初中数学培优阶段测试(1-2章)
【学生卷】初中数学高中化学必修一第二章《海水中的重要元素—钠和氯》测试题(培优)

一、填空题1.钠、碳及它们的化合物在生产、生活中有着重要的用途。
(1)某汽车安全气囊的产气药剂主要含有NaN3、Fe2O3、KClO4、NaHCO3等物质。
当汽车发生碰撞时,NaN3迅速分解产生N2和Na,同时放出大量的热。
N2使气囊迅速膨胀,从而起到保护作用。
① KClO4的名称是___________,具有___________(填“还原性”或“氧化性”)。
② Fe2O3可处理产生的Na,反应为6Na+Fe2O3 =3Na2O+2Fe,反应中Na作___________(填“还原剂”或“氧化剂”)。
反应过程中氧化产物与还原产物的个数比为:___________。
(2)Na2O2可用于呼吸面具或潜水艇中氧气的来源。
某实验小组利用下图装置探究Na2O2与CO2的反应。
请回答下列问题:①根据实验目的,虚线框中的装置所用的试剂为___________。
②装置C中观察到的现象是___________,反应的化学方程式是___________。
③装置A的作用是制备CO2,写出A中发生反应的化学方程式是___________。
2.新型冠状病毒蔓延期间,为做好自我保护,我们要减少外出,避免与表现出有呼吸道疾病症状的人密切接触,外出最重要的防护措施是佩戴符合要求的口罩。
在生活中常见的口罩一般有棉布口罩、医用外科口罩、活性炭口罩和N95口罩。
也可以在实验室进行制备84消毒液(有效成分是NaClO)。
(1)新型冠状病毒可以通过气溶胶传播,气溶胶属于分散系中的___________(“溶液”、“胶体”、“悬浊液”)。
(2)佩戴口罩预防疾病的原理相当于化学实验中的_________操作。
(“蒸发”、“过滤”“萃取”)(3)生成N95口罩的主要原料是聚丙烯,它属于___________(填“金属材料”或“合成材料”)(4)如图是模拟84消毒液的装置,实验室先制备氯气,再通入氢氧化钠溶液,写出发生的化学反应方程式:__________________________,氧化剂是_________,氧化产物是_________。
初中培优班数学试卷(含答案)

初中培优班数学试卷一1、已知二次函数y=-(x+k)2+h,当x>-2时,y随x的增大而减小,则函数中k的取值范围是()A.k≥-2 B.k≤-2 C.k≥2 D.k≤22、已知二次函数y=ax2+bx+c的图象经过点(0,m)、(4,m)和(1,n),若n<m,则()A.a>0且4a+b=0 B.a<0且4a+b=0 C.a>0且2a+b=0 D.a<0且2a+b=0 3、已知抛物线y=ax2+bx+c(a<0)经过点(﹣1,0),且满足4a+2b+c>0,有下列结论:①a+b>0;②﹣a+b+c>0;③b2﹣2ac>5a2.其中,正确结论的个数是()A.0 B.1 C.2 D.34、若抛物线y=x2﹣3x+c与y轴的交点为(0,2),则下列说法正确的是()A.抛物线开口向下 B.抛物线与x轴的交点为(﹣1,0),(3,0)C.当x=1时,y有最大值为0 D.抛物线的对称轴是直线x=5、已知二次函数y=ax2+bx+c+2的图象如图所示,顶点为(﹣1,0),下列结论:①abc>0;②b2﹣4ac=0;③a>2;④ax2+bx+c=﹣2的根为x=x2=﹣1;⑤若点B(﹣1,y1)、C(﹣,y2)为函数图象上的两点,则y1>y2.其中正确的个数是()A.2 B.3 C.4 D.56、如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,当y>0时,x的取值范围是A.﹣1<x<1 B.﹣3<x<﹣1 C.x<1 D.﹣3<x<17、如图,已知△ABC为等边三角形,AB=2,点D为边AB上一点,过点D作DE∥AC,交BC于E点;过E点作EF⊥DE,交AB的延长线于F点.设AD=x,△DEF的面积为y,则能大致反映y与x函数关系的图象是()A. B. C. D.8、如图所示,菱形ABCD的边长为5cm,高为4cm,直线l⊥边AB,并从点A出发以1cm/s 的速度向右运动,若直线l在菱形ABCD内部截得的线段MN的长为y(cm),则下列最能反映y(cm)与运动时间x(s)之间的函数关系的图象是()A. B.C. D.9、如图,在△ABC中,∠ABC=60°,∠C=45°,点D,E分别为边AB,AC上的点,且DE∥BC,BD=DE=2,CE=,BC=.动点P从点B出发,以每秒1个单位长度的速度沿B→D→E→C匀速运动,运动到点C时停止.过点P作PQ⊥BC于点Q,设△BPQ的面积为S,点P的运动时间为t,则S关于t的函数图象大致为()A. B.C. D.10、抛物线y=ax2+bx+3(a≠0)过A(4,4),B(2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是()A.m≤2或m≥3 B.m≤3或m≥4 C.2<m<3 D.3<m<411、二次函数y=ax2+bx+c(a≠0)的函数值y与自变量x之间的部分对应值如下表:则的值为_______-.12、若函数y=x2+2x﹣m的图象与x轴有且只有一个交点,则m的值为.13、如图,在平面直角坐标系中,菱形OABC的顶点A在x轴正半轴上,顶点C的坐标为(4,3).D是抛物线上一点,且在x轴上方.则△BCD的最大值为.14、已知二次函数y=-x2+2x+m的部分图象如图所示,则关于x的一元二次方程-x2+2x+m=0的解为15、如图,在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,点B 是这条抛物线上的另一点,且AB∥x轴,则以AB为边的正方形ABCD的周长为.16、如图,已知二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).(1)写出该函数图象的对称轴;(2)若将线段OA绕点O逆时针旋转60°到OA′,试判断点A′是否为该函数图象的顶点?17、如图,在平面直角坐标系中,直角三角形AOB的顶点A、B分别落在坐标轴上.O 为原点,点A的坐标为(6,0),点B的坐标为(0,8).动点M从点O出发.沿OA向终点A以每秒1个单位的速度运动,同时动点N从点A出发,沿AB向终点B以每秒个单位的速度运动.当一个动点到达终点时,另一个动点也随之停止运动,设动点M、N运动的时间为t秒(t>0).(1)当t=3秒时.直接写出点N的坐标,并求出经过O、A、N三点的抛物线的解析式;(2)在此运动的过程中,△MNA的面积是否存在最大值?若存在,请求出最大值;若不存在,请说明理由;(3)当t为何值时,△MNA是一个等腰三角形?19、在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.(1)当h=﹣1时,求点D的坐标;(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)18、如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1) 求抛物线的解析式(用一般式表示);(2) 点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3) 将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.19、如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C,D两点.点P是x轴上的一个动点.(1)求此抛物线的表达式;(2)当PA+PB的值最小时,求点P的坐标.参考答案一一、选择题1、B 2、A解:∵点(0,m)、(4,m)为抛物线上的对称点,∴抛物线的对称轴为直线x=2,即﹣=2,∴b+4a=0,∵x=1,y=n,且n<m,∴抛物线的开口向上,即a>0.3、D解:如图,∵抛物线过点(﹣1,0),且满足4a+2b+c>0,∴抛物线的对称轴x=﹣>,∴b>﹣a,即a+b>0,所以①正确;∵a<0,b>0,c>0,∴﹣a+b+c>0,所以②正确;∵a﹣b+c=0,即b=a+c,∴4a+2(b+c)+c>0,∴2a+c>0,∴b2﹣2ac﹣5a2=(a+c)2﹣2ac﹣5a2=﹣(2a+c)(2a﹣c),而2a+c>0,2a﹣c<0,∴∴b2﹣2ac﹣5a2>0,即b2﹣2ac>5a2.所以③正确.故选:D.4、D【解答】解:A、∵a=1>0,∴抛物线开口向上,A选项错误;B、∵抛物线y=x2﹣3x+c与y轴的交点为(0,2),∴c=2,∴抛物线的解析式为y=x2﹣3x+2.当y=0时,有x2﹣3x+2=0,解得:x1=1,x2=2,∴抛物线与x轴的交点为(1,0)、(2,0),B选项错误;C、∵抛物线开口向上,∴y无最大值,C选项错误;D、∵抛物线的解析式为y=x2﹣3x+2,∴抛物线的对称轴为直线x=﹣=﹣=,D选项正确.故选:D.【解答】解:①由抛物线的对称轴可知:<0,∴ab>0,由抛物线与y轴的交点可知:c+2>2,∴c>0,∴abc>0,故①正确;②抛物线与x轴只有一个交点,∴△=0,∴b2﹣4ac=0,故②正确;③令x=﹣1,∴y=a﹣b+c+2=0,∵=﹣1,∴b=2a,∴a﹣2a+c+2=0,∴a=c+2,∵c+2>2,∴a>2,故③正确;④由图象可知:令y=0,即0=ax2+bx+c+2的解为x1=x2=﹣1,∴ax2+bx+c=﹣2的根为x1=x2=﹣1,故④正确;⑤∵﹣1<<,∴y1>y2,故⑤正确;故选:D.6、解:∵抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0),对称轴为直线x=﹣1,∴抛物线与x轴的另一交点坐标是(﹣3,0),∴当y>0时,x的取值范围是﹣3<x<1.7、A【分析】根据平行线的性质可得∠EDF=∠B=60°,根据三角形内角和定理即可求得∠F=30°,然后证得△EDB是等边三角形,从而求得ED=DB=2﹣x,再根据直角三角形的性质求得EF,最后根据三角形的面积公式求得y与x函数关系式,根据函数关系式即可判定.【解答】解:∵△ABC是等边三角形,∴∠A=∠C=∠ABC=60°,∵DE∥AC,∴∠EDF=∠A=60°,∠DEB=∠B=60°∵EF⊥DE,∴∠DEF=90°,∴∠F=90°﹣∠EDC=30°∵∠EDB=∠DEB=60°,∴△EDB是等边三角形.∴ED=DB=2﹣x,∵∠DEF=90°,∠F=30°,∴EF=ED=(2﹣x).∴y=ED•EF=(2﹣x)•(2﹣x),即y=(x﹣2)2,(x<2),8、解:点M从点A到点D的过程中,y==x,(x≤3),故选项A、B、C错误,当点M从D点使点N到点B的过程中,y=4,(3<x≤5),点M到C的过程中,y==x﹣,(x>5),故选项D正确,9、解:∵PQ⊥BQ∴在P、Q运动过程中△BPQ始终是直角三角形.∴S△BPQ=PQ•BQ①当点P在BD上,Q在BC上时(即0s≤t≤2s)BP=t,BQ=PQ•cos60°=t,PQ=BP•sin60°= S△BPQ=PQ•BQ=•t•t=t2此时S△BPQ的图象是关于t(0s≤t≤2s)的二次函数.∵>0∴抛物线开口向上;②当P在DE上,Q在BC上时(即2s<t≤4s)PQ=BD•sin60°=×2=,BQ=BD•cos60°+(t﹣2)=t﹣1S△BPQ=PQ•BQ=••(t﹣1)=t﹣此时S△BPQ的图象是关于t(2s<t≤4s)的一次函数.∵斜率>0∴S△BPQ随t的增大而增大,直线由左向右依次上升.③当P在DE上,P在EC上时(即4s<t≤s)PQ=[CE﹣(t﹣4)]•sin45°=﹣t(4s<t≤s),BQ=BC﹣CQ=BC﹣[CE﹣(t﹣4)]•cos45°=﹣(﹣t)=t+S△BPQ=PQ•BQ由于展开二次项系数a=k1•k2=•(﹣)•()=﹣抛物线开口向下,10、B. 11、﹣.解:∵x=1.x=2时的函数值都是﹣1相等,∴此函数图象的对称轴为直线x=﹣==,即=﹣.12、﹣1.解:∵函数y=x2+2x﹣m的图象与x轴有且只有一个交点,∴△=22﹣4×1×(﹣m)=0,解得:m=﹣1.13、15 14、 x1=-1,x2=315、12.解:∵在平面直角坐标系中,点A是抛物线y=a(x+)2+k与y轴的交点,∴点A的横坐标是0,该抛物线的对称轴为直线x=﹣,∵点B是这条抛物线上的另一点,且AB∥x轴,∴点B的横坐标是﹣3,∴AB=|0﹣(﹣3)|=3,∴正方形ABCD的周长为:3×4=12,16、解:(1)∵二次函数y=a(x﹣h)2+的图象经过原点O(0,0),A(2,0).解得:h=1,a=﹣,∴抛物线的对称轴为直线x=1;(2)点A′是该函数图象的顶点.理由如下:如图,作A′B⊥x轴于点B,∵线段OA绕点O逆时针旋转60°到OA′,∴OA′=OA=2,∠A′OA=60°,在Rt△A′OB中,∠OA′B=30°,∴OB=OA′=1,∴A′B=OB=,∴A′点的坐标为(1,),∴点A′为抛物线y=﹣(x﹣1)2+的顶点.故直线AC的解析式为:y=﹣x+3;∵四边形ABCD是平行四边形,∴BC=AD=8,∴D(8,3),∵B,D点都在抛物线y=x2+bx+c上,∴解得:,故此抛物线解析式为:y=x2﹣x﹣3;(2)①如图2,∵OA=3,OB=4,∴AC=5.设点P运动了t秒时,PQ⊥AC,此时AP=t,CQ=t,AQ=5﹣t,∵PQ⊥AC,∴∠AQP=∠AOC=90°,∠PAQ=∠ACO,∴△APQ∽△CAO,∴=,即=解得:t=.②如图3,设点P运动了t秒时,当QP⊥AD,此时AP=t,CQ=t,AQ=5﹣t,∵QP⊥AD,∴∠APQ=∠AOC=90°,∠PAQ=∠ACO,∴△AQP∽△CAO,∴=,即=,解得:t=.即当点P运动到距离A点或个单位长度处,△APQ是直角三角形;(3)如图4,∵S四边形PDCQ+S△APQ=S△ACD,且S△ACD=×8×3=12,∴当△APQ的面积最大时,四边形PDCQ的面积最小,当动点P运动t秒时,AP=t,CQ=t,AQ=5﹣t,设△APQ底边AP上的高为h,作QH⊥AD于点H,由△AQH∽△CAO可得:=,解得:h=(5﹣t),∴S△APQ=t×(5﹣t)=(﹣t2+5t)=﹣(t﹣)2+,∴当t=时,S△APQ达到最大值,此时S四边形PDCQ=12﹣=,故当点P运动到距离点A,个单位处时,四边形PDCQ面积最小,则AQ=QC=,故△CMQ的面积为:S△AMC=××4×6=6.当t=3时,AN=t=5=AB,即N是线段AB的中点;∴N(3,4).设抛物线的解析式为:y=ax(x-6),则:4=3a(3-6),a=-;∴抛物线的解析式:y=-x(x-6)=-x2+x.(2)过点N作NC⊥OA于C;由题意,AN=t,AM=OA-OM=6-t, NC=NA·sin∠BAO=t·=t;则:S△MNA=AM·NC=×(6-t)×t=-(t-3)2+6.∴△MNA的面积有最大值,且最大值为6.(3)Rt△NCA∴OC=OA-AC=6-t,∴N.∴NM==;又:AM=6-t,AN=t(0<t<6);①当MN=AN时,=t,即:t2-8t+12=0,t1=2,t2=6(舍去);②当MN=MA时,=6-t,即:t2-12t=0,t1=0(舍去),t2=;③AM=AN时,6-t=t,即t=;综上当t的值取2或或时,△MAN是等腰三角形.19、解:(1)当h=﹣1时,y=x2+2x﹣1=(x+1)2﹣2,则顶点D的坐标为(﹣1,﹣2);(2)∵y=x2﹣2hx+h=(x﹣h)2+h﹣h2,∴x=h时,函数有最小值h﹣h2.①如果h≤﹣1,那么x=﹣1时,函数有最小值,此时m=(﹣1)2﹣2h×(﹣1)+h=1+3h;②如果﹣1<h<1,那么x=h时,函数有最小值,此时m=h﹣h2;③如果h≥1,那么x=1时,函数有最小值,此时m=12﹣2h×1+h=1﹣h.20、解: (1) ∵抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),∴,解得,∴抛物线解析式为y=﹣x2+x+2;(2) 由题意可知C(0,2),A(﹣1,0),B(4,0),∴AB=5,OC=2,∴S△ABC=ABOC=×5×2=5,∵S△ABC=S△ABD∴S△ABD=×5=,设D(x,y),∴AB|y|=×5|y|=,解得|y|=3,当y=3时,由﹣x2+x+2=3,解得x=1或x=2,此时D点坐标为(1,3)或(2,3);当y=﹣3时,由﹣x2+x+2=﹣3,解得x=﹣2(舍去)或x=5,此时D点坐标为(5,﹣3);综上可知存在满足条件的点D,其坐标为(1,3)或(2,3)或(5,﹣3);(3) ∵AO=1,OC=2,OB=4,AB=5,∴AC==,BC==2,∴AC2+BC2=AB2,∴△ABC为直角三角形,即BC⊥AC,如图,设直线AC与直线BE交于点F,过F作FM⊥x轴于点M,由题意可知∠FBC=45°,∴∠CFB=45°,∴CF=BC=2,∴=,即=,解得OM=2,=,即=,解得FM=6,∴F(2,6),且B(4,0),设直线BE解析式为y=kx+m,则可得,解得,∴直线BE解析式为y=﹣3x+12,联立直线BE和抛物线解析式可得,解得或,∴E(5,﹣3),∴BE==.21、解:(1)∵抛物线顶点坐标为(1,4),∴设抛物线表达式为y=a(x-1)2+4.由于抛物线过点B(0,3),∴3=a(0-1)2+4.解得a=-1.∴抛物线的表达式为y=-(x-1)2+4,即y=-x2+2x+3.(2)作点B关于x轴的对称点E(0,-3),连接AE交x轴于点P,连接PB.设AE表达式为y=kx+b,则∴y=7x-3.当y=0时,x=.∴点P坐标为(,0).。
初中数学七年级上培优练习册全集(人教版)

初中数学练习册七年级(上)人教版目录:第一章有理数1.1 有理数的概念1.2 有理数的运算1.3 近似数与科学计数法1.4 单元测试第二章整式加减2.1 整式的加减2.2 单元测试第三章一元一次方程3.1 解一元一次方程3.2 列方程解应用题(一)3.3 列方程解应用题(二)3.4 单元测试第四章图形认识初步4.1 多姿多彩的图形4.2 平面图形4.3 单元测试期末模拟试卷(一)期末模拟试卷(二)期末模拟试卷(三)有理数知识清单第一章有理数一、全章知识结构二、回顾正数、负数的意义及表示方法 1、正数的表示方法:a>0, 2、负数的表示方法:a<0三、有理数的分类定义:整数和分数统称为有理数有限小数和无限循环小数都是有理数而无限不循环小数却不是有理数1、按整数分数分类2、按数的正负性分类⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数负整数负数零正分数正整数正数有理数.3、在数轴上分类数轴:规定了原点,正方向和单位长度的直线叫做数轴。
数轴的作用:(1)用数轴上的点表示有理数; (2)在数轴上比较有理数的大小;(3)可用数轴揭示一个数的绝对值和互为相反数的几何意义;(4)在数轴上可求任意两点间的距离:两点间的距离=|x -y|=|y -x|四、有理数中具有特殊意义的数:相反数、倒数、绝对值、非负数1、相反数:(1)几何意义:在数轴上表示一对相反数的两个点与原点的距离相等。
⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧负分数正分数分数负整数零正整数整数有理数..(2)代数意义:只有符号不同的两个数。
(3)互为相反数的特性:a+b=0,0的相反数是0。
(4)会求一个数的相反数:a 的相反数为 a-b 的相反数为 2、倒数:(1)乘积是1的两个数互为倒数 (2)互为倒数的特性: ab=1, (3)0没有倒数(4)互为负倒数: 乘积是-1的两个数互为负倒数; ab=-13、非负数:(1)就是大于或等于0的数:a ≥0(2)数轴上,在原点的右边包括原点的点表示的数(3)任何数的平方数都是非负数(4)非正数:就是小于或等于0的数:a ≤0(5)数轴上,在原点的左边包括原点的点表示的数4、绝对值:(学生演示)(1)几何意义:一个数的绝对值就是它到原点的距离。
北师大版九年级数学下册 第1、2章 综合培优练习——提高卷(含答案)

北师大版九年级数学下册 第1、2章 综合培优练习——提高卷(时间:90分钟 满分:120分)一、选择题(每小题3分,共30分)1.如图,在△ABC 中,∠C =90°,AB =5,BC =3,则cosA 的值是(D)A.34B.43C.35D.452.当二次函数y =x 2+4x +9取最小值时,x 的值为(A)A.-2B.1C.2D.93.(河南中考)在二次函数y =-x 2+2x +1的图象中,若y 随x 的增大而增大,则x 的取值范围是(A) A.x <1 B.x >1 C.x <-1 D.x >-1 4.在△ABC 中,把三边的长度都扩大为原来的5倍,则锐角A 的正弦函数值(C) A.缩小为原来的15B.扩大为原来的5倍C.不变D.不能确定5.在直角坐标系xOy 中,点P(4,y)在第四象限内,且OP 与x 轴正半轴的夹角的正切值是2,则y 的值是(D) A.2 B.8 C.-2 D.-86.抛物线图象如图所示,根据图象,抛物线的表达式可能是(C)A.y =x 2-2x +3 B.y =-x 2-2x +3C.y =-x 2+2x +3D.y =-x 2+2x -37.(泰安中考)如图,轮船从B 处以每小时60海里的速度沿南偏东20°方向匀速航行,在B 处观测灯塔A 位于南偏东50°方向上,轮船航行40分钟到达C 处,在C 处观测灯塔A 位于北偏东10°方向上,则C 处与灯塔A 的距离是(D)A.20海里B.40海里C.2033海里D.4033海里8.函数y =-x 2+2(m -1)x +m +1的图象如图,它与x 轴交于A ,B 两点,线段OA 与OB 的比为1∶3,则m 的值为(D)A.13或2B.13C.1D.29.在平面直角坐标系中,设点P 到原点O 的距离为p ,OP 与x 轴正方向的夹角为α,则用[p ,α]表示点P 的极坐标,显然,点P 的极坐标与它的坐标存在一一对应关系.例如:点P 的坐标为(1,1),则其极坐标为[2,45°];若M 的坐标为(-1,-1),则其极坐标为[2,225°].若点Q 的极坐标为[4,60°],则点Q 的坐标为(A) A.(2,23) B.(2,-23) C.(23,2) D.(2,2)10.(梅州中考)对于二次函数y =-x 2+2x ,有下列四个结论:①它的对称轴是直线x =1;②设y 1=-x 21+2x 1,y 2=-x 22+2x 2,则当x 2>x 1时,有y 2>y 1;③它的图象与x 轴的两个交点是(0,0)和(2,0);④当0<x<2时,y>0.其中正确的结论的个数为(C)A.1B.2C.3D.4二、填空题(每小题4分,共32分)11.如图,将∠AOB 放在边长为1的小正方形组成的网格中,则tan ∠AOB =12.12.如图,已知抛物线y =-x 2+bx +c 的对称轴为直线x =1,且与x 轴的一个交点为(3,0),那么它对应的函数表达式是y =-x 2+2x +3.13.(河南中考)已知抛物线y =ax 2+bx +c(a≠0)与x 轴交于A ,B 两点.若点A 的坐标为(-2,0),抛物线的对称轴为直线x =2,则线段AB 的长为8.14.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,tan ∠ACD =34,AB =5,那么CD 的长是125.15.如图,从热气球C 上测得建筑物A ,B 底部的俯角分别为30°和60°,如果这时气球的高度CD 为150米,且点A ,D ,B 在同一直线上,那么建筑物A ,B 间的距离为.16.一个函数的图象关于y 轴成轴对称图形时,我们称该函数为“偶函数”.如果二次函数y =x 2+bx -4是“偶函数”,该函数的图象与x 轴交于点A 和点B ,顶点为P ,那么△ABP 的面积是8. 17.如图,将一块斜边长为12 cm ,∠B =60°的直角三角板ABC ,绕点C 沿逆时针方向旋转90°至△A′B′C′的位置,再沿CB 向右平移,使点B′刚好落在斜边AB18.某幢建筑物,从10米高的窗口A 用水管向外喷水,喷出的水流呈抛物线状(抛物线所在平面与墙面垂直,如图).如果抛物线的最高点M 离墙1米,离地面403米,那么水流落地点B 离墙的距离OB 是3米.三、解答题(共58分)19.(6分)计算:cos 245°tan 30°·sin60°+tan 60°.解:原式=(22)233×32+ 3 =1+ 3.20.(8分)已知二次函数y =-x 2+2x +m.(1)如果二次函数的图象与x 轴有两个交点,求m 的取值范围;(2)如图,二次函数的图象过点A(3,0),与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.解:(1)∵二次函数的图象与x 轴有两个交点,∴Δ=22+4m >0.∴m>-1. (2)∵二次函数的图象过点A(3,0),∴0=-9+6+m.∴m=3.∴二次函数的表达式为y =-x 2+2x +3. 令x =0,则y =3,∴B(0,3).设直线AB 的表达式为y =kx +b ,∴⎩⎪⎨⎪⎧0=3k +b ,3=b.解得⎩⎪⎨⎪⎧k =-1,b =3.∴直线AB 的表达式为y =-x +3.∵抛物线y =-x 2+2x +3的对称轴为直线x =1, ∴把x =1代入y =-x +3,得y =2. ∴P(1,2).21.(8分)(济宁中考)某地的一座人行天桥如图所示,天桥高为6米,坡面BC 的坡度为1∶1,为了方便行人推车过天桥,有关部门决定降低坡度,使新坡面的坡度为1∶ 3.(1)求新坡面的坡角α;(2)原天桥底部正前方8米处(PB 的长)的文化墙PM 是否需要拆除?请说明理由.解:(1)∵新坡面的坡度为1∶3, ∴tan α=tan ∠CAB =13=33. ∴α=30°.(2)文化墙PM 不需要拆除.过点C 作CD⊥AB 于点D ,则CD =6.∵坡面BC 的坡度为1∶1,新坡面的坡度为1∶3,∴BD =CD =6,AD =6 3. ∴AB =AD -BD =63-6<8.∴文化墙PM 不需要拆除.22.(10分)(梅州中考)九年级数学兴趣小组经过市场调查,得到某种运动服每月的销量与售价的相关信息如下表:已知该运动服的进价为每件60元,设售价为x 元.(1)请用含x 的式子表示:①销售该运动服每件的利润是(x -60)元;②月销量是(-2x +400)件;(直接写出结果) (2)设销售该运动服的月利润为y 元,那么售价为多少时,当月的利润最大,最大利润是多少?解:由题意,得y =(x -60)(-2x +400)=-2x 2+520x -24 000=-2(x -130)2+9 800, ∴当x =130时,y 最大=9 800.∴售价为130元时,当月的利润最大,最大利润是9 800元.23.(12分)(泰州中考)图1、图2分别是某种型号跑步机的实物图与示意图.已知踏板CD 长为1.6 m ,CD 与地面DE 的夹角∠CDE 为12°,支架AC 长为0.8 m ,∠ACD 为80°,求跑步机手柄的一端A 的高度h.(精确到0.1,参考数据:sin12°=cos78°≈0.21,sin68°=cos22°≈0.93,tan68°≈2.48)解:过点C 作CM 平行于AB ,过点A 作AF⊥CM 于点F ,过点C 作CG⊥ED 于点G. ∵CM ∥AB ,∴CM ∥ED.∵∠CDE=12°,∴∠DCM =12°. ∵∠ACD =80°,∴∠ACF =68°.∵在Rt △CDG 中,CD =1.6 m ,∠CDE =12°, ∴sin ∠CDE =CG CD ,即sin12°=CG1.6.∴CG =sin12°×1.6≈0.21×1.6=0.336(m).∵在Rt △ACF 中,AC =0.8,∠ACF =68°, ∴sin ∠ACF =AF AC ,即sin68°=AF0.8.∴AF =sin68°×0.8≈0.93×0.8=0.744(m).∴h =0.336+0.744=1.080≈1.1(m).答:跑步机手柄的一端A 的高度h 约为1.1 m.24.(14分)在平面直角坐标系中,抛物线y =-12x 2+bx +c 与x 轴交于点A ,B ,与y 轴交于点C ,直线y =x +4经过A ,C 两点.(1)求抛物线的表达式;(2)在AC 上方的抛物线上有一动点P.①如图1,当点P 运动到某位置时,以AP ,AO 为邻边的平行四边形第四个顶点恰好也在抛物线上,求出此时点P 的坐标;②如图2,过点O ,P 的直线y =kx 交AC 于点E ,若PE∶OE=3∶8,求k 的值.图1 图2 解:(1)∵直线y =x +4经过A ,C 两点,∴A(-4,0),C(0,4).又∵抛物线过A ,C 两点,∴⎩⎪⎨⎪⎧-12×(-4)2-4b +c =0,c =4.解得⎩⎪⎨⎪⎧b =-1,c =4.∴抛物线的表达式为y =-12x 2-x +4.(2)①∵y=-12x 2-x +4,∴抛物线的对称轴是直线x =-1.∵以AP ,AO 为邻边的平行四边形的第四个顶点Q 恰好也在抛物线上, ∴PQ ∥AO ,PQ =AO =4.∵P ,Q 都在抛物线上,∴P ,Q 关于直线x =-1对称. ∴P 点的横坐标是-3.∴当x =-3时,y =-12×(-3)2-(-3)+4=52.∴P 点的坐标是(-3,52).②过P 点作PF∥OC 交AC 于点F ,∵PF ∥OC ,∴△PEF∽△OEC.∴PE OE =PF OC .又∵PE OE =38,OC =4,∴PF =32.设点F(x ,x +4),∴(-12x 2-x +4)-(x +4)=32.解得x 1=-1,x 2=-3.当x =-1时,y =92;当x =-3时,y =52.∴P 点坐标是(-1,92)或(-3,52).又∵点P 在直线y =kx 上, ∴k =-92或k =-56.。
【学生卷】初中数学高中化学必修一第二章《海水中的重要元素—钠和氯》测试(培优)

(1)制取84消毒液的离子方程式为______________________。
(2)制取84消毒液需要4.0 mol·L-1的NaOH溶液100mL,配制时称量NaOH固体的质量为________,配制过程中使用的玻璃仪器有烧杯、玻璃棒、胶头滴管、_________。
Ⅱ.某实验小组为了测定(3)中溶液多余Cl2的含量,常用Na2S2O3标准溶液进行定量测定。
(4)现实验室需用80mL一定浓度的Na2S2O3溶液,配制该溶液所需玻璃仪器除烧杯、量筒、玻璃棒、胶头滴管外,还需_______;
(5)Na2S2O3还原性较强,在溶液中易被Cl2氧化为SO42-,因此Na2S2O3常用作脱氯剂,该反应的离子方程式为________________。
D.工业上,常用氢气和氯气反应生成的氯化氢溶于水制取盐酸
(3)在一定温度下,氯气溶于水的过程及其平衡常数为:
Cl2(g) Cl2(aq) K1=c(Cl2)/p Cl2(aq) + H2O(l) H+(aq)+Cl-(aq) + HClO(aq) K2
其中p为Cl2(g)的平衡压强,c(Cl2)为Cl2在水溶液中的平衡浓度。
属于碱的是____________________________________________;
属于单质的是__________________________________________。
(2)金属钠着火,应用________________灭火;过氧化钠可做呼吸面具的供氧剂,有关化学方程式_____________________________________________________________________;除去NaHCO3溶液中的Na2CO3的有关化学方程式为____________________________________________________________________;
初三数学培优试题(含答案)

初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
【教师卷】初中数学七年级数学上册第一章《有理数》阶段测试(培优)(1)
1.下列四种说法:①减去一个数,等于加上这个数的相反数;②两个互为相反数的数和为0;③两数相减,差一定小于被减数;④如果两个数的绝对值相等,那么这两个数的和或差等于零.其中正确的说法有( )A .4个B .3个C .2个D .1个B 解析:B【分析】根据有理数的减法运算法则对各小题分析判断即可得解.【详解】①减去一个数等于加上这个数的相反数,故本小题正确;②互为两个相反数的两数相加得零,故本小题正确;③减数是负数时,差大于被减数,故本小题错误;④如果两个数的绝对值相等,这两个数可能相等,也可能互为相反数,故本小题正确; 综上所述,正确的有①②④共3个.故选B .【点睛】本题考查了相反数的定义,有理数的减法,是基础题,熟记运算法则是解题的关键. 2.下列说法正确的是( )A .近似数1.50和1.5是相同的B .3520精确到百位等于3600C .6.610精确到千分位D .2.708×104精确到千分位C 解析:C【分析】相似数和原值是不相同的;3520精确到百位是3500;2.708×104精确到十位.【详解】A 、近似数1.50和1.5是不同的,A 错B 、3520精确到百位是3500,B 错D 、2.708×104精确到十位.【点睛】本题考察相似数的定义和科学计数法.3.下列算式中,计算结果是负数的是( )A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)- A 解析:A【分析】根据各个选项中的式子可以计算出正确的结果,从而可以解答本题.【详解】解:3(2)6,故选项A 符合题意,|1|1-=,故选项B 不符合题意,(2)75-+=,故选项C 不符合题意,2-=,故选项D不符合题意,(1)1故选:A.【点睛】题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法.4.实数a,b,c,d在数轴上的位置如图所示,下列关系式不正确的是()A.|a|>|b| B.|ac|=ac C.b<d D.c+d>0B解析:B【分析】先弄清a,b,c在数轴上的位置及大小,根据实数大小比较方法可以解得.【详解】从a、b、c、d在数轴上的位置可知:a<b<0,d>c>1;A、|a|>|b|,故选项正确;B、a、c异号,则|ac|=-ac,故选项错误;C、b<d,故选项正确;D、d>c>1,则c+d>0,故选项正确.故选B.【点睛】本题考核知识点:实数大小比较. 解题关键点:记住数轴上右边的数大于左边的数;两个负数,绝对值大的反而小.5.下列说法中,正确的是()A.正数和负数统称有理数B.既没有绝对值最大的数,也没有绝对值最小的数C.绝对值相等的两数之和为零D.既没有最大的数,也没有最小的数D解析:D【分析】分别根据有理数的定义,绝对值的定义,有理数的大小比较逐一判断即可.【详解】整数和分数统称为有理数,故原说法错误,故选项A不合题意;没有绝对值最大的数,绝对值最小的数是0,故原说法错误,故选项B不合题意;绝对值相等的两数之和等于零或大于0,故原说法错误,故选项C不合题意;既没有最大的数,也没有最小的数,正确,故选项D符合题意.故选:D.【点睛】本题考查有理数的定义、绝对值的定义,熟知有理数和绝对值的定义是解题的关键.6.下列各组数中,互为相反数的是()A.(﹣3)2和﹣32B.(﹣3)2和32C.(﹣2)3和﹣23D.|﹣2|3和|﹣23|A 解析:A各项中两式计算得到结果,即可作出判断.【详解】A、(﹣3)2=9,﹣32=﹣9,互为相反数;B、(﹣3)2=32=9,不互为相反数;C、(﹣2)3=﹣23=﹣8,不互为相反数;D、|﹣2|3=|﹣23|=8,不互为相反数,故选:A.【点睛】此题考查了有理数的乘方,相反数,以及绝对值,熟练掌握运算法则是解本题的关键.7.下列关系一定成立的是()A.若|a|=|b|,则a=b B.若|a|=b,则a=bC.若|a|=﹣b,则a=b D.若a=﹣b,则|a|=|b|D解析:D【分析】根据绝对值的定义进行分析即可得出正确结论.【详解】选项A、B、C中,a与b的关系还有可能互为相反数,故选项A、B、C不一定成立,D.若a=﹣b,则|a|=|b|,正确,故选D.【点睛】本题考查了绝对值的定义,熟练掌握绝对值相等的两个数的关系是相等或互为相反数是解题的关键.8.某种细菌在培养过程中,每半小时分裂一次(由一个分裂成两个).经过3个小时,这种细菌由1个可分裂为()A.8个B.16个C.32个D.64个D解析:D【分析】每半小时分裂一次,一个变为2个,实际是21个.分裂第二次时,2个就变为了22个.那么经过3小时,就要分裂6次.根据有理数的乘方的定义可得.【详解】26=2×2×2×2×2×2=64.故选D.【点睛】本题考查了有理数的乘方在实际生活中的应用,应注意观察问题得到规律.9.一根1米长的绳子,第一次剪去一半,第二次剪去剩下的一半,如此下去,第六次后剩下的绳子长度为()A.312⎛⎫⎪⎝⎭米B.512⎛⎫⎪⎝⎭米C.612⎛⎫⎪⎝⎭米D.1212⎛⎫⎪⎝⎭米C【分析】根据乘方的意义和题意可知:第2次后剩下的绳子的长度为(12)2米,那么依此类推得到第六次后剩下的绳子的长度为(12)6米.【详解】∵1-12=12,∴第2次后剩下的绳子的长度为(12)2米;依此类推第六次后剩下的绳子的长度为(12)6米.故选C.【点睛】此题主要考查了乘方的意义.其中解题是正确理解题意是解题的关键,能够根据题意列出代数式是解题主要步骤.10.下列四个式子,正确的是()①33.834⎛⎫->-+⎪⎝⎭;②3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+⎪⎝⎭.A.③④B.①C.①②D.②③D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=-⎪⎝⎭,33.83 3.754>=,∴33.834⎛⎫-<-+⎪⎝⎭,故①错误;②∵33154420⎛⎫--==⎪⎝⎭,21335502⎛⎫--==⎪⎝⎭,1512 2020>,∴3345⎛⎫⎛⎫-->--⎪ ⎪⎝⎭⎝⎭,故②正确;③∵ 2.5 2.5-=,2.5 2.5>-,∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--==⎪⎝⎭,217533346+==,3334 66<,∴125523⎛⎫-->+⎪⎝⎭,故④错误.综上,正确的有:②③.故选:D.【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.11.按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=B解析:B【分析】根据计算器的使用方法,结合各项进行判断即可.【详解】解:按下列按键顺序输入:则它表达的算式是0.8+3.2÷45=,故选:B.【点睛】此题主要考查了计算器的应用,根据有理数的输入方法正确输入数据是解题关键.12.6-的相反数是()A.6 B.-6 C.16D.16- B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.13.把实数36.1210-⨯用小数表示为()A .0.0612B .6120C .0.00612D .612000C解析:C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】6.12×10−3=0.00612,故选C .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.14.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .a+b <0B .a+b >0C .a ﹣b <0D .ab >0A解析:A【分析】根据数轴判断出a 、b 的符号和取值范围,逐项判断即可.【详解】解:从图上可以看出,b <﹣1<0,0<a <1,∴a+b <0,故选项A 符合题意,选项B 不合题意;a ﹣b >0,故选项C 不合题意;ab <0,故选项D 不合题意.故选:A .【知识点】本题考查了数轴、有理数的加法、减法、乘法,根据数轴判断出a 、b 的符号,熟知有理数的运算法则是解题关键.15.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数B 解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.1.对于有理数a 、b ,定义一种新运算,规定a ☆2b a b =-,则3☆(2)-=__.【分析】根据新定义把新运算转化为常规运算进行解答便可【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7故答案为:7【点睛】本题主要考查了有理数的混合运算读懂新定义运算是解题的关键解析:【分析】根据新定义把新运算转化为常规运算进行解答便可.【详解】解:3☆(﹣2)=32﹣|﹣2|=9﹣2=7,故答案为:7.【点睛】本题主要考查了有理数的混合运算,读懂新定义运算是解题的关键.2.计算(﹣1)÷6×(﹣16)=_____.【分析】根据有理数乘除法法则进行计算【详解】解:(-1)÷6×(-)=-×(−)=故答案为【点睛】此题考查了有理数的乘除法熟练掌握法则是解本题的关键 解析:136. 【分析】 根据有理数乘除法法则进行计算.【详解】解:(-1)÷6×(-16), =-16×(−16), =136. 故答案为136. 【点睛】 此题考查了有理数的乘除法,熟练掌握法则是解本题的关键.3.数轴上表示 1 的点和表示﹣2 的点的距离是_____.3【分析】直接根据数轴上两点间的距离公式求解即可【详解】∵|1-(-2)|=3∴数轴上表示-2的点与表示1的点的距离是3故答案为3【点睛】本题考查的是数轴熟知数轴上两点间的距离公式是解答此题的关键解析:3【分析】直接根据数轴上两点间的距离公式求解即可.【详解】∵|1-(-2)|=3,∴数轴上表示-2的点与表示1的点的距离是3.故答案为3.【点睛】本题考查的是数轴,熟知数轴上两点间的距离公式是解答此题的关键.4.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.5.已知a是7的相反数,b比a的相反数大3,则b比a大____.17【分析】先根据相反数的定义求出a和b再根据有理数的减法法则即可求得结果【详解】由题意得a=-7b=7+3=10∴b-a=10-(-7)=10+7=17故答案为:17【点睛】本题考查了有理数的减法解析:17【分析】先根据相反数的定义求出a和b,再根据有理数的减法法则即可求得结果.【详解】由题意,得a=-7,b=7+3=10.∴b-a=10-(-7)=10+7=17.故答案为:17.【点睛】本题考查了有理数的减法,解答本题的关键是熟练掌握有理数的减法法则∶减去一个数等于加上这个数的相反数.6.运用加法运算律填空:212+1(3)3-+612+2(8)3-=1(22+____)+[ ____+2(8)3-].【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可【详解】解:2++6+=)++故答案为:;【点睛】本题考查了有理数的加法掌握加法法则和运算律是解题的关键解析:1621(3)3-【分析】根据互为相反数的两数的两数之和为0以及同分母的分数相加的原则进行计算即可.【详解】解:212+1(3)3-+612+2(8)3-=1(22+162)+[1(3)3-+2(8)3-].故答案为:162;1(3)3-.【点睛】本题考查了有理数的加法,掌握加法法则和运算律是解题的关键.7.计算:3122--=__________;︱-9︱-5=______.-24【分析】直接根据有理数的减法运算即可;先运算绝对值再进行减法运算【详解】=-=-2;︱-9︱-5==9-5=4故答案为-24【点睛】本题考查了绝对值的化简以及有理数的运算解题的关键是掌握有理数解析:-2 4【分析】直接根据有理数的减法运算即可;先运算绝对值,再进行减法运算.【详解】3122--=-42=-2;︱-9︱-5==9-5=4, 故答案为-2,4.【点睛】本题考查了绝对值的化简以及有理数的运算,解题的关键是掌握有理数的运算法则. 8.运用加法运算律填空:(1)[(-1)+2]+(-4)=___=___;(2)117+(-44)+(-17)+14=____=____.(-1)+(-4)+2-3117+(-17)+(-44)+1470【分析】(1)根据同号相加的特点利用加法的交换律先计算(-1)+(-4);(2)利用抵消的特点利用加法的交换律和结合律进行简便计算【 解析:[(-1)+(-4)]+2 -3 [117+(-17)]+[(-44)+14] 70【分析】(1)根据同号相加的特点,利用加法的交换律,先计算(-1)+(-4);(2)利用抵消的特点,利用加法的交换律和结合律进行简便计算.【详解】(1)同号相加较为简单,故:[(-1)+2]+(-4)=[(-1)+(-4)]+2=-3(2)117和(-17)可通过抵消凑整,(-44)和14也可通过抵消凑整,故:117+(-44)+(-17)+14=[117+(-17)]+[(-44)+14]=70.【点睛】本题考查有理数加法的简算,解题关键是灵活利用加法交换律和结合律,凑整进行简算. 9.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.4460【分析】工资应分两个部分:基本工资+奖金而奖金又分区间所以分段计算最后求和【详解】根据题意得他九月份工资为(元)故答案为:4460【点睛】主要考查了有理数的混合运算解题的关键是正确理解文字语解析:4460【分析】工资应分两个部分:基本工资+奖金,而奖金又分区间,所以分段计算,最后求和.【详解】根据题意,得他九月份工资为4000300(1320010000)5%4460++-⨯=(元). 故答案为:4460.【点睛】主要考查了有理数的混合运算,解题的关键是正确理解文字语言中的关键词,找到其中的数量关系,列出式子计算即可.10.等边三角形ABC (三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A ,B 对应的数分别为0和1-,若ABC 绕着顶点顺时针方向在数轴上翻转1次后,点C 所对应的数为1,则再翻转3次后,点C 所对应的数是________.4【分析】结合数轴不难发现每3次翻转为一个循环组依次循环然后进行计算即可得解【详解】根据题意可知每3次翻转为一个循环∴再翻转3次后点C 在数轴上∴点C 对应的数是故答案为:4【点睛】本题考查了数轴及数的解析:4【分析】结合数轴不难发现,每3次翻转为一个循环组依次循环,然后进行计算即可得解.【详解】根据题意可知每3次翻转为一个循环,∴再翻转3次后,点C 在数轴上,∴点C 对应的数是1134+⨯=.故答案为:4.【点睛】本题考查了数轴及数的变化规律,根据翻转的变化规律确定出每3次翻转为一个循环组依次循环是解题的关键.11.若2(1)20a b -+-=,则2015()a b -= _______________.-1【分析】直接利用偶次方的性质以及绝对值的性质得出ab 的值进而得出答案【详解】由题意得:a -1=0b ﹣2=0解得:a =1b =2故=(1﹣2)2015=-1故答案为-1【点睛】本题考查了非负数的性质解析:-1【分析】直接利用偶次方的性质以及绝对值的性质得出a ,b 的值,进而得出答案.【详解】由题意得:a -1=0,b ﹣2=0,解得:a =1,b =2,故2015()a b -=(1﹣2)2015=-1.故答案为-1.【点睛】本题考查了非负数的性质,正确得出a ,b 的值是解题的关键.1.计算:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭; (2)20213281(2)(3)3---÷⨯-. 解析:(1)36-;(2)26.【分析】(1)利用乘法分配律进行简便运算即可;(2)先算乘方,再算乘除,最后计算加减即可.【详解】解:(1)117483612⎛⎫-+-⨯ ⎪⎝⎭ 1174848483612=-⨯+⨯-⨯ 16828=-+-36=-;(2)20213281(2)(3)3---÷⨯- 31(89)8=---⨯⨯ 127=-+26=.【点睛】本题考查了有理数的混合运算,掌握有理数运算的相关运算法则并灵活运用运算律准确计算是解题的关键.2.计算(1)(-1)2019+0.25×(-2)3+4÷23 (2)21233()12323-÷+-⨯+解析:(1)3;(2)-2【分析】(1)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;(2)先计算乘方,然后计算乘除,再计算加减运算,即可得到答案;【详解】解:(1)原式=-1+0.25×(-8)+6=-1-2+6=3;(2)原式=12931212323-÷+⨯-⨯+ =-3+6-8+3=-2;【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是熟练掌握运算法则,正确的进行计算.3.计算:(1)412115(2)5⎡⎤⎛⎫----⨯-÷- ⎪⎢⎥⎝⎭⎣⎦(2)1111243812⎛⎫÷-+- ⎪⎝⎭(要求简便方法计算) 解析:(1)-21;(2)17-【分析】 (1)先进行幂的运算,再算括号里面的,去括号应注意括号前的负号,再算加减. (2)除数和被除数同时乘24可得1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦再算括号里的可得出答案. 【详解】解:(1)原式=﹣16﹣[-11+1]÷(-2)=﹣16-5=-21;(2)原式=1111243812⎡⎤⎛⎫÷⨯-+- ⎪⎢⎥⎝⎭⎣⎦ =[]1832÷-+-1(7)=÷- =17- 【点睛】本题考查的是有理数的加减、乘除以及乘方的运算,熟练掌握运算法则是解题的关键. 4.某粮仓原有大米132吨,某一周该粮仓大米的进出情况如下表:(运进大米记作“+”,运出大米记作“-”,例如:当天运进大米8吨,记作8+吨;当天运出大米15吨,记作15-吨)若经过这一周,该粮仓存有大米88吨.(1)求星期五粮仓大米的进出情况;(2)若大米进出粮仓的装卸费用为每吨15元,求这一周该粮仓需要支付的装卸总费用. 解析:(1)星期五粮仓当天运出大米20吨;(2)2700元.【分析】(1)根据有理数的加法,可得答案;(2)根据单位费用乘以总量,可得答案.【详解】(1)m=88﹣(132﹣32+26﹣23﹣16+42﹣21)=﹣20,∴星期五粮仓当天运出大米20吨;(2)(|﹣32|+|+26|+|﹣23|+|﹣16|+|﹣20|+|+42|+|﹣21|)×15=2700(元),答:这一周该粮仓需要支付的装卸总费用为2700元.【点睛】本题考查了用正负数表示相反意义的量及有理数加减法的应用,第(2)问利用单位费用乘以总量是解题关键.。
初三数学培优试题(含答案)
初三数学培优试题一学校: 班级: 姓名: 分数:一.选择题1、下列函数:① 3y x =-,②21y x =-,③()10y x x=-<,④223y x x =-++ 其中y 的值随x 值的增大而增大的函数有( )(A )4个 (B )3个 (C )2个 (D )1个2.(2018济南,9,4分)如图,在平面直角坐标系中,△ABC 的顶点都在方格线的格点上,将△ABC 绕点P 顺时针方向旋转90°,得到△A ′B ′C ′,则点P 的坐标为( )A .(0,4)B .(1,1)C .(1,2)D .(2,1)xy–1–2–3–412341234567BCA A'C 'B'O3、按下面的程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件的x 的不同值最多有( )(A )2个 (B )3个 (C )4个 (D )5个4、已知关于x 的不等式组12x a x a ->-⎧⎨-<⎩的解集中任意一个x 的值均不..在04x ≤≤的范围内,则a 的取值范围是( )(A )5a >或2a <- (B )25a -≤≤ (C )25a -<< (D )5a ≥或2a ≤-5、如图所示,已知点A 是半圆上一个三等分点,点B 是AN 的中点,点P 是半径ON 上的动点。
若O 的半径长为,则AP BP +的最小值为( )(A )2 (B )3 (C )2 (D )6.(3分)如图,矩形ABCD 中,E 是AB 的中点,将△BCE 沿CE 翻折,点B 落在点F 处,tan ∠DCE=.设AB=x ,△ABF 的面积为y ,则y 与x 的函数图象大致为( )A .B .C .D .P B A二、填空题(本大题共8小题,每小题3分,共24分,不需写出解答过程)7.已知一组数据:12.10.8.15.6.8.则这组数据的中位数是。
初中数学培优试题及答案
初中数学培优试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 2B. πC. 0.5D. √42. 一个数的相反数是它本身的数是:A. 0B. 1C. -1D. 23. 如果一个角的补角是锐角,那么这个角是:A. 锐角B. 直角C. 钝角D. 平角4. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 7B. 10C. 11D. 145. 一个数的绝对值是它本身,这个数是:A. 正数C. 非负数D. 非正数6. 一个数的立方是它本身,这个数是:A. 0B. 1C. -1D. 以上都是7. 一个数的平方是它本身,这个数是:A. 0B. 1C. -1D. 以上都是8. 一个数的倒数是它本身,这个数是:A. 0B. 1C. -1D. 以上都是9. 一个数的相反数是它本身,这个数是:A. 0B. 1C. -1D. 以上都不是10. 一个数的绝对值是它本身,这个数是:A. 正数B. 负数D. 非正数二、填空题(每题4分,共20分)1. 一个数的平方根是它本身,这个数可以是______。
2. 如果一个角的补角是90°,那么这个角是______。
3. 一个等腰三角形的两边长分别为5和8,那么它的周长是______。
4. 一个数的立方是它本身,这个数可以是______。
5. 一个数的倒数是它本身,这个数可以是______。
三、解答题(每题10分,共50分)1. 已知一个直角三角形的两条直角边长分别为3cm和4cm,求这个三角形的斜边长。
2. 一个数的相反数是-7,求这个数。
3. 一个等腰三角形的两边长分别为6和8,求这个三角形的周长。
4. 已知一个数的平方是25,求这个数。
5. 一个数的立方是-8,求这个数。
答案:一、选择题1. B2. A3. A4. C5. C6. D7. D8. B9. A10. C二、填空题1. 0或12. 90°3. 194. 0, 1, -15. 1或-1三、解答题1. 斜边长为5cm(根据勾股定理,3²+4²=5²)。
初三数学培优试题及答案
初三数学培优试题及答案一、选择题(每题2分,共10分)1. 下列哪个数不是实数?A. πB. -3C. √2D. i2. 如果一个圆的半径是5,那么它的面积是多少?A. 25πB. 50πC. 100πD. 125π3. 已知a=3,b=2,求下列表达式的值:a^2 + b^2A. 13B. 17C. 19D. 214. 一个数的平方根等于它本身,这个数是:A. 0B. 1C. -1D. 45. 下列哪个是二次方程的解?A. x = 1B. x = -1C. x = 2D. x = 3(方程为:x^2 - 4x + 4 = 0)二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,斜边的长度是______。
7. 一个正数的倒数是1/8,这个数是______。
8. 如果一个数的立方等于-27,那么这个数是______。
9. 一个数的绝对值是5,这个数可以是______或______。
10. 一个二次方程的判别式是36,那么这个方程的根的情况是______。
三、解答题(每题10分,共30分)11. 解方程:2x^2 - 5x - 3 = 0。
12. 证明:如果一个三角形的两边长度分别为a和b,且a < b,那么这个三角形的周长P满足P > 2a。
13. 一个工厂每天可以生产x个产品,每个产品的成本是c元,销售价格是p元。
如果工厂每天的利润是y元,写出y关于x的函数表达式。
四、综合题(每题15分,共20分)14. 一个圆的半径是7,圆心到一个点A的距离是5。
如果点A在圆内,求点A到圆上任意一点B的距离的最大值和最小值。
15. 一个班级有50名学生,其中30名学生喜欢数学,20名学生喜欢英语。
如果一个学生至少喜欢一门科目,求这个班级中同时喜欢数学和英语的学生人数的范围。
答案:一、选择题1. D2. B3. C4. A5. D二、填空题6. 5(根据勾股定理)7. 8(倒数的定义)8. -3(立方根的定义)9. 5,-5(绝对值的定义)10. 有两个不相等的实数根(判别式的定义)三、解答题11. 解:2x^2 - 5x - 3 = 0,使用求根公式,得到x1 = (5 + √41) / 4,x2 = (5 - √41) / 4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
培优阶段测试1.1
一.选择题
1. 2012年,我国财政性教育经费支出实现了占国内生产总值比例达4%的目标.其中在促进义务教育均衡发展方面,安排义务教育教育经费保障教育机制改革资金达865.4亿元.数据“865.4亿元”用科学技术法可表示为( )元.
A.810865⨯
B.91065.8⨯
C.101065.8⨯
D.11
10865.0⨯ 2.若12
=a
,则
a
a
的值是( ) A 1 B -1 C 1或-1 D 以上都不对
3.如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是( )
A 8
B 9
C 16
D 17 4.已知0=+b a ,b a ≠则化简
()()11-+-b b
a a a b
的结果是( ) A a 2 B b 2 C 2 D -2
5.数a 、b 、c 、d 所对应的点A 、B 、C 、D 在数轴上的位置如图所示,那么c a +与d b +的大小关系是( )
A d b c a +<+
B d b c a +=+
C d b c a +>+
D 不确定
6.已知b a -<,且
0>b
a
,则化简ab b a b a +++-的结果是( ) A ab b a ++22 B ab - C ab b a +--22 D ab a +-2
7.如图,数轴上的A 、B 、C 三点所表示的数分别是a 、b 、c ,其中AB=BC ,如果|a|>|b|>|c|,那么该数轴的原点O 的位置应该在( )
A 点A 的左边
B 点A 与点B 之间
C 点B 与点C 之间
D 点B 与点C 之间或点C 的右边
8.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,37
=2187…
解答下列问题:3+32+33+34…+32013
的末位数字是( ) A .0 B .1 C .3 D .7
9.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。
那么顾客到哪家超市购买这种商品更合算( )
A .甲
B .乙
C .丙
D .一样
10.如图,下列图案均是长度相同的火柴按一定的规律拼搭而成:第1个图案需7根火柴,第2个图案需13根火柴,…,依此规律,第11个图案需( )根火柴.
A .156
B . 157
C . 158
D . 159
二.填空题
11.在计数制中,通常我们使用的是“十进位制”,即“逢十进一”。
而计数制方法很多,如60进位制:60秒化为1分,60分化为1小时;24进位制:24小时化为1天;7进位制:7天化为1周等…而二进位制是计算机处理数据的依据。
已知二进位制与十进位
(二)写成十进制数为 .
12.已知123456789101112…997998999是由连续整数1至999排列组成的一个数,在该数中从左往右数第2013位上的数字为 .
13.任何实数a ,可用[a ]表示不超过a 的最大整数,如[4]=4,[]=1.现对72进行
如下操作:72
[
]=8
[
]=2
[
]=1,这样对72只需进行3次操作
后变为1,类似的,①对81只需进行 此操作后变为1;②只需进行3次操作后变为1的所有正整数中,最大的是 .
14.(2013•常德)小明在做数学题时,发现下面有趣的结果: 3﹣2=1
8+7﹣6﹣5=4
15+14+13﹣12﹣11﹣10=9
24+23+22+21﹣20﹣19﹣18﹣17=16 …
根据以上规律可知第100行左起第一个数是 .
15.将连续的正整数按以下规律排列,则位于第7行、第7列的数x 是______
16.定义a b c d 为二阶行列式,规定它是运算法则为a b
c d =ad-bc ,那么当x=1时,
二阶行列式11
01
x x +-的值为 .
17.有一数值转换器,原理如图所示,若开始输入x 的值是7,可发现第1次输出的结果是12,第2次输出的结果是6,第3次输出的结果是 ,依次继续下去…,第2013次输出的结果是 .
18.有一组等式:
22223221=++,22227632=++,2222131243=++,2222212054=++,
┄┄
请观察它们的构成规律,用你发现的规律写出第8个等式为_________
19.如图1,将一个边长为a 的正方形纸片剪去两个小矩形,得到一个“”的图案,如图2所示,再将剪下的两个小矩形拼成一个新的矩形,如图3所示,则新矩形的周长可表示为
20.定义一种新运算:a ⊗b=b 2﹣ab ,如:1⊗2=22
﹣1×2=2,则(﹣1⊗2)⊗3= . 三.解答题
21.数轴上,N 点与O 点的距离是N 点与30所对应点之间的距离的4倍,那么N 点表示的数是多少?
22.已知y y x x +---=-++15912,则y x +的最小值是多少?最大值是多少?
23.计算(1-
1 2 - 1 3 - 1 4 - 1 5 )( 1 2 + 1 3 + 1 4 + 1 5 + 1 6 )-(1- 1 2 - 1 3 - 1 4 - 1
5
-
1 6 )( 1
2 + 1
3 + 1
4 + 1
5 )。
24.计算:90
19727185617424163015201941213652211+-+-+-+-
25.已知多项式(
)(
)
1532622
2
-+--+-+y x bx y ax x 。
⑴若多项式的值与字母x 的取值无关,求b a ,的值;
⑵在⑴的条件下,求多项式()()
2222323b ab a b ab a ++---的值; ⑶在⑴的条件下,
求
()⎪⎭⎫
⎝
⎛
⨯+++⎪⎭⎫ ⎝⎛⨯++⎪⎭⎫
⎝
⎛⨯+++222
2
981932132
112a b a b a b a b 的值。
26.已知x =2,y=一4时,代数式19975213
=++
by ax ,求当2
1
,4-=-=y x 时,代数式49862433
+-by ax 的值.
乙商场用如下办法促销:每次购买1~8台,每台打九折;每次购买9~16台,每台打八五折;每次购买17~24台,每台打八折;每次购买24台以上,每台打七五折;
(1)请仿照甲商场的促销列表,列出到乙商场购买VCD 的购买台数与每台价格的对照表;
(2)现在有A 、B 、C 三个单位,A 单位要买10台VCD ,B 单位要买16台VCD ,C 单位要买20台VCD .问他们到哪家商场购买花费较少?
28观察按下列规则排成的一列数:
6
1
,15,24,33,42,51,14,23,32,41,13,22,31,12,21,11,…(※) (1)在(※)中,从左起第m 个数记为F(m),当2001
2
)(=
m F 时,求m 的值和这m 个数的积.
(2)在(※)中,未经约分且分母为2的数记为c ,它后面的一个数记为d .是否存在这样的两个数c 和d ,使20010000=cd ,如果存在,求出c 和d ;如果不存在,请说明理由。