蛋白质相对分子量
测定蛋白质相对分子量的方法

测定蛋白质相对分子量的方法
《测定蛋白质相对分子量的方法》
测定蛋白质相对分子量是生物学研究中常用的技术之一,它可以帮助研究者了解蛋白质的结构、功能和互作关系。
测定蛋白质相对分子量的方法主要有电泳、沉淀和放射免疫测定等。
电泳是最常用的测定蛋白质相对分子量的方法,它通过将蛋白质电泳到电泳凝胶板上,然后将凝胶板置于电压场中,使蛋白质在凝胶中移动,根据蛋白质在凝胶中的移动距离来测定其相对分子量。
沉淀法是另一种测定蛋白质相对分子量的方法,它是通过将蛋白质溶液与沉淀剂混合,使蛋白质沉淀,然后测定沉淀物的质量来计算蛋白质的相对分子量。
放射免疫测定是一种特殊的测定蛋白质相对分子量的方法,它是通过将蛋白质混合物接种到动物体内,使其产生免疫反应,然后收集抗体,测定抗体的浓度来计算蛋白质的相对分子量。
以上是测定蛋白质相对分子量的几种方法,它们都能够帮助研究者更好地了解蛋白质的结构、功能和互作关系。
蛋白质的相关计算

一个游离的氨基和一个游离的羧基;含有的肽键数=氨基
酸总数-1,根据题目给出的条件可知:5个多肽至少含有5
个游离的氨基和17个肽键。
3.蛋白质相对分子质量的计算
【例3】组成生物体某蛋白质的20种氨基酸的平均相对分
子质量为128,则由100个氨基酸构成的含2条多肽链的蛋
白质,其分子量为
A. 12800
【解析】选C。处理有关翻译的问题,首先要找到“起始 码(AUG、GUG)”和“终止码(UAA、UAG、UGA )”。起始码有相应的氨基酸,终止码不对应氨基酸。 本题碱基序列中,从开始数,6、7、8三个碱基即 “AUG”就是起始密码;倒数7、6、5三碱基即 “UAG”就是终止密码。从正数6号碱基到倒数8号碱基 ,正好40+5+3=48个碱基。48÷3 = 16(个)
【例3】水蛭素是由65个氨基酸组成的蛋白质,控制该蛋
白质合成的基因碱基数至少应是
A.390
B.195
C.65
D.260
【解析】选A。在DNA的模板链上3个相邻的碱基编码一
个氨基酸,水蛭素是由65个氨基酸组成的蛋白质,则
mRNA上的碱基共有195个。可推知DNA上的碱基数为
195×2=390个。
总之,在转录和翻译过程中,基因中的碱基数(指双 链)、 RNA分子中的碱基数、蛋白质分子中的氨基酸数之 比为6:3:1。见下图
有关计算的关系式可总结为: 蛋白质中肽链数+肽键数=氨基酸数=1/3mRNA碱
基数=1/6基因中碱基数。 因基因中存有启动片段、终止片段等,实际上基因碱
基数目和氨基酸数目的关系并不是很严格,因此一般命题 中带有“至少”或“最多”字样。
2.常见计算类型 以DNA的碱基数、RNA的碱基数、密码子数、反密码
测定蛋白质相对分子

测定蛋白质相对分子
相对分子量(Mw)是衡量蛋白质大小和形式,用来契合蛋白质之间的比较。
它可以被定义为某种蛋白质的分子重量除以其他某种蛋白质的分子重量的比例。
相对分子量的测定是有效的方法来确定蛋白分子的特定结构,因为它可以帮助有效地比较和分析多种蛋白分子之间的量,分子形式和结构。
蛋白质相对分子量的测定主要可以通过以下几种方法来实现:
一是电泳分析技术。
所谓电泳,就是将带有指定电荷的蛋白质投入到一种凝胶中,然后在电场作用下移动,和分割不同W,相对分子量的蛋白质。
这是一种简单快捷的方式来测量蛋白质相对分子量。
二是分光光度法。
这是一种利用飞行时间质谱来测定蛋白质相对分子量的先进技术,利用一种称为非相对质谱的先进仪器,以固态的质谱图显示和确定不同蛋白质的相对分子量。
三是双向电泳。
这是一种用于测量蛋白质相对分子量的灵活的技术,利用双向凝胶中的使用双向电场来分离不同的蛋白质。
它利用不同的电场,可以准确地测定蛋白质之间的区别,并准确确定相对分子量。
最后,细胞分解技术也可以用来测量蛋白质的相对分子量。
这种技术不仅可以测量蛋白质的相对分子量,而且还可以用来测量已有的蛋白质的完整性和数量,以用来研究特定的蛋白质性质。
通过以上所提及的几种方法,来测量蛋白质的相对分子量,使科学家们能够有效地了解蛋白质之间的关系,从而加深对蛋白质的研究。
它们也有助于确定新的蛋白质结构降解途径和深入研究该领域者关心的各种问题。
sds-page测定蛋白质的相对分子量

03 SDS-PAGE测定蛋白质相 对分子量的原理
蛋白质的相对分子量与迁移率的关系
蛋白质在SDS-PAGE电泳中的迁移率 与其相对分子量成反比,即相对分子 量越大,迁移速度越慢。
在电场的作用下,SDS将蛋白质分子 包裹起来,消除了蛋白质分子间的电 荷差异,使相对分子量成为影响迁移 率的唯一因素。
电泳
加样
将准备好的样品用微量移液器加到加 样孔中。
开始电泳
接通电源,开始电泳,注意控制电流 和电压,确保电泳过程稳定。
染色和脱色
染色
电泳结束后,将凝胶取出,放入含有染色液的容器中,染色一定时间,以便观 察蛋白质条带。
脱色
染色完成后,将凝胶取出,放入含有脱色液的容器中,脱色一定时间,以便观 察清晰的蛋白质条带。
将SDS和β-巯基乙醇加入样品中,以促进蛋白 质变性并带上负电荷。
煮沸处理
通过煮沸处理使蛋白质变性,并使SDS充分结合到蛋白质上。
凝胶制备
01
制备分离胶
按照分离胶的配方,将各组分混 合均匀,并迅速注入到玻璃板中 的凹槽内。
聚合凝胶
02
03
制备浓缩胶
加入适量水,使分离胶聚合凝固。
按照浓缩胶的配方,将各组分混 合均匀,并迅速注入到分离胶上。
计算相对分子量时需考虑实验条件、电泳缓冲液、电压等因素的影响,以 确保结果的准确性。
04 SDS-PAGE实验注意事项
避免样品降解
确保样品储存于低温环境
01
在实验过程中,应将未使用的样品保存在低温环境中,以避免
蛋白质降解。
避免样品反复冻融
02
反复冻融会使蛋白质发生变性,影响实验结果,因此应尽量减
SDS-PAGE可用于测定各种相对分子 量范围的蛋白质,从低到高均可。
蛋白质的计算

蛋白质计算专题1.有关蛋白质相对分子质量的计算例1 组成生物体某蛋白质的20种氨基酸的平均相对分子质量为128,一条含有100个肽键的多肽链的分子量为多少?解析:在解答这类问题时,必须明确的基本关系式是:蛋白质的相对分子质量=氨基酸数×氨基酸的平均相对分子质量-脱水数×18(水的相对分子质量)本题中含有100个肽键的多肽链中氨基酸数为:100+1=101,肽键数为100,脱水数也为100,则依上述关系式,蛋白质分子量=101×128-100×18=11128。
变式1:组成生物体某蛋白质的20种氨基酸的平均相对分子质量为128,则由100个氨基酸构成的含2条多肽链的蛋白质,其分子量为()A. 12800B. 11018C. 11036D. 8800解析:对照关系式,要求蛋白质分子量,还应知道脱水数。
由于题中蛋白质包含2条多肽链,所以,脱水数=100-2=98,所以,蛋白质的分子量=128×100-18×98=11036,答案为C。
变式2:全世界每年有成千上万人由于吃毒蘑菇而身亡,其中鹅膏草碱就是一种毒菇的毒素,它是一种环状八肽。
若20种氨基酸的平均分子量为128,则鹅膏草碱的分子量约为( )A.1024 B. 898 C.880 D.862解析:所谓环肽即指由首尾相接的氨基酸组成的环状的多肽,其特点是肽键数与氨基酸数相同。
所以,鹅膏草碱的分子量=8 ×128-8 ×18=880,答案为C。
2.有关蛋白质中氨基酸数、肽链数、肽键数、脱水数的计算在解答这类问题时,必须明确的基本知识是蛋白质中氨基酸数、肽链数、肽键数、脱水数的数量关系。
基本关系式有:n个氨基酸脱水缩合形成一条多肽链,则肽键数=(n-1)个;n个氨基酸脱水缩合形成m条多肽链,则肽键数=(n-m)个;无论蛋白质中有多少条肽链,始终有:脱水数=肽键数=氨基酸数-肽链数例2 氨基酸分子缩合形成含2条肽链的蛋白质分子时,相对分子量减少了900,由此可知,此蛋白质分子中含有的氨基酸数和肽键数分别是()A.52、52B.50、50C.52、50D.50、49解析:氨基酸分子形成蛋白质时相对分子质量减少的原因是在此过程中脱去了水,据此可知,肽键数=脱水数=900÷18=50,依上述关系式,氨基酸数=肽键数+肽链数=50+2=52,答案为C。
蛋白质分子量的测定方法

荧光光谱法是一种利用荧光物质发出 荧光的特性进行检测的方法。在蛋白 质分子量的测定中,荧光光谱法通过 测量荧光物质与蛋白质结合前后荧光 光谱的变化,推算出蛋白质的分子量。
VS
荧光物质能够吸收特定波长的光,并 发出特定波长的荧光。当荧光物质与 蛋白质结合时,荧光光谱会发生改变, 这种改变与蛋白质的分子量有关。
根据荧光光谱的变化,利 用已知的荧光物质分子量 和蛋白质分子量之间的关 系,计算出蛋白质的分子 量。
注意事项
选择合适的荧光物质
根据蛋白质的性质选择合适的荧光物质,以 确保测量结果的准确性。
避免光漂白
在测量过程中,应避免长时间照射导致荧光 物质光漂白的现象。
控制实验条件
保持实验温度、pH值等条件的恒定,以减 小误差。
操作步骤
样品准备
将蛋白质样品进行适当处理, 如溶解、变性等,以便进行离
子化处理。
离子化处理
通过电喷雾、激光解析等手段 将蛋白质样品进行离子化。
质谱分析
将离子化的蛋白质样品引入质 谱仪中,通过电场和磁场的作 用进行分离和检测。
结果处理
对检测到的质谱数据进行处理 和分析,推算出蛋白质的分子
量。
注意事项
操作步骤
01
02
03
04
05
准备荧光物质和 蛋白质样品
测量荧光光谱
蛋白质与荧光物 质结合
测量结合后的荧 光光谱
计算分子量
选择适当的荧光物质,制 备已知浓度的蛋白质样品 。
在激发波长下照射荧光物 质,测量其发射波长下的 荧光光谱。
将蛋白质样品与荧光物质 混合,静置一段时间,使 两者充分结合。
再次测量荧光光谱,观察 荧光光谱的变化。
01
测定蛋白质相对分子质量的方法

测定蛋白质相对分子质量的方法
测定蛋白质相对分子质量的方法有多种,以下列举几种常用的方法:
1. SDS-PAGE:通过聚丙烯酰胺凝胶电泳,将蛋白质按照分子量大小分离出来。
蛋白质在胁迫条件下与SDS形成复合物,其电荷密度相对一致,所以主要根据蛋白质在凝胶中的迁移距离来估算其分子量。
2. SDS-PAGE-Western blotting:在SDS-PAGE的基础上,将分离出的蛋白质转移到聚合物膜上,并使用特异性抗体检测靶蛋白。
通过与已知分子量的标准品比较,可以推断目标蛋白质的相对分子质量。
3. 基质辅助激光解析电离飞行时间质谱(MALDI-TOF MS):该方法通过将蛋白质与基质结合后,利用激光辐射将其离子化,并通过不同质荷比(m/z)的飞行时间分析获得蛋白质的质量/电荷比。
结合已知质量的标准品,可计算得到蛋白质的分子量。
4. 高效液相色谱-多角度光散射(HPLC-MALS):通过高效液相色谱分离蛋白质,并结合多角度光散射检测器,测量蛋白质溶液中散射光强的变化。
根据多角度光散射理论,计算出蛋白质颗粒的质量和大小分布,从而推断其相对分子质量。
需要注意的是,不同的方法可能有其适用范围和准确性上的差异,因此选择合适的方法需要根据具体实验目的和条件进行评估。
蛋白质分子量计算

蛋白质的分子量的计算:
蛋白质相对分子质量=氨基酸相对分子质量总和—失去水分子的相对分子质量总和。
蛋白质中肽键数的计算:
肽键数(或脱去的水分子数)=氨基酸数—肽链数。
平均分子量:20种氨基酸平均分子量为128。
蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。
这些元素在蛋白质中的组成百分比约为:碳50%、氢7%、氧23%、氮16%、硫0~3%、其他微量。
1.一切蛋白质都含氮元素,且各种蛋白质的含氮量很接近,平均为16%;
2.蛋白质系数:任何生物样品中每1g元氮的存在,就表示大约有100/16=6.25g 蛋白质的存在,6.25常称为蛋白质常数。