某贝雷梁钢便桥计算书 (2)
贝雷梁便桥计算书

贝雷梁施工便桥设计计算书中铁十一局集团第四工程有限公司二〇一六年三月贝雷梁便桥计算书1、便桥设计依据1.1、设计依据和设计规范《公路桥涵设计通用规范》(JTG D60-2004) 《钢结构设计规范》(GB 50017-2003) 《港口工程荷载规范》(JTJ215-98) 1.2、技术标准1)荷载:按80t 履带吊吊重20t 荷载验算,其中80t 履带吊吊重20t 为栈桥设计的主要荷载。
2)宽度:考虑施工车辆通行需求和经济性因素,按行车道8m 宽布置,每孔跨度12m ,5跨一联。
3)水流力:按流速1.75m/s 考虑。
4)标高:按照设计高潮位+4.75m 设计,栈桥顶面标高设计为+7.0m 。
5)栈桥设计车速:15km/h 。
6)风荷载:工作状态:13.8m/s ;非工作状态:40m/s 。
7)型钢、钢管桩允许应力 抗拉、压 []188.5MPa σ= 抗弯 []188.5w MPa σ= 抗剪 []110MPa τ=单排单层贝雷梁容许弯矩[]788.2M kN m =⋅ 单排单层贝雷梁容许剪力[]245.2Q kN = 2、便桥结构设计 2.1、技术标准(1)设计恒载:栈桥结构自重(2)验算活载:80t履带吊(自重80t+吊重20t)。
10方混凝土罐车栈桥上通行,载重时重量40t 。
总重:400 kN ,轮距:1.8 m,轴距:3.45 m +1.35m前轴重力标准值:60kN,后轴重力标准值:2×170kN前轮着地面积:0.30m×0.20m,后轮着地面积:0.60m×0.20m(3)设计行车速度:15km/h(4)设计使用寿命:5年2.2、便桥结构形式便桥桥面行车道宽度8.0m。
桥面系由上往下依次为10mm组合型花纹钢板,工12.6小纵梁,工22b横向分配梁。
便桥纵梁采用8排单层321型贝雷梁,间距为0.9+1.3m+0.9m+1.3m+0.9m+1.3m+0.9m,贝雷梁跨度12m,采用5跨一联布置,中间设置刚性墩。
某贝雷梁钢便桥计算书

峃口隧道钢栈桥计算书1、工程概况本施工便桥采用321型单层上承式贝雷桁架,栈桥0#桥台与老56省道相连,6#桥台位于峃口隧道起点位置,横跨泗溪。
便桥孔跨布置为10m+5*15m ,全长85米,桥面净宽6米,人行道宽度1.2m ,纵向坡度+3%,桥面至河床面净高10米,至水面净空为8.5米(图1 为钢栈桥截面图)。
钢栈桥桥面系主体结构由δ=10 mm 花纹钢板、I10 工字钢纵梁(间距0.3 m )、I20 工字钢横梁(长7.2m ,间距0.75 m )组成。
桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U 型螺栓固定。
贝雷桁梁由贝雷片拼制而成,横向设置6片,间距0.9m,贝雷片之间采用角钢支撑花架连接成整体。
本桥基础为明挖基础,基础为7×2.6×1.2m 的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床。
基础上部墩身均采用φ630 mm (δ=8 mm )钢管,采用双排桩横桥向各布置2 根,钢管桩之间由平联、斜撑连接。
钢管桩顶设双I32 工字钢分配梁。
本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。
Ⅰ20工字钢@75cm321型贝雷梁双I32承重梁联结系平联预埋钢板钢筋混凝土基础加劲板10mm花纹钢板护栏Ⅰ10工字钢@30cm 人行道桥面宽度图1 钢栈桥截面图(单位:mm )2、计算目标本计算的计算目标为:1)确定通行车辆荷载等级;2)确定各构件计算模型以及边界约束条件;3)验算各构件强度与刚度。
3、计算依据本计算的计算依据如下:[1] 黄绍金, 刘陌生. 装配式公路钢桥多用途使用手册[M]. 北京: 人民交通出版社,2001[2] 《钢结构设计规范》(GB 50017-2003)[3] 《公路桥涵设计通用规范》(JTG D60-2004)[4] 《公路桥涵钢结构及木结构设计规范》(JTJ025-86)4、计算理论及方法本计算主要依据《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生著.北京:人民交通出版社,2001.6)、《钢结构设计规范》(GB 50017-2003)、《公路桥涵设计通用规范》(JTG D60-2004)、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)等规范中的相关规定,通过MIDAS/Civil 2012结构分析软件计算完成。
贝雷便桥施工方案及计算书2

钢便桥施工方案本合同施工便道8号桥处、3号桥处、荆山分离K0+240处、本标段起点与3标交接处(原胜利桥东60米处)计划各架设1座钢便桥,根据现场勘察和测量放样,3号桥及8号桥跨径设计为2×12m、荆山分离K0+240处跨径设计为1×12m、本标段起点与3标交接处(原胜利桥东60米处)跨径设计为2×15m。
设计荷载:挂车-80T一、便桥结构形式1、下部结构8号桥处3号桥处以及荆山分离K0+240处便桥基础采用d=20cm的松木作为桩基,按梅花状布置,打入深度10m,二边共20根桩;松木桩上做C20的混凝土尺寸为6m×1。
5m×1。
5m的桥台。
本标段起点与3标交接处(原胜利桥东60米处)便桥基础采用d=40cm的钢管,桥头位置设置2排,桥墩位置设置1排,每排4根,按一字型布置,钢管桩长度为8m,钢管顶面焊接40b工字钢作为盖梁.2、上部结构钢便桥纵梁由双排单层上下加强贝雷组成,每节4片贝雷。
横梁用28a工字钢,桥面系为U形钢桥面板(标准、中央).二、施工工艺一)8号桥处3号桥处以及荆山分离K0+240处便桥1、桩基1。
1、木桩选材1、选用松木,长度不小于10m,桩身弯曲度不超过1%;2、原木大小头的相差率不超过桩长的1%;3、原木上有腐朽、虫害及漏节等瑕点不予使用。
1。
2、木桩的制作1、除去原木上的枝干和树皮,削去突出部分,不需刨光;2、砍削桩尖:将桩尖为平尖,加工成三棱或四棱锥形,长度为20~30cm;3、锯平桩顶:桩顶平整,桩顶面垂直于桩轴中线。
桩顶设铁桩箍;4、当木桩不够长时必须接长,接头面须平整与桩轴线垂直.每桩只允许有一个接头。
1。
3、桩接头构造和位置应符合下列要求:1、接头在承台或局部冲刷线以下不小于1m;2、相邻桩接头的高度差不得小于0.75m;3、在一个基础中,同一水平面内的接头数不得超过2个;4、接头的构造应符合设计要求,接头处桩的厚度不小于20cm1。
跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷梁钢便桥检算书(6.30)

便桥检算方案拟定:全桥共两跨,桥跨组合3.5m+3.5m,采用3.5米预制混凝土板梁,桥面宽度为6米,便桥限载为50t。
1号墩及0、2号台均为实体墩、扩大基础。
边梁宽1.35m,中梁宽1.5m。
梁高均为0.4 m,梁体采用C30钢筋混凝土一、荷载分析:(一)恒载:板梁自重:(折算为集中荷载)1、边梁:q1 =1.2×0.4×1.35×3.5 ×25=56.7KN2、中梁:q2 =1.2×0.4×1.5×3.5×2.5 =63KN(二)活载:1、双50 t2、作用于单片梁上为:25 t3、作用于墩台处为:50×2=100 t(三)荷载内力分析1.恒载内力分析:(1)边梁:q1 =56.7KNM max=49.7 KN mQ max= 28.4 KN(2)中梁:q2 =63KNM max=55.2 KN mQ max= 31.5 KN2. 活载内力分析:作用于单片梁上荷载为250 KN :荷载作用于跨中为最:M max =218.8 KNm荷载作用于梁端为最:Q max = 250 KN3、荷载组合分析:恒载+活载:(1)边梁: M max =49.7+218.8=268.5 KN mQ max =28.4+250=278.4 KN(2)中梁:M max =55.2+218.8=274 KN mQ max =31.5+250=281.5 KN二、板梁检算:(一)配筋计算:1、受压钢筋:(1)边梁:)'0('')20(1M s a h s A y f xh bx c f -+-≤α268.5×106≤1.0×11.9×1350×(400/2×0.8)×(350-160/2)+ 300×A ‘S ×(350-50)A ‘S ≥-4727㎜2说明不需要配置受压钢筋,可按构造配筋。
跨径12米贝雷钢便桥计算书

跨径12米贝雷钢便桥计算书一、便桥概况纵向施工便道途经铁场排洪渠及沙河时,采用贝雷钢便桥跨越,车俩单向通行。
单孔设计最大跨径12m,桥面宽度为6m。
钢便桥结构型式见下图:便桥桥墩处自下而上依次采用的主要材料为:壁厚10㎜、直径800㎜钢管桩基础2根→1000*1000*10mm钢垫板→2根20a型工字钢(双拼)下横梁→双排单层321贝雷片(2榀4片)纵梁→25a型工字钢横向分配梁→22a型槽钢桥面(卧放满铺)。
钢管桩中心间距为350㎝,桩间采用2根壁厚6㎜、直径630㎜钢管作为支撑联结;20a型工字钢(双拼)下横梁每根长度为530㎝;2榀贝雷梁横向中心间距为350㎝,每榀贝雷片横向顶面采用支撑架(45㎝)联结,底面两侧用2段槽钢固定在工字钢下横梁上;25a型工字钢横向分配梁间距为75㎝,每根长度为600㎝;桥面系22a型槽钢间净距4㎝,横向断面布置23根。
二、计算依据及参考资料1、《公路桥涵设计通用规范》(JTG D60-2004);2、《公路桥涵地基与基础设计规范》(JTG D63-2007);3、《公路桥涵钢结构及木结构设计规范》(JTJ 025-86);4、《公路桥涵施工技术规范》(JTJ 041-2000);5、《公路桥涵施工手册》(交通部第一公路工程总公司主编);6、从莞高速公路惠州段第二合同段两阶段施工图设计;7、本合同段相关地质勘探资料;三、主要计算荷载1、汽车-20 重车;2、自重50吨履带式起重机+吊重15吨(便桥施工期作业机械荷载);3、结构自重;四、结构受力验算(一)、22a型槽钢桥面板(按简支计算,跨径L=0.75m)1、材料相关参数:Iy =157.8㎝4,Wy=28.2㎝3,iy=2.23㎝;容许抗弯应力f=215 MPa,容许抗剪应力fy=125 MPa,E=206×103MPa;自重24.99㎏/m,截面积31.84㎝2。
2、荷载情况:“汽-20”重载,轴距1.4m,单轴重14吨,半边轮组重7吨;汽车冲击系数取1.3;单个轮胎宽度为20㎝,单侧一组轮胎宽度为60㎝,单侧轮组面与3片槽钢接触;轮组作用在跨中弯矩最大,轮组作用在临近支点处剪力最大。
贝雷梁钢栈桥设计计算书

1、工程概况本栈桥工程为广西北海金滩14K㎡场地施工用辅助通道。
设计宽度8米,设计长度1755.6米,跨径采用15米。
2、结构验算2.1 验算依据(1)《公路桥涵施工技术规范》(JTG/T F50-2015)(2)《公路钢结构桥梁设计规范》(JTG D64-2015)(3)《公路桥涵设计通用规范》(JTGD60-2015)(4)《公路桥涵地基与基础设计规范》(JTG D63-2007)(5)《公路桥涵钢结构设计规范》(GB50017-2003)(6)《建筑桩基技术规程》(JGJ94-2008)(7)《钢管桩施工技术规程》(YBJ233-1991)(8)《桥梁施工图设计文件》(9)《广西北海金滩14K㎡场地岩土勘察报告》2.2 荷载参数作用于栈桥的荷载分为恒荷载及可变荷载。
恒荷载主要为栈桥结构自重,可变验算荷载为设计荷载:55t渣土运输车。
2.2.1 恒载由计算程序自动考虑。
2.2.2 可变荷载(1)55 吨渣土运输车渣土运输车共3 轴,其具体尺寸如下图,前轮着地面积为0.3×0.2m,后轮着地面积为0.6×0.2m。
单轮最大设计荷载为5.5t。
55吨渣运输车轴距布置图(单位:mm)2.3 荷载工况按最不利的原则考虑以下控制工况:(1)验算控制工况考虑栈桥实际情况,单跨长度为15m,同一跨内最多布置两辆重车,贝雷梁、桥面系验算控制工况为:工况1:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于标准贝雷梁段;工况2:结构自重+55t渣土运输车荷载+55t渣土运输车荷载, 55t渣土运输车移动荷载作用于通航口加强弦杆贝雷梁段;2.4 结构材料1、钢弹性模量E=2.1×105 mpa;剪切模量G=0.81×105 mpa;密度ρ=7850 Kg/m;线膨胀系数α=1.2×10-5;泊松比μ=0.3;抗拉、抗压和抗弯强度设计值f d =190MPa;抗剪强度设计值fvd=110MPa;2、贝雷梁中各杆件理论容许应力:抗拉、抗压和抗弯强度设计值fd=200MPa;抗剪强度设计值fvd=120MPa。
贝雷架钢便桥计算书30米跨

30m贝雷架钢便桥计算书1.工程概况本桥适用于30m下承式贝雷架钢便桥。
桥梁主体结构为321型三排单层加强贝雷架。
便桥净宽4.2m,行车道净宽4m,人行道宽净宽1m。
桥面铺设8mm厚Q235钢板,面板上沿桥向横向焊接φ12的圆钢,间距15cm,面板下设加强肋10#工字钢,间距25cm,工字钢底部铺设横向分配梁28b#工字钢,横穿贝雷架,纵向间距为1.5m。
2.设计参数2.1设计荷载设计荷载按照公路I级,考虑到贝雷架钢便桥长30m,采用车道荷载进行桥梁结构设计计算。
贝雷架钢便桥结构图见图1,立面图见图2。
图1 贝雷架钢便桥结构图(单位:mm)图2 贝雷架钢便桥立面图(单位:mm)2.2受力模型建立受力模型,如图3。
图3 桥梁受力模型(单位:mm)对桥梁受力模型进行简化,简化为简支梁受力模型(偏于安全),见图4。
图4 简化后的受力模型(单位:mm)3.加强肋10#工字钢受力验算3.1工字钢及面板参数构件参数:理论重量11.261kg/m(0.11261kN/m),d=4.5mm,Ix:Sx=8.59,Wx= 49cm3,[σ]=145Mpa/1.2=120.8 Mpa,[τ]=85Mpa/1.2=70.8Mpa,安全系数取1.2,E=206GPa,Ix=245cm4,8mm厚钢板0.628kN/m2。
3.2荷载组成根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用内插法求得。
因计算跨径为1.5m,故集中力Pk=180kN。
荷载组合采用1.2恒载+1.4活载。
3.3受力计算以简支梁模型计算,以跨中1.5m最不利位置进行受力分析,以单根工字钢进行受力计算。
截取单元见图5。
图5 截取单元的断面图(1)面板重力0.628×4×1.5=3.768kN(2)10#工字钢重力(0.11261kN/m)0.11261×1.5×(4/0.25+1)=2.87kN则单根工字钢每延米重力q1=(3.768+2.87)/((4/0.25)+1)=0.26kN/m(3)恒载弯矩M1(组合系数1.2)M1=1.2×0.125×0.26×1.5×1.5=0.09kN·m图6 恒载作用下均布力、剪力及弯矩图根据公路I级车道荷载的均布荷载标准值qk=10.5kN/m,桥涵计算跨径小于或等于5m时,Pk=180kN;桥涵计算跨径等于或大于50m时,Pk=360kN,桥涵计算跨径大于5m,小于50m时,Pk值采用直线内插求得,计算跨径为1.5m,故Pk=180kN。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精心整理
峃口隧道钢栈桥计算书
1、工程概况
本施工便桥采用321型单层上承式贝雷桁架,栈桥0#桥台与老56省道相连,6#桥台位于峃口隧道起点位置,横跨泗溪。
便桥孔跨布置为10m+5*15m,全长85米,桥面净宽6米,人行道宽度1.2m,纵向坡度+3%,桥面至河床面净高10米,至水面净空为8.5米(图1为钢栈桥截面图)。
钢栈桥桥面系主体结构由δ=10mm花纹钢板、I10工字钢纵梁(间距0.3m)、I20工字钢横梁(长7.2m,间距0.75m)组成。
桥面板与工字钢采用手工电弧焊焊接连接,桥面系布置于贝雷桁梁之上,与贝雷桁梁之间用U型螺栓固定。
贝雷桁梁由贝雷片拼制而成,横向设置6片,间距0.9m,贝雷片之间采用角钢支撑花架连接成整体。
本桥基础为明挖基础,基础为7×2.6×1.2m的钢筋砼,扩大基础必须坐落于河床基岩上,且基础顶标高低于河床。
基础上部墩身均采用φ630mm(δ=8mm)钢管,采用双排桩横桥向各布置2根,钢管桩之间由平联、斜撑连接。
钢管桩顶设双I32工字钢分配梁。
本桥基础设计为明挖基础,基础采用C25钢筋砼,钢管桩位于砼基础上与预埋钢板焊接牢固,在此不做计算。
图1钢栈桥截面图(单位:mm)
2、计算目标
本计算的计算目标为:
1)确定通行车辆荷载等级;
2)确定各构件计算模型以及边界约束条件;
3)验算各构件强度与刚度。
3、计算依据
本计算的计算依据如下:
[1]黄绍金,刘陌生.装配式公路钢桥多用途使用手册[M].北京:人民交通出版社,2001
[2]《钢结构设计规范》(GB50017-2003)
[3]《公路桥涵设计通用规范》(JTGD60-2004)
[4]《公路桥涵钢结构及木结构设计规范》(JTJ025-86)
4、计算理论及方法
本计算主要依据《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生着.北京:人民交通出版社,2001.6)、《钢结构设计规范》(GB50017-2003)、《公路桥涵设计通用规范》(JTGD60-2004)、《公路桥涵钢结构及木结构设计规范》(JTJ025-86)等规范中的相关规定,通过MIDAS/Civil2012结构分析软件计算完成。
5、计算参数取值
5.1设计荷载
5.1.1恒载
本设计采用MidasCivil建模分析,自重恒载由程序根据有限元模型设定的截面和尺寸自行计算施加。
5.1.2活载
根据《公路桥涵设计通用规范JTGD60-2004》,汽车荷载按公路-Ⅰ级荷载计算,公路-Ⅰ荷载如图2:
图2公路-Ⅰ级荷载图
程序分析时,汽车活载作为移动荷载分析,采用车道面加载。
为确保行人车辆安全,桥面右侧护栏外侧增设1.2m人行道宽度,桥面宽度取值6m,车轮距为1.8m。
汽车限速15km/h通过,通行的冲击系数由程序根据设定参数自动计算考虑,在“移动荷载分析控制”中,临时钢栈桥结构基频取值1.3Hz,根据《公路工程技术标准》(JTGB01-2014)规定,冲击系数为u=0.04。
图3桥面车道布置图
5.2主要材料设计指标
根据《钢结构设计规范》(GB50017-2003)和《装配式公路钢桥多用途使用手册》(黄绍金,刘陌生着.北京:人民交通出版社,2001.6),主要材料设计指标如下:
6计算分析
6.1计算模型及边界条件设置
图4为钢栈桥Midas分析模型图。
其中,桩基础采用梁单元,桥面板采用板单元。
图4分析模型
边界条件设置如下:
(1)桥面系构件连接:桥面板与I10工字钢纵梁、纵梁与I20工字钢横梁均采用共节点连接,横梁与贝雷桁梁采用仅受压弹性连接,连接刚度按经验取值100kN/mm。
由于存在仅受压弹性连接,模型对桥面板进行三处约束,各处约束自由度分别为:(Dx,Dy,Rz);(Dx,Rz);(Dy,Rz)。
(2)其余构件连接:贝雷桁梁与2I32工字钢分配梁采用弹性连接,分配梁与钢管桩采用共节点连接。
钢管桩桩底按锚固模拟,约束Dx、Dy、Dz、Rx、Ry、Rz。
6.2计算结果分析
由于Midas计算结果中,桥面系构件总体变形与贝雷桁梁变形一致,导致桥面系构件变形输出结果远大于实际变形,另外再考虑到桥面系构件跨度均较小,故结果分析中桥面系构件仅以强度满足要求进行控制;贝雷桁梁、分配梁结果分析中以强度、刚度均满足要求进行控制。
6.2.1桥面板计算结果
图5为桥面板强度计算结果。
由图可以看出桥面板最大应力为:
σ=20.37MPa<f=215MPa
故桥面板设计满足安全要求。
图5桥面板强度
6.2.2I10工字钢纵梁计算结果
图6为I10工字钢纵梁强度计算结果。
由图可以看出I10工字钢最大应力为:
σ=90.4MPa<f=215MPa
故I10工字钢纵梁设计满足安全要求。
图6I10工字钢纵梁强度
6.2.3I20工字钢横梁计算结果
图7为I20工字钢横梁强度计算结果。
由图可以看出I20工字钢最大应力为:
σ=193MPa<f=215MPa
故I20工字钢横梁设计满足安全要求。
图7I20工字钢横梁强度
6.2.4贝雷桁梁计算结果
(1)贝雷桁梁强度
图8为贝雷桁梁强度计算结果。
由图可以看出贝雷桁梁最大应力为:
σ=249MPa<f=273MPa
故贝雷桁梁强度设计满足安全要求。
图8I20贝雷梁强度
(2)贝雷桁梁刚度
图9贝雷梁刚度
图9为贝雷桁梁刚度计算结果。
由图可以看出贝雷桁梁最大变形为:
f=15.4mm<[v]=l/400=37.5mm
故贝雷桁梁刚度满足安全要求。
6.2.52I32工字钢分配梁计算结果
(1)分配梁强度
图10I32工字钢分配梁强度
图10为I32工字钢分配梁强度计算结果。
由图可以看出工字钢最大应力为:
σ=63.7MPa<f=215MPa
故I32工字钢分配梁强度设计满足安全要求。
(2)分配梁刚度
图11I32工字钢分配梁刚度
图11为I32工字钢分配梁刚度计算结果。
由图可以看出分配梁最大变形为:
f=2.86mm<[v]=l/400=11.25mm
故分配梁刚度满足安全要求。
6.2.6钢管桩计算结果
(1)钢管桩支反力
图12钢管桩支反力
图13为钢管桩支反力计算结果。
由图可以看出中墩钢管桩最大支反力为:
F=495.1kN;
(2)钢管桩强度计算
图13钢管桩强度
图14为钢管桩强度计算结果。
由图可以看出钢管桩最大应力为:
σ=80.08MPa<f=215MPa
故钢管桩强度设计满足安全要求;钢管桩最大应力位于与分配梁连接处,为局部承压应力,其余处应力值范围为:22.9~55.3MPa。
(3)钢管桩稳定性计算
钢管桩外露高度为5m,横向采用[10槽钢连接,纵向未连接,自由高度取5m。
计
算时钢管桩按一端自由,一端固定考虑。
最大钢管桩反力为:F中=495kN
计算长度:l
=2h=2×5=10(m)
截面面积:A=131.2cm2
回转半径:i=18.457cm
/i=1000/18.457=54.2
长细比:λ=l
查《钢结构设计规范》,可知轴心压杆容许长细比为:[λ]=150;稳定系数:φ=0.835,故有:
λ???54.2??[λ?]??150
[σ]=[N]/Amφ=495×103/(131.2×102×0.835)
=45.18<f=215MPa
综上,钢管桩稳定性设计满足安全要求。
6.2.8栈桥整体计算结果
表2栈桥各构件计算结果汇总表
构件名称最大应力(MPa)最大变形(mm)是否满足要求备注
桥面板20.37 / 是
I10工字钢纵梁90.4 / 是
I20工字钢横梁193 / 是
贝雷梁249 15.4 是
大横梁63.7 2.86 是
钢管桩80.08 / 是
基础承载力0.14 是
7、施工注意事项
由于现场施工中存在一些模拟计算中无法考虑到的不确定因素,如自然原因或人为原因造成的临时荷载等,为了尽可能的与模拟条件一致,确保施工安全,须注意以下事项:
1.桥面板与纵梁采用间断焊接连接,横梁两端与贝雷桁梁采用U型螺栓连接固定,中间段与贝雷桁梁不连接。
2.贝雷桁梁与底分配梁采用角钢焊接限位固定措施,防止左右偏移扭转。
3.临时钢栈桥中支点处贝雷桁梁采用[16槽钢竖撑加强,并确保槽钢上下端与贝雷桁梁上下弦杆密贴。
4.分配梁安设在钢管桩槽口内,并且两侧及底部采用薄钢板与钢管焊接固定。
5、实际施工中,钢栈桥桥跨间距按15m/跨进行施工。