越来越广泛。
在中控系统中,触摸芯片可以用于控制音频、导航、空调和座椅等功能。
此外,触摸芯片还可以应用于车内的触摸屏幕、旋钮、按钮等控制元件。
自动化设备触摸芯片也被广泛应用于各种自动化设备中。
例如,工业控制面板、自助终端设备、医疗设备等都可以通过触摸芯片来实现用户与设备的交互。
常用触摸芯片方案目前市场上有多家供应商提供触摸芯片方案,其中一种常用的触摸芯片方案是基于电容式触摸芯片的。
方案概述该方案采用电容静电感应式触摸芯片,支持多点触控和手势操作,具备较好的灵敏度和准确度。
它适用于手机、平板电脑、智能家居等多种应用场景。
技术特点1.高集成度:该方案采用先进的集成电路制造工艺,具备较高的集成度和稳定性。
电容触控IC原理及应用方法

电容触控IC原理及应用方法电容是板卡设计中必用的元件,其品质的好坏已经成为我们衡量板卡质量的一个很重要的方面。
近年来,随着智能触屏手机的普及,电容触控IC得到前所未有的快速发展,其也成为了智能手机的关键电子元器件之一,那么该如何提高产品的性价比呢?在此,正芯网为大家介绍电容触控IC的原理及应用方法。
一、电容触控IC应用电容触控IC的用途非常多,主要有如下几种:1、隔直流:作用是阻值直流通过而让交流通过。
2、旁路:也成为去耦,即为交流电路中某些并联的元件提供低阻抗通路。
3、耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路。
4、滤波:这个对DIY而言很重要,显卡上的电容基本都是这个作用。
5、温度补偿:针对其他元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。
6、计时:电容器与电阻器配合使用,确定电路的时间常数。
7、调谐:对与电容IC频率相关的电路进行系统调谐,比如手机、收音机、电视机等。
8、储能:储存电能,例如相机闪光灯,加热设备等。
值得注意的是,如今某些电容的储能水平已经接近锂电池的水准,一个电容储存的电能甚至可以供一个手机使用一天。
二、电容触控IC设计的三个误区1、电容容量越大越好?我们知道电容容量越大,为IC提供的电流补偿的能力就越强,因此很多人在电容的替换中往往喜欢用容量大的电容。
可是这真的是好的吗?其实并不然,且不说电容容量的增大带来的体积变大,增加成本的同时还影响散热。
因此从保证电容IC提供高频电流能力的角度来说,根据电路设计中的电容参考值进行电路设计是最稳妥的方法。
2、并联越多的小电容越好?尽管对于跟电容的容量、频率、电压、温度等都有关系的ESR来说,ESR 值当然是越低越好。
且理论上越多的并联小电阻,ESR越低,但考虑到电容接脚焊点的阻抗,采用多个小电容并联,其效果并不突出。
3、好的电容触控IC代表高品质?和有的厂商可以用两相供电做出比一些厂商采用四相供电更稳定的产品一样,一味的采用高价电容,不一定能做出好的产品。
触摸ic方案

触摸IC方案引言触摸技术已广泛应用于各种电子设备和智能家居产品中,提供了丰富的交互方式和用户体验。
而触摸IC则是实现触摸功能的重要组成部分,负责处理触摸输入信号,将其转化为数字信号输出。
本文将介绍触摸IC的工作原理、常见类型及其应用场景。
工作原理触摸IC通过感应来自触摸屏的触摸信号,进而识别触摸点的坐标位置。
其基本工作原理是将触摸点的压力转化为电容变化,并通过电压信号来感知触摸点的位置。
具体来说,触摸屏上涂层的电容元件会形成电场,当用户触摸屏幕时,手的电荷会改变涂层电容的分布,产生电容变化。
触摸IC就是负责检测和测量这种电容变化,并将其转化为数字信号输出。
常见类型1. 电感式触摸IC电感式触摸IC是较早期采用的一种触摸识别方案。
它通过在触摸屏上散布一些感应线圈,当手指接近并触摸屏幕时,会改变感应线圈的感应电流,触摸IC通过检测感应线圈的电流变化来识别触摸点的位置。
该方案的优点是对环境干扰的抗干扰性较好,但灵敏度相对较低。
2. 电容式触摸IC电容式触摸IC是目前应用最广泛的触摸识别方案之一。
它通过在触摸屏上布置一层导电膜,并在膜上施加电场,当手指触摸屏幕时,会改变电场分布,形成电容变化。
触摸IC通过测量电容变化来确定触摸点的位置。
电容式触摸IC具有较高的灵敏度和精确度,适用于各种触摸屏幕尺寸和形状。
3. 压力触摸IC压力触摸IC是一种可以识别触摸点压力强弱的触摸识别方案。
它通过在触摸屏上布置多个感应元件,可以感知触摸点施加的压力大小。
压力触摸IC适用于一些需要考虑按压力度的应用场景,例如绘画板、数字签名等。
应用场景触摸IC已经广泛应用于各种电子设备和智能家居产品中,包括但不限于以下场景:1. 智能手机和平板电脑智能手机和平板电脑是触摸IC应用最广泛的领域之一。
触摸屏作为主要交互方式,用户可以通过手指触摸屏幕来完成各种操作,如滑动、放大缩小、点击等。
2. 汽车导航和娱乐系统现代汽车配备了液晶触摸屏的导航和娱乐系统,通过触摸屏幕可以进行导航、调整音量、播放音乐等操作,触摸IC作为触摸屏的关键部件,提供触摸输入功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
触摸IC在应用上的技术问题解决办法
随着科技的发展和现代80-90后对时尚生活的追求,原来绝大部分电子产品如:家用电器,生活电器,环境电器以及其他电子产品的机械式开关正逐渐被新型的触摸开关所代替,原先的电阻式触摸开关也正日益被新型的电容式触摸IC所代替。
但是电子产品的触摸效果是否如我们预想中使用那么便利性和稳定性,其中有很多方面正阻扰它的使用稳定性.比如:无线电波的干扰,触摸屏的厚度太厚,微波炉上的微波干扰,静电干扰,二次上电稳定性差的问题,生活电器里的水渍以及盐水干扰,对讲机辐射干扰,手机辐射干扰,电机马达干扰,高低温环境损坏,湿抹布的误触发。
等等问题都会使得触摸功能的失效和稳定性很差。
但是我们的工程师除了碰到以上硬性的技术问题外,我们还碰到诸如:按键乱码,按键失
灵和失效等等技术问题,在碰到如上问题时,还有另外就是我们工程师做好了测试版以及开模出样品时,还会出现很多问题,这样的问题种类很多,在这里就不一一赘述了,主要还是总结为以下两个问题,
1、按键失灵,发挥不了触摸的效果,这个时候其实已经是对触摸功能的宣判死刑了,如果是机械按揭,可能在机械上修修就能恢复功能,能够继续使用,但是触摸IC却不行,如果要修理一定得把整台机器拆卸后由专业人士才能修理。
2、按键失效,有的时候功能有用,有的时候功能无用,这个时候主要就可能是由于以上测试的结果,可能不能防水或者受了电讯的干扰,原因和种类也比较多。
需要我们一个一个得去分析。
本人在从事家电行业触摸按板设计工作8年本人QQ:76581074713189769580的工作经验当中。
把在工作当中的一些触摸IC设计经验分享给大家,希望能够帮助更多的电子工程师一起携手共进,解决更多的技术难题。
我们很多工程师除了要选用质量比较可靠和稳定性比较好的IC生产厂家外,在硬件的基础上要做好以下工作:
1、电路设计以IC规格书内的范例电路为基础即可。
2、必须利用稳压IC来确保IC的电源是干净没有杂讯的。
3、感应电极附属的电阻与电容要尽量靠近IC,如果是双面板或是多层板,在电阻与电容
的下方尽量避免通过高频线路、铺设地线、或是比较宽的线路。
4、如果是单层板,感应电极附近不要有高频线路,其它线路也尽量远离感应电极及其连线。
如果选用的IC有AKS功能,请尽量采用此功能以减少邻近的感应电极互相干扰。
5、如果没有开启AKS功能,在感应电极及其连线之间加一条地线,也可以减少邻近的感应电极之间的互相干扰,地线必须放置在邻近的两个感应电极的中央,线宽不要超过两个感应电极间距的1/5,或是用地线将感应电极及其连线围绕隔开,但是原则上围绕的地线离的越远越好。
6、从感应电极的附属零件到感应电极的之间的线路以最小线宽来铺设即可,感应电极的连线与其它线路至少简距线宽的5倍以上,感应电极的连线与另一个感应电极的连线之间的距离则是越远越好,最近距离为线宽的2倍以上。
7、如果无法达到连线之间的间距,最好在线与线之间用一条地线作隔离,用最小的线来铺设地线即可,线距采用一般安全间距。
8、从感应电极的附属零件到感应电极连线最不要超过30cm,感应电极的线路可以经过感应电极的下方,避免围绕在其它感应电极的周边。
9、感应电极连线的下方尽量避免通过高频线路、铺设地线、或是比较宽的线路,如果难以避免,尽量以交错通过,其它线路尽量不要与感应电极连线平行。
如果确实需要减少来自感应电极下方的干扰而需要铺设地线的话,不要铺设整片实体的地线,用网格状铺铜,网格1.27mm以上,格线用最小线宽来布线,同时要注意网格边缘不要与感应电极靠的太近。
11、人体的自然电容量约5pF~3pF之间,布线的最终原则就是不要超过人体的自然电容量的最小值5pF。
在测试电路板时,我们工程师也应该做好如下技术上的细节工作:
1、这个阶段主要是测试电路板的布线是否正确,感应动作是否正常。
2、在此阶段只需要大概的调整灵敏度,不需要精确调整,因为电路板装入机壳之后含再变化。
3、测试时必须特别注意电路板的放置,测试电路板不可以直接放在桌面上,也不可以在测试按压时有晃动的现象,理想的测试环境是粘贴上面板或与面板相同厚度及材料的替代面板,再加上橡胶脚垫架高电路板,同时也可以稳固电路板。
4、测试的电路板必须没有跳线,如果有跳线,必须是与感应开关电路无关的,而且不可以经过感应IC及其附属电路,也不可以在感应电极附近。
5、如果测试不良,进入Step2-1确定不良原因,如果用手直接触摸感应电极可以正常动作,可以确定为灵敏度不良。
6、如果感应开关会自动触发,或触发后很久才释放,先检查电源是否稳定,如果电源是稳定的则可能是过度灵敏,将Cs电容数值减少降低灵敏度再测试。
7、如果是属于布线不良或布线错误,回到Step1重新布线。
8、只要将灵敏度调整到不会有不稳定或不动作的现象就可以进入下一阶段再调整灵敏度。
分析工具主界面:
顺带提一下,本人是做技术出身的做硬件工程师,如果有需要更多的触摸按键技术问题的可以找我做案子,也可以找我做解决方案,当然也可以共同分享做案子的一些经验和心得。
欢迎共享科技的成果.。