高中物理动量知识点讲解和练习

合集下载

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.运载火箭是人类进行太空探索的重要工具,一般采用多级发射的设计结构来提高其运载能力。

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析

高中物理动量定理及其解题技巧及练习题(含答案)含解析一、高考物理精讲专题动量定理1.观赏“烟火”表演是某地每年“春节”庆祝活动的压轴大餐。

某型“礼花”底座仅0.2s 的发射时间,就能将质量为m =5kg 的礼花弹竖直抛上180m 的高空。

(忽略发射底座高度,不计空气阻力,g 取10m/s 2)(1)“礼花”发射时燃烧的火药对礼花弹的平均作用力是多少?(已知该平均作用力远大于礼花弹自身重力)(2)某次试射,当礼花弹到达最高点时爆炸成沿水平方向运动的两块(爆炸时炸药质量忽略不计),测得前后两块质量之比为1:4,且炸裂时有大小为E =9000J 的化学能全部转化为了动能,则两块落地点间的距离是多少? 【答案】(1)1550N ;(2)900m 【解析】 【分析】 【详解】(1)设发射时燃烧的火药对礼花弹的平均作用力为F ,设礼花弹上升时间为t ,则:212h gt =解得6s t =对礼花弹从发射到抛到最高点,由动量定理00()0Ft mg t t -+=其中00.2s t =解得1550N F =(2)设在最高点爆炸后两块质量分别为m 1、m 2,对应的水平速度大小分别为v 1、v 2,则: 在最高点爆炸,由动量守恒定律得1122m v m v =由能量守恒定律得2211221122E m v m v =+ 其中1214m m = 12m m m =+联立解得1120m/s v =230m/s v =之后两物块做平抛运动,则 竖直方向有212h gt =水平方向有12s v t v t =+由以上各式联立解得s=900m2.如图所示,在倾角θ=37°的足够长的固定光滑斜面的底端,有一质量m =1.0kg 、可视为质点的物体,以v 0=6.0m/s 的初速度沿斜面上滑。

已知sin37º=0.60,cos37º=0.80,重力加速度g 取10m/s 2,不计空气阻力。

求: (1)物体沿斜面向上运动的加速度大小;(2)物体在沿斜面运动的过程中,物体克服重力所做功的最大值; (3)物体在沿斜面向上运动至返回到斜面底端的过程中,重力的冲量。

高中物理动量定理技巧小结及练习题

高中物理动量定理技巧小结及练习题

高中物理动量定理技巧小结及练习题一、高考物理精讲专题动量定理1.质量为m 的小球,从沙坑上方自由下落,经过时间t 1到达沙坑表面,又经过时间t 2停在沙坑里.求:⑴沙对小球的平均阻力F ;⑵小球在沙坑里下落过程所受的总冲量I . 【答案】(1)122()mg t t t + (2)1mgt 【解析】试题分析:设刚开始下落的位置为A ,刚好接触沙的位置为B ,在沙中到达的最低点为C.⑴在下落的全过程对小球用动量定理:重力作用时间为t 1+t 2,而阻力作用时间仅为t 2,以竖直向下为正方向,有: mg(t 1+t 2)-Ft 2=0, 解得:方向竖直向上⑵仍然在下落的全过程对小球用动量定理:在t 1时间内只有重力的冲量,在t 2时间内只有总冲量(已包括重力冲量在内),以竖直向下为正方向,有: mgt 1-I=0,∴I=mgt 1方向竖直向上 考点:冲量定理点评:本题考查了利用冲量定理计算物体所受力的方法.2.如图所示,长为L 的轻质细绳一端固定在O 点,另一端系一质量为m 的小球,O 点离地高度为H 。

现将细绳拉至与水平方向成30︒,由静止释放小球,经过时间t 小球到达最低点,细绳刚好被拉断,小球水平抛出。

若忽略空气阻力,重力加速度为g 。

(1)求细绳的最大承受力;(2)求从小球释放到最低点的过程中,细绳对小球的冲量大小;(3)小明同学认为细绳的长度越长,小球抛的越远;小刚同学则认为细绳的长度越短,小球抛的越远。

请通过计算,说明你的观点。

【答案】(1)F =2mg ;(2)()22F I mgt m gL =+;(3)当2HL =时小球抛的最远 【解析】 【分析】 【详解】(1)小球从释放到最低点的过程中,由动能定理得201sin 302mgL mv ︒=小球在最低点时,由牛顿第二定律和向心力公式得20mv F mg L-= 解得:F =2mg(2)小球从释放到最低点的过程中,重力的冲量I G =mgt动量变化量0p mv ∆=由三角形定则得,绳对小球的冲量()22F I mgt m gL =+(3)平抛的水平位移0x v t =,竖直位移212H L gt -=解得2()x L H L -当2HL =时小球抛的最远3.图甲为光滑金属导轨制成的斜面,导轨的间距为1m l =,左侧斜面的倾角37θ=︒,右侧斜面的中间用阻值为2R =Ω的电阻连接。

[荐]高中物理:动量守恒定律-必考知识点+例题详解

[荐]高中物理:动量守恒定律-必考知识点+例题详解

【下载后获高清完整版-独家】高中物理:动量守恒定律-必考知识点+例题详解1. 动量,表征运动物体的作用效果或者保持运动的趋势,是一个状态量,表示物体的一个运动状态。

动量是矢量,即有方向。

2.冲量,力在时间上的累积,是一个过程量。

容易发现,动量与冲量的单位是一样的。

它们之间有什么关系吗?3.动量定理,冲量等于动量的改变量,即冲量引起动量的变化。

,动量定理的实质是牛顿第二定律推论:动量的变化率等于物体所受的合外力。

4.动量守恒定律⑴明确内力和外力的概念,单个物体与系统的含义;⑵如果一个系统所受合外力为零,则系统的总动量保持不变实质:把系统或者各个物体看做一个整体,合外力为零时,系统整体或者系统质心保持静止或匀速直线运动。

考察各组成部分的运动时,动量守恒就是牛顿第三定律的推广,作用力与反作用力大小相等、方向相反,作用时间一样,所以冲量大小相等、方向相反,代数和为零,动量守恒。

⑶合外力不为零,但内力远大于外力时,也可认为近似守恒,如碰撞、爆炸等;⑷合外力不为零,但在某一方向上满足守恒条件,定律在该方向上也同样适用。

5.碰撞⑴碰撞的特点①相互作用的时间很短;②内力远大于外力,可认为系统动量守恒;③碰撞后系统的总动能不会增加;⑤碰撞后不能穿透对方。

⑵弹性碰撞:碰撞前后机械能守恒;两个物体碰撞前的速度分别为、,碰撞后的速度分别为、,根据系统的动量守恒和机械能守恒,可得当=0时,上式简化为:①时,两速度均为正;时,两物体交换速度(≠0时也成立);时,两速度前负后正;②极端情况下,时,,;时,,;但要注意,此时被动球的动量不等于0,而是最大值(想一想为什么?)⑶非弹性碰撞:机械能不守恒的碰撞,因为碰撞产生的形变并不能完全恢复,所以造成动能损失。

完全非弹性碰撞:碰撞后两物体合二为一,具有共同的速度,此时动能损失最大。

[例1]静止在水平面上的物体受到水平拉力作用,经时间撤去,物体至停止共滑行位移,再换用水平拉力作用,经时间撤去,物体停止时也滑行了位移,已知,、对物体的冲量为、,对物体做功为、,则下列关系正确的是()A.,B.,C.,D.,解析:考察动能变化:由动能定理,合外力做功等于动能的改变量,摩擦力做的负功在两种情况下是一样的,所以拉力做的正功也是一样的,即;再考察冲量变化:我们知道,由动量定理、是两种情况下的总的运动时间。

高中物理选修一动量守恒知识点归纳

高中物理选修一动量守恒知识点归纳

高中物理选修一:动量守恒知识点归纳一、动量的概念1. 动量的定义:动量是物体运动状态的量度,是物体质量和速度的乘积,通常用符号 p 表示。

2. 动量的单位:国际单位制中,动量的单位是千克·米/秒(kg·m/s)。

3. 动量的方向:动量的方向与物体的运动方向一致。

二、动量定理1. 动量定理的表述:一个物体的动量改变量等于作用在该物体上的合外力的冲量。

2. 动量定理的数学表达:Δp = F·Δt,其中Δp表示动量的改变量,F表示合外力,Δt表示时间。

3. 动量定理的应用:可以用来分析物体在外力作用下的运动状态。

三、动量守恒定律1. 动量守恒定律的表述:在一个封闭系统内,如果合外力为零,则系统的总动量保持不变。

2. 动量守恒定律的数学表达:Σpi = Σpf,即系统最初的总动量等于系统最终的总动量。

3. 动量守恒定律的应用:可用来分析弹性碰撞和完全非弹性碰撞等情况下物体的运动状态。

四、弹性碰撞1. 弹性碰撞的特点:在碰撞过程中,动能守恒,动量守恒。

2. 弹性碰撞的数学表达:m1v1i + m2v2i = m1v1f + m2v2f,即碰撞前的总动量等于碰撞后的总动量。

3. 弹性碰撞的应用:可用来分析弹簧振子、弹性小球碰撞等实际问题。

五、完全非弹性碰撞1. 完全非弹性碰撞的特点:在碰撞过程中,动量守恒,动能不守恒。

2. 完全非弹性碰撞的数学表达:m1v1i + m2v2i = (m1 + m2)v,即碰撞前的总动量等于碰撞后物体的总动量。

3. 完全非弹性碰撞的应用:可用来分析汽车碰撞、弹性小球与粘性物体碰撞等实际问题。

六、动量守恒实验1. 实验装置:常用的实验装置包括弹簧振子、动量棒等。

2. 实验原理:利用实验装置,进行不同形式的碰撞实验,验证动量守恒定律。

3. 实验过程:通过记录实验数据,进行数据分析,验证动量守恒定律在实验中的应用。

七、动量守恒在日常生活和工程实践中的应用1. 交通事故分析:利用动量守恒定律,可以分析交通事故中车辆碰撞的情况,从而减少事故损失。

动量定理知识点总结及随堂练习

动量定理知识点总结及随堂练习

动量定理与动量守恒一、动量和冲量1.动量——物体的质量和速度的乘积叫做动量:p =mv⑴动量是描述物体运动状态的一个状态量,它与时刻相对应。

⑵动量是矢量,它的方向和速度的方向相同。

⑶动量的相对性:由于物体的速度与参考系的选取有关,所以物体的动量也与参考系选取有关,因而动量具有相对性。

题中没有特别说明的,一般取地面或相对地面静止的物体为参考系。

(4)研究一条直线上的动量要选择正方向2.动量的变化:p p p -'=∆由于动量为矢量,则求解动量的变化时,其运算遵循平行四边形定则。

A 、若初末动量在同一直线上,则在选定正方向的前提下,可化矢量运算为代数运算。

B 、若初末动量不在同一直线上,则运算遵循平行四边形定则。

2.冲量——力和力的作用时间的乘积叫做冲量:I =Ft(1)冲量是描述力的时间积累效应的物理量,是过程量,它与时间相对应。

(2)冲量是矢量,它的方向由力的方向决定。

如果力的方向在作用时间内保持不变,那么冲量的方向就和力的方向相同。

如果力的方向在不断变化,如绳子拉物体做圆周运动,则绳的拉力在时间t 内的冲量,就不能说是力的方向就是冲量的方向。

对于方向不断变化的力的冲量,其方向可以通过动量变化的方向间接得出。

(3)高中阶段只要求会用I=Ft 计算恒力的冲量。

(4)冲量和功不同。

恒力在一段时间内可能不作功,但一定有冲量。

(5)必须清楚某个冲量是哪个力的冲量(6)求合外力冲量的两种方法:A 、求合外力,再求合外力的冲量B 、先求各个力的冲量,再求矢量和二、动量定理1.动量定理——物体所受合外力的冲量等于物体的动量变化。

既I =Δp⑴动量定理表明冲量是使物体动量发生变化的原因,冲量是物体动量变化的量度。

这里所说的冲量是物体所受的合外力的冲量(或者说是物体所受各外力冲量的矢量和)。

⑵动量定理给出了冲量(过程量)和动量变化(状态量)间的互求关系。

⑶现代物理学把力定义为物体动量的变化率:tP F ∆∆=(牛顿第二定律的动量形式)。

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析

高中物理动量守恒定律的应用技巧(很有用)及练习题含解析一、高考物理精讲专题动量守恒定律的应用1.如图所示质量为m的物块A在光滑的水平面上以一定的速度向右滑行,质量为2m的圆弧体静止在光滑水平面上,光滑圆弧面最低点与水平面相切,圆弧的半径为R,圆弧所对的圆心角θ=53°,物块滑上圆弧体后,刚好能滑到圆弧体的最高点,重力加速度为g。

求(1)物块在水平面上滑行的速度大小;(2)若将圆弧体锁定,物块仍以原来的速度向右滑行并滑上圆弧体,则物块从圆弧面上滑出后上升到最高点的速度大小及最高点离地面的高度。

【答案】(1)06 5v gR=(2)232 55v gR =66125 h R =【解析】【分析】(1)A、B组成的系统在水平方向动量守恒,应用动量守恒定律与机械能守恒定律可以求出物块A的速度。

(2)圆弧体固定,物块上滑过程机械能守恒,应用机械能守恒定律可以求出到达圆弧体上端时的速度,离开圆弧体后物块做斜上抛运动,应用运动的合成与分解可以求出到达最高点的速度,应用机械能守恒定律可以求出上升的最大高度。

【详解】(1)物块与圆弧体组成的系统在水平方向动量守恒,物块到达最高点时两者速度相等,以向右为正方向,由动量守恒定律得:mv0=(m+2m)v,由机械能守恒定律得:12m v02=12(m+2m)v2+mgR(1−cosθ),解得:06 5v gR =(2)对物块,由机械能守恒定律得:12m v02=12m v12+mgR(1−cosθ),解得:12 5v gR=物块从圆弧最高点抛出后,在水平方向做匀速直线运动,竖直方向做竖直上抛运动,物块到达最高点时,物块的速度:v2=v1cosθ=3255gR,由机械能守恒定律得:12m v02=mgh+12m v22,解得:h=66125R ; 【点睛】本题考查了动量守恒定律与机械能守恒定律的应用,分析清楚物体运动过程是解题的前提,应用动量守恒定律、机械能守恒定律即可解题。

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

高中物理动量守恒定律解题技巧讲解及练习题(含答案)

【答案】 v0 v0
【解析】设 A、B 球碰撞后速度分别为 v1 和 v2 由动量守恒定律得 2mv0=2mv1+mv2
且由题意知

解得 v1= v0,v2= v0 视频
7.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到 108K 时,可
以发生“氦燃烧”。
①完成“氦燃烧”的核反应方程:
由于 A、B 整体恰好不再与 C 碰撞,故 v1 vC
联立以上三式可得 vA =2m/s。
【考点定位】(1)核反应方程,半衰期。
(2)动量守恒定律。
8.如图,一质量为 M 的物块静止在桌面边缘,桌面离水平地面的高度为 h.一质量为 m 的 子弹以水平速度 v0 射入物块后,以水平速度 v0/2 射出.重力加速度为 g.求: (1)此过程中系统损失的机械能; (2)此后物块落地点离桌面边缘的水平距离.
mgL=
1 2
mv02-
1 2
m(
v0 2
)2-
1 2
2m(
v0 4
)2
解得 5v02 16gL
(3)对 A 滑上 C 直到最高点的作用过程,A、C 系统水平方向上动量守恒,则有:
A、C 系统机械能守恒:
mv0 +mvB=2mv 2
mgR=1 m(v0 )2 1 m(v0 )2 1 2mv2 22 24 2
小球 B 与地面碰撞后根据没有动能损失所以 B 离开地面上抛时速度 v0 vB 4m / s
所以 P 点的高度 hp
v02 vB 2g
'2
0.75m
考点:动量守恒定律 能量守恒
6.牛顿的《自然哲学的数学原理》中记载,A、B 两个玻璃球相碰,碰撞后的分离速度和 它们碰撞前的接近速度之比总是约为 15∶ 16.分离速度是指碰撞后 B 对 A 的速度,接近速 度是指碰撞前 A 对 B 的速度.若上述过程是质量为 2m 的玻璃球 A 以速度 v0 碰撞质量为 m 的静止玻璃球 B,且为对心碰撞,求碰撞后 A、B 的速度大小.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七、动量一、知识网络二、画龙点睛概念1、冲量(1)定义力F和力的作用时间t的乘积Ft叫做力的冲量,通常用I表示。

冲量表示力对时间的累积效果,冲量是过程量。

(2)大小:物体在恒力作用下,冲量的大小是力和作用时间的乘积,即I =Ft计算冲量时,要明确是哪个力在哪一段时间内的冲量。

(3)方向:冲量是矢量,它的方向是由力的方向决定的。

如果力的方向在作用时间内不变,冲量方向就跟力的方向相同。

(4)单位:在国际单位制中,冲量的单位是牛·秒(N ·s )。

(5)说明①冲量是矢量。

恒力冲量的大小等于力和时间的乘积,方向与力的方向一致;冲量的运算符合矢量运算的平行四边形定则。

(怎样求合力的冲量,怎样求变力的冲量)②冲量是过程量。

冲量表示力对时间的累积效果,只要有力并且作用一段时间,那么该力对物体就有冲量作用。

计算冲量时必须明确是哪个力在哪段时间内的冲量。

③冲量是绝对的。

与物体的运动状态无关,与参考系的选择无关。

④冲量可以用F ─t 图象描述。

F ─t图线下方与时间轴之间包围的“面积”值表示对应时间内力的冲量。

例题:①如图所示,一个质量为m的物块在与水平Array方向成θ角的恒力F作用下,经过时间t,获得的速度为V,求F在t时间内的冲量?(大小:Ft;方向:与F的方向一致,与水平方向成θ角)②一质量为mkg的物体,以初速度V0水平抛出,经时间t,求重力在时间t内的冲量?(大小:mgt;方向:竖直向下)例题:以初速度V0竖直向上抛出一物体,空气阻力不可忽略。

关于物体受到的冲量,以下说法中正确的是A.物体上升阶段和下落阶段受到重力的冲量方向相反B.物体上升阶段和下落阶段受到空气阻力冲量的方向相反C.物体在下落阶段受到重力的冲量大于上升阶段受到重力的冲量D.物体从抛出到返回抛出点,所受各力冲量的总和方向向下解析:物体在整个运动中所受重力方向都向下,重力对物体的冲量在上升、下落阶段方向都向下,选项A错。

物体向上运动时,空气阻力方向向下,阻力的冲量方向也向下。

物体下落时阻力方向向上,阻力的冲量方向向上。

选项B正确。

在有阻力的情况下,物体下落的时间t2比上升时所用时间t1大。

物体下落阶段重力的冲量mgt2大于上升阶段重力的冲量mgt1,选项C正确。

在物体上抛的整个运动中,重力方向都向下。

物体在上升阶段阻力的方向向下,在下落阶段虽然阻力的方向向上,但它比重力小。

在物体从抛出到返回抛出点整个过程中,物体受到合力的冲量方向向下,选项D正确。

综上所述,正确选项是B、C、D。

2、动量(1)定义:在物理学中,物体的质量m和速度V的乘积mV叫做动量,动量通常用符号P表示。

(2)大小:物体在某一状态动量的大小等于物体的质量和物体在该时刻瞬时速度的乘积,即P=mV计算动量时,要明确是哪个物体在哪个状态的动量,速度一定要是该状态的瞬时速度。

(3)方向:动量也是矢量,动量的方向与速度方向相同。

动量的运算服从矢量运算规则,要按照平行四边形定则进行。

(4)单位:在国际单位制中,动量的单位是千克·米/秒(kg·m/s)1kg·m/s=1N·s(5)说明①动量是矢量。

动量有大小和方向,动量的大小等于物体的质量和速度的乘积,方向与物体的运动方向相同。

动量的运算符合矢量运算的平行四边形定则。

在一维情况下可首先规定一个正方向,这时求动量变化就可简化为代数运算。

②动量是状态量。

动量与物体的运动状态相对应。

计算动量时,要明确是哪个物体在哪个状态的动量,速度一定要是该状态的瞬时速度。

③动量与参考系有关。

物体的速度与参考系有关,所以物体的动量也与参考系有关。

在中学物理中,如无特别说明,一般都以地面为参考系。

3、动量的变化①动量变化的三种情况:动量大小变化、动量方向改变、动量的大小和方向都改变三种可能。

②定义:在某一过程中,末状态动量与初状态动量的矢量差值,叫该过程的动量变化。

③计算a 、如果v 1和v 2方向相同,计算动量的变化就可用算术减法求之。

12mv mv mv -=∆b 、如果v 1和v 2方向相反,计算动量的变化就需用代数减法求之,若以v 2为正值,则v 1就应为负值。

1212)(mv mv v m mv mv +=--=∆c 、如果v 1与v 2的方向不在同一直线上,应当运用矢量的运算法则:如图1所示,mV 1为初动量,mV 2为末动量,则动量的变化(矢量式))(1212mv mv mv mv mv -+=-=∆即作mV 1的等大、反向矢量-mV 1,然后,将mV 2与-mV 1运用平行四边形定则作其对角线即为动量的变化mv ,如图2所示。

或者将初动量与末动量的矢量箭头共点放置,自初动量的箭头指向末动量箭头的有向线段,即为矢量ΔP 。

例题:一个质量是0.1kg 的钢球,以6m/s 的速度水平向右运动,碰到一块坚硬的障碍物后被弹回,解析:取水平向右的方向为正方向,碰撞前钢球的速度V =6m/s ,碰撞前钢球的动量为P =mV=0.1×6kg ·m/s =0.6kg ·m/s碰撞后钢球的速度为V ′=-6m/s ,碰撞后钢球的动量为P ′=mV ′=-0.1×6kg ·m/s =-0.6kg ·m/s碰撞前后钢球动量的变化为正方向 P ΔPP P ′ 图1 mV mVΔP =P ˊ-P =-0.6kg ·m/s -0.6 kg ·m/s =-1.2 kg ·m/s且动量变化的方向向左。

[对例题的处理:①为熟悉动量变化的矢量运算,可先假定物体运动速度的方向没有变化,仅大小发生改变,化。

②规定向右为正方向,左为正方向运算,求动量的变化量(练习一、第3题向的选择只是一种解题的处理手段,并不影响解题的结果。

]例题:一个质量是0.2kg 的钢球,以2m/s 的速度斜射到坚硬的大理石板上,入射的角度是45°,碰撞后被斜着弹出,弹出的角度也是45°,速度大小仍为2m/s ,求出钢球动量变化的大小和方向?解析:碰撞前后钢球不在同一直线上运动,据平行四边形定则,P ′、P 和ΔP 的矢量关系如右图所示。

ΔP =m/s •kg 20.4=m/s •kg 4.0+4.0=+2222/p p 方向竖直向上。

总结:动量是矢量,求其变化量应用平行四边形定则;在一维情况下可首先规定一个正方向,这时求动量变化就可简化为代数运算。

例题:质量m 为3kg 的小球,以2m/s 的速率绕其圆心O 做匀速圆周运动,小球从A 转到B 过程中动量的变P化为多少?从A 转到C 的过程中,动量变化又为多少?解析:小球从A 转到B 过程中,动量变化的大小为26kg ·m/s ,方向为向下偏左45°,小球从A 转到C ,规定向左为正方向,则ΔP =12kg ·m/s ,方向水平向左。

例题:质量为m 的小球由高为H 的光滑斜面顶端无初速滑到底端过程中,重力、弹力、合力的冲量各是多大?解析:力的作用时间都是g H g H t 2sin 1sin 22αα==,力的大小依次是mg 、mg cos α和mg sin α,所以它们的冲量依次是:gH m I gH m I gH m I N G 2,tan 2,sin 2===合αα特别要注意,该过程中弹力虽然不做功,但对物体有冲量。

例题:以初速度v 0平抛出一个质量为m 的物体,抛出后t 秒内物体的动量变化是多少?解析:因为合外力就是重力,所以Δp =F t =m g t有了动量定理,不论是求合力的冲量还是求物体动量的变化,都有了两种可供选择的等价的方法。

本题用冲量求解,比先求末动量,再求初、末动量的矢量差要方便得多。

当合外力为恒力时往往用Ft 来求较为简单;当合外力为变力时,在高中阶段只能用Δp 来求。

规律1、动量定理(1)内容:物体所受合力的冲量等于物体的动量变化,这个结论叫做动量定理。

(2)表达式:Ft=mV′-mV=P′-P(3) 推导问题:一个质量为m的物体,初速度为V,在合力F的作用下,经过一段时间t,速度变为V′,求:①物体的初动量P和末动量P′分别为多少?②物体的加速度a=?③据牛顿第二定律F=ma可推导得到一个什么表达式?解析:①初动量为P=mV ,末动量为P′=mV′②物体的加速度a=(V'-V)/t③根据牛顿第二定律F=ma=(mV'-mV)/t可得Ft=mV′-mV即Ft=P′-P等号左边表示合力的冲量,等号右边是物体动量的变化量。

⑷说明:①动量定理Ft=P′-P是矢量式,Ft指的是合外力的冲量,ΔP 指的是动量的变化。

动量定理说明合外力的冲量与动量变化的数值相同,方向一致,单位等效,但不能认为合外力的冲量就是动量的增量。

对方向变化的力,其冲量的方向与力的方向一般不同,但冲量的方向与动量变化的方向一定相同。

若公式中各量均在一条直线上,可规定某一方向为正,根据已知各量的方向确定它们的正负,从而把矢量运算简化为代数运算。

公式中的“-”号是运算符号,与正方向的选取无关。

②动量定理揭示的因果关系。

它表明物体所受合外力的冲量是物体动量变化的原因,物体动量的变化是由它受到的外力经过一段时间积累的结果。

③动量定理的分量形式:物体在某一方向上的动量变化只由这一方向上的外力冲量决定。

F x t=mV x′-mV xF y t=mV y′-mV y④动量定理既适用于恒力,也适用于变力。

对于变力的情况,动量定理中的F应理解为变力在作用时间内的平均值。

⑤动量定理的研究对象。

在中学阶段,动量定理的研究对象通常是指单个物体,合外力是指物体受到的一切外力的合力。

实际上,动量定理对物体系统也是适用的。

对物体系统来说,内力不会改变系统的动量,同样是系统合外力的冲量等于系统的动量变化。

⑥牛顿第二定律的动量表示,F=(P′-P)/t=ΔP/t。

从该式可以得出:合外力等于物体的动量变化率。

(5)动量定理的特性①矢量性:冲量、动量和动量变化均为矢量,动量定理为矢量关系;②整体性:F和t,m和V不可分;运用动量定理可对整个过程建立方程,对过程的细节考虑较少,解题较动力学和运动学容易些。

③独立性:某方向的冲量只改变该方向的动量;④对应性:Ft和ΔP应对应同一过程,F、V应对应同一惯性参考系;⑤因果性:冲量是动量变化的原因,动量变化是力对时间累积的结果;⑥变通性:在具体应用时,可用冲量代替匀变速曲线运动的动量变化,也可用动量变化代替变力的冲量。

动量定理应用举例(1)解释现象①在ΔP一定的情况下,要减小力F,可以延长力的作用时间;要增大力F,可缩短力的作用时间。

②在F一定的情况下,作用时间t短则ΔP小,作用时间t长则ΔP大;③在t一定的情况下,作用力F小则ΔP小,作用力F大则ΔP 大。

相关文档
最新文档