高一数学必修一和必修四综合测试卷
高一数学必修一和必修四测试题

高一数学学科试卷(必修1+ 4)第Ⅰ卷(共计45分)一、选择题:本大题共15小题,每小题3分,共45分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设全集U={小于7的自然数},集合A={1,2,4,6},集合B={1,5},则(C u A )∪B 等于 ( ) A. {1,3,5} B. {5} C. {0,1,3,5} D. U2.函数1()lg(2)3f x x x =-+-的定义域是( )(A )(2,3)(B )),3(∞+ (C )[2,3)),3(∞+(D )(2,3)),3(∞+3.图中1C 、2C 、3C 为三个幂函数αx y =在第一象限内的图象,则解析式 中指数α的值依次可以是 ( )(A )1-、21、3 (B )1-、3、21(C )21、1-、3 (D )21、3、1-4.已知53)sin(=+απ且α是第三象限的角,则cos(2)πα-的值是( )A54-B 54C54±D 535.已知b a ⊥,||2a =,3||=b ,且b a 23+与b a-λ垂直,则实数λ的值为( )A.1B. 3C.23±D 236.已知向量a ,b 满足a =3, b =4 , a 与b 的夹角是120︒ 则2a b +等于( )7.已知22(1)()(12)2(2)x x f x x x x x +≤-⎧⎪=-<<⎨⎪≥⎩,若()3f x =,则x 的值是( ) A 1 B 1或32 C 1,32或8.设4log 3=a , 3log 4.0=b ,34.0=c ,则a ,b ,c 的大小关系为( )A b a c >> B.b c a >>C.a c b >>D.a b c >>9..设偶函数()f x 的定义域为R ,当[0,)x ∈+∞时,()f x 是增函数,则(2)f -,()f π,(3)f -的大小关系是( )A.()(3)(2)f f f π>->-B.()(2)(3)f f f π>->-C.()(3)(2)f f f π<-<-D.()(2)(3)f f f π<-<-10.23()1[1,]2f x x x x =++∈-已知函数 :的最值情况为 ( )A 有最大值34,最小值 14B 有最小值34,有最大值1 C 有最小值34,有最大值 194 D 有最大值,但无最小值11.为了得到函数Rx x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点( ) (A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) 12.若函数)sin()(ϕω+=x x f (0,2πωφ>≤)的部分图象如图所示,则ω和ϕ的值可以是 ( )A.2,6πωϕ==B.2,3πωϕ==C.2,6πωϕ==-D.2,3πωϕ==-13. 如图下面的四个容器高度都相同,将水从容器顶部一个孔中以相同的速度注入其中,注满为止。
高一数学必修一和必修四综合测试卷

高一数学必修一和必修四综合测试卷高一数学必修①④综合练(一)一.填空题1.已知集合A={13,x},B={1,x^2},AB={13,x},则这样的x的不同值有____个。
x-3,x≥92.已知f(x)={f[f(x+4)],x<9;f(x-3),x≥9},则f(5)的值为____。
f[f(5+4)]=f[f(9)]=f(6)=f[6-3]=f(3)3.已知函数f(x)的定义域为R,满足f(x+2)=-f(x),当-2≤x≤1时,f(x)=x,则f(8.5)等于____。
f(8.5)=f(6.5+2)=-f(6.5)=-f(4.5+2)=f(4.5)=4.54.a-a等于____。
5.若lg2=a,lg3=b,则log5 12等于____。
log2 12=log2 3+log3 4=log2 3+log2 2=log2 66.若loga 2>logb 2,则有a,b,1三者关系为____。
a<b<17.函数f(x)=4+a/(8-|x-1|)的图象恒过定点P,则P点坐标是____。
1,4+a/7)8.下列大小关系为____。
1/3,1/2)<(1/2,3/5)<(1,2/5)9.设角α是第四象限角,且|cosα|=1/3,则α是第____象限角。
二10.函数f(x)=lg(sin x)+1-2cos x的定义域是____。
0,π/2)11.已知sin x/(1-cos x/2)=-1/2,则cos x/(1+sin x/2)____。
1/212.在锐角ΔABC中,cosA与sinB的大小关系为____。
cosA<sinB13.函数f(x)=tanx(-2< x< π/4)的值域是____。
0)14.将函数y=f(x)的图象上的每一点的纵坐标变为原来的平方,得到图象C1,再将C1上每一点的横坐标变为原来的π/4倍,得到图象C2,若C2的表达式为y=sin x,则y=f(x)的解析式为____。
(完整版)高一数学必修1必修4试卷含答案,推荐文档

3 x 0 x 2 0
1
2
3
4
5
6
7
8
9 10 11 12
A
BDBAACCDCAC
x x
3 2
A x 2 x 3
二、填空题(16 分)
13. 13
14. 1
15.
f
(a
1)
a 2 a 2
6a 2a
5 3
a 1 a 1
16.
(2) A B B x x a a a 3
(2)解不等式 f (x) log a ; 3
(3) g(x 2) 2 2b 有两个不等实根时,求 b 的取值范围.
⑴求 f (0) 的值; ⑵求证: f (x) 为奇函数; ⑶若函数 f (x) 是 R 上的增函数,已知 f (1) 1, 且 f (2a) f (a 1) 2 ,求 a 的取值范围.
(1)求 a, b 的值;
f (a b) f (a) f (b) ,当 x 0 时,有 f (x) 1,其中 f (1) 2 . (1)求 f (0) 、 f (1) 的值; (2)证明 不等式 m 2
(k
2)m
3
f (x)
所以函数的值域为1,
……12 分
(B 类)解:(1) 1 x 0, x 1 0,即x 1x 1 0.
1 x
x 1
1 x 1, f x的定义域为1,1
20 解:设经过 n 天,该同学所服的第一片药在他体内的残留量不超过10mg ……2
分
(2)证明:
则: 200(1 60%)n 10
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙龙课反倒是龙卷风前一天
建议收藏下载本文,以便随时学习! 22(本小题分 A,B 类,满分 14 分,任选一类,若两类都选,以 A 类记分)
2023-2024学年高一上数学必修一综合测试卷(附答案解析)

解析:当 c=0 时,A 不成立;当 a=-1,b=-2 时,B 不成立;
由不等式的性质知 C 不成立;若 a> b,则一定能推出 a>b,故 D 成
立.
3.命题“∃x∈R,x3-x2+1>0”的否定是( A )
A.∀x∈R,x3-x2+1≤0 B.∀x∈R,x3-x2+1>0
C.∃x∈R,x3-x2+1≤0 D.不存在 x∈R,x3-x2+1≤0
的取值范围是( A )
A.[2,6)
B.(2,6)
C.(-∞,2]∪(6,+∞)
D.(-∞,2)∪(6,+∞)
解析:①当 a=2 时,1>0 成立,故 a=2 符合条件;②当 a≠2 时,
a-2>0,
必须满足 Δ=a-22-4a-2<0,
解得 2<a<6.由①②可知,a∈
[2,6).故选 A.
二、多项选择题(本题共 4 小题,每小题 5 分,共 20 分.在每小
2
4
sinx
在
1π,3π 22
上单调递减,故
y=
π,3π 2sin2x 在 4 4 上单调递减,故
题给出的四个选项中,有多个选项符合题目要求.全部选对的得 5 分,
部分选对的得 3 分,有选错的得 0 分)
9.下列函数是偶函数的是( CD )
A.f(x)=tanx B.f(x)=sinx C.f(x)=cosx D.f(x)=lg|x|
解析:根据题意,依次分析选项:对于 A,f(x)=tanx,是正切函
解析:存在量词命题“∃x∈M,p(x)”的否定为全称量词命题“∀
x∈M,綈 p(x)”,故选 A.
4. 22cos375°+ 22sin375°的值为( A )
高一数学必修1、必修4考试试题(最新整理)

13
5
56
16
56 16
A.
B.
C. 或
D.以上均不对
65
65
65 65
7.与函数 y tan(2x ) 的图象不相交的一条直线是( )
4
A. x
2
B. x
2
C. x
4
D. x
8
8.设 函 数 f (x) a sin( x ) b cos( x ) 4 (其 中 a,b,, 为 非 零 实 数 ),若 f (2012) 5 ,则
4 /7
一、 选择题
高一数学必修 1、必修 4 考试试题
参考答案
题号 1 2 3 4 5 6 7 8 9 10 11 12
答案 C C A D C A D B B A D B
二、填空题
13.2 14.1 15.-1 16. ①④
三、解答题
17. (1)由0 ,sin 4 ,得cos 3 -------2 分
高一数学必修 1、必修 4 考试试题
高一数学必修 1、4 试题
一、选择题(本大题共 12 个小题,每小题 5 分,共 60 分,、)
1.cos 20cos10 sin10sin 20 的值为( )
A. 1
B. 1
C. 3
D. 3
2
2
2
2
2.如果角 α 的终边过点 P(1,- 3 ),则 sinα 的值等于( )
(x)
的最值,及取得最值时自变量的值.
21. (本小题满分 12 分) 对任意的 R ,不等式sin2 2m cos 2m 2 0 恒成立,求实数的取值范围.
3 /7
高一数学必修 1、必修 4 考试试题
(完整word)高一数学必修一和必修四综合测试卷

高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x =,,,则这样的x 的不同值有 个.2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于 .6aa -等于 .5.若lg2a =,lg3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 .7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8. 122333111,,225⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9.设角α是第四象限角,且|cos|cos2αα=-,则2α是第 象限角. 10.函数()lg sin f x x =+的定义域是 .11.已知1sin 1,cos 2x x +=-那么cos sin 1x x -的值是 . 12.在锐角ABC ∆中,cos A 与sin B 的大小关系为 .13.函数()tan ()43f x x x ππ=-≤<的值域是 .14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为 .15.已知tanx=6,那么21sin 2x+31cos 2x=_______________.16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+=二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆成立的a 值的集合.18.设函数2()log ()x xf x a b =-,且(1)1f =,2(2)log 12f =.(1)求 a b ,的值; (2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-=⎪+⎝⎭. (1)求()f x 的解析式; (2)判断()f x 的奇偶性;(3)判断()f x 的单调性并证明.20.已知函数y=21cos 2x+23sinxcosx+1,x ∈R .(1)求它的振幅、周期和初相;(2)用五点法作出它的简图;(3)该函数的图象是由y=sinx(x ∈R )的图象经过怎样的平移和伸缩变换得到的? 21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好. 若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入) (1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1.3个2.63.4.5.21a ba+ -6.1a b<<7. (15), 8. 221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.二 10.[2,2)()3k k k Z ππππ++∈11.1212.cos A <sin B 13.[-14.1()3sin()23f x x π=+15.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x . 16.23π-二.解答题17.解:由A AB ⊆,得A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-. 解得69a ≤≤或6a <. 即9a ≤.∴使A A B ⊆成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,, 22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124ttt x ⎛⎫⎛⎫∈== ⎪ ⎪⎝⎭⎝⎭R ,,11144().1411414()().14tt t txxf t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R (2)x ∈R ,且1441()()4141x x xx f x f x -----===-++, ()f x ∴为奇函数.(3)2()114xf x =-++, ()f x ∴在()-∞+∞,上是减函数. 证明:任取12x x ∈R ,,且12x x <,则21121212222(44)()()111414(14)(14)x x x x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4x y =在()-∞+∞,上是增函数,且12x x <,1244x x ∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14xxf x -∴=+在()-∞+∞,上是减函数.20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45=21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π.(2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象:x12π- 6π 125π 32π1211π x 1 0 2π π 32π 2π y=sinx 11-1y=21sin(2x+6π)+454547 45 43 45(3)解法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象 −−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象 −−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N 又由(1303)57500x x x -->⎧⎨>⎩,,得1038x x *<∈N ≤,所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩NN, ≤≤,且, ≤,且 函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元); 当0x >时,23130575y x x =-+-, 仅当130652(3)3x =-=⨯-时,y 取最大值,又x *∈N ,∴当22x =时,y 取得最大值,此时max 833y =(元) 比较两种情况的最大值,833(元)>425(元) ∴当床位定价为22元时净收入最多.22.解:2,23πϕω==或2。
高一数学学年高中数学必修一必修四测试题含答案
高中数学必修一必修四综合检测题一、选择题1.已知集合{}{}2|6,30A x N x B x R x x =∈≤=∈-,则A B ⋂=()A.{}3,4,5,6B.{}|36x x <≤C.{}4,5,6D.{| 0x x <或}36x <≤2.下列函数中.既是偶函数,又在(),0∞-上为减函数的是A.2x y =B.y =2y x =- D.lg y x =3.已知幂函数的图象过点⎪⎪⎭⎫⎝⎛22,21,则))2((log 4f 的值为() A.41B.41- C.2D.-24.函数sin cos y x x x =+的图像大致为 A.B. C. D.5.如果31)cos(-=+απ,那么)sin(απ-25等于()A .322B .322-C .31-[D .316.若一圆弧长等于其所在圆的内接正三角形的边长,那么其圆心角的弧度数为()A .3πB .32πC .3D .27.若3sin cos 0αα+=,则21cos sin 2αα+的值为()A .103B .53C .23D .2-8.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为()A .)322sin(2π+=x yB .)32sin(2π+=x y C .)32sin(2π-=x y D .)32sin(2π-=x y 9.已知函数⎪⎩⎪⎨⎧---=x x x f x 212)(200≤>x x ,若函数()()g x f x m =-有3个零点,则实数m 的取值范围().A .(0,12)B .1,12⎛⎤ ⎥⎝⎦C .(]0,1D .(0,1) 10.A 为三角形ABC 的一个内角,若12sin cos 25A A +=,则这个三角形的形状为() A .锐角三角形B .钝角三角形 C .等腰直角三角形D .等腰三角形 11.设()f x 是定义在R 上的奇函数,且(3)()1f x f x +⋅=-,(1)2f -=,则(2008)f =()A .0B .0.5C .2D .1-12.已知函数(31)4,(1)()log ,(1)aa x a x f x x x -+<⎧=⎨≥⎩满足:对任意实数21,x x ,当12x x <时,总有12()()0f x f x ->,那么实数a 的取值范围是()A .[11,)73B .1(0,)3C .11(,)73D .[1,1)7二、填空题13.已知函数f(x)为奇函数,且当x>0时,f(x)=x 2+,则f(-1)=____14.方程01)3sin(2=-++a x π在[]0,π上有两个不等的实根,则实数a 的取值范围是15.设⎩⎨⎧>-≤+=)0(lg 2)0(1)(2x x x x x f ,则[](100)f f = 16.关于x 的方程22(1)40x m x m +++-=有实根,且一个大于2,一个小于2,则m 取值范围为_____.三、解答题17.已知集合=A {}42|<≤x x ,=B {}x x x 2873|-≥-,=C {}a x x <|。
高一数学必修一和必修四综合测试卷
高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x =,,,则这样的x 的不同值有个. 2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为.3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于.6a -等于.5.若lg2a =,lg3b =,则5log 12等于.6.若log 2log 20a b >>,那么有,,1a b 三者关系为.7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是. 8.122333111,,225⎛⎫⎛⎫⎛⎫⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭下列大小关系为. 9.设角α是第四象限角,且|cos |cos 22αα=-,则2α是第象限角. 10.函数()lgsin f x x =.11.已知1sin 1,cos 2x x +=-那么cos sin 1x x -的值是. 12.在锐角ABC ∆中,cos A 与sin B 的大小关系为.13.函数()tan ()43f x x x ππ=-≤<的值域是. 14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为. 15.已知tanx=6,那么21sin 2x+31cos 2x=_______________. 16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+= 二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆成立的a 值的集合.18.设函数2()log ()x x f x a b =-,且(1)1f =,2(2)log 12f =.(1)求a b ,的值;(2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-=⎪+⎝⎭. (1)求()f x 的解析式;(2)判断()f x 的奇偶性;(3)判断()f x 的单调性并证明.20.已知函数y=21cos 2x+23sinxcosx+1,x ∈R . (1)求它的振幅、周期和初相;(2)用五点法作出它的简图;(3)该函数的图象是由y=sinx(x ∈R )的图象经过怎样的平移和伸缩变换得到的?21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好.若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入)(1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点 3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1.3个2.63.0.54.5.21a b a+- 6.1a b <<7.(15), 8.221333111522⎛⎫⎛⎫⎛⎫<< ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭ 9.二10.[2,2)()3k k k Z ππππ++∈ 11.1212.cos A <sin B13.[1-14.1()3sin()23f x x π=+ 15.111551363136211tan 31tan 21cos sin cos 31sin 21222222=++⨯=++=++x x x x x . 16.23π- 二.解答题17.解:由A A B ⊆,得A B ⊆,则21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-.解得69a ≤≤或6a <.即9a ≤.∴使A A B ⊆成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,, 22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124t t t x ⎛⎫⎛⎫∈== ⎪ ⎪⎝⎭⎝⎭R ,, 11144().1411414()().14tt t t xx f t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R(2)x ∈R ,且1441()()4141x x x x f x f x -----===-++, ()f x ∴为奇函数.(3)2()114xf x =-++, ()f x ∴在()-∞+∞,上是减函数.证明:任取12x x ∈R ,,且12x x <, 则21121212222(44)()()111414(14)(14)x x x x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4x y =在()-∞+∞,上是增函数,且12x x <, 1244x x ∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14xx f x -∴=+在()-∞+∞,上是减函数. 20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45 =21sin(2x+6π)+45. (1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π. (2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象: x 12π- 6π 125π 32π 1211π x 1 0 2π π 32π 2π y=sinx 10 1 0 -1 0 y=21sin(2x+6π)+45 45 47 45 43 45(3)解法一:将函数图象依次作如下变换: 函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象 −−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象. 即得函数y=21cos 2x+23sinxcosx+1的图象. 解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象 −−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象. 即得函数y=21cos 2x+23sinxcosx+1的图象. 21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N 又由(1303)57500x x x -->⎧⎨>⎩,,得1038x x *<∈N ≤, 所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩N N , ≤≤,且, ≤,且 函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元); 当0x >时,23130575y x x =-+-, 仅当130652(3)3x =-=⨯-时,y 取最大值, 又x *∈N ,∴当22x =时,y 取得最大值,此时max 833y =(元)比较两种情况的最大值,833(元)>425(元)∴当床位定价为22元时净收入最多.22.解:2,23πϕω==或2。
高一数学必修1必修4试卷
高中数学必修1、4综合测试题一、选择题:(每题5分,满分50分) 1.集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则 ( ) A 、M N = B 、M N ⊆ C 、N M ⊆ D 、M N =∅2.若是第二象限角,则是( )A.第一象限角B.第二象限角C.第三象限角D.第四象限角 3. 下列命题正确的是( )A 若→a ·→b =→a ·→c ,则→b =→c B 若||||b a b a -=+,则→a ·→b =0C 若→a →b →b →c →a →c →a →b →a →b 34sin ,cos 55αα=-=α(3,4)-(4,3)-(4,3)-(3,4)-5x 21x =+-已知3.0log a 2=,3.02b =,2.03.0c =,则c b a ,,三者的大小关系是 ( )、A 、a c b >>B 、c a b >>C 、c b a >>D 、a b c >>8.把函数y=sinx 的图象上所有点向右平移3π个单位,再将图象上所有点的横坐标缩小到原来的21(纵坐标不变),所得解析式为y=sin(x ),则 ( ) A.=2,=6πB.=2,=-3πC.=21,=6πD.=21,=-12π 9.设⎭⎬⎫⎩⎨⎧----∈α3,2,1,21,31,21,1,2,3,则使αx y =为奇函数且在(0,+∞)上单调递减的α值的个数为 ( ) A 、1 B 、2 C 、3 D 、410.已知sinx+cosx=51且x (0,),则tanx 值 ( )34 43 34或-43 D.34 二、填空题:(每题5分,满分20分)11.1弧度的圆心角所对的弧长为6,则这个圆心角所夹的扇形面积是_______.12.函数)x 2x (log y 221-=的单调递减区间是________________________.·13.已知tanx=2,则xcos x sin 4xcos 4x sin 3--=_____________14.关于函数)R x ,0x (|x |1x lg)x (f 2∈≠+=有下列命题: ①函数)x (f y =的图象关于y 轴对称; ②在区间)0,(-∞上,函数)x (f y =是减函数;③函数)x (f 的最小值为2lg ; ④在区间),1(∞上,函数)x (f 是增函数.CIt10 -10O30013004(第15题图) 其中正确命题序号为_______________.15.电流强度I (安培)随时间t (秒)变化的函数 I = A sin (t+))0,0(>>A ω的图象如图所示,(则当t =1207(秒)时的电流强度为_______安培.三、解答题:(本题满分80分,要求写出必要的步骤和过程)16(本小题满分12分)已知全集U={x|1<x<7},A={x|2≤x<5},B={ x|3x-7≥8-2x},求A ∩B 及C U A.~}17(本小题12分)已知434π<α<π,40π<β<,53)4cos(-=+απ,135)43sin(=β+π,求()βα+sin 的值."}18.(本小题12分)二次函数f (x )满足f (x +1)-f (x )=2x 且f (0)=1.⑴求f (x )的解析式;⑵当x ∈[-1,1]时,不等式:f (x ) 2x m >+恒成立,求实数m 的范围.\)19(本小题满分12分)已知(1,2)a =,)2,3(-=,当k 为何值时, (1) ka b +与3a b -垂直(2) ka b +与3a b -平行平行时它们是同向还是反向*{20. (本小题12分)已知函数y= 4cos 2x+43sinxcosx -2,(x ∈R )。
必修1、必修4数学试卷(含答案)
D高一数学清北班入学选拔考试(必修1、4)试卷时量40分钟满分100分姓名得分一、选择题(每小题6分,共48分)1.若集合{}A=|1x x x R≤∈,,{}2B=|y y x x R=∈,,则A B= ()A.{}|11x x-≤≤ B. {}|0x x≥ C.{}|01x x≤≤ D.∅2.给定函数①12y x=,②12log(1)y x=+,③|1|y x=-,④12xy+=,期中在区间(0,1)上单调递减的函数序号是()A. ①②B.②③C.③④D.①④3.若x是方程式lg2x x+=的解,则x属于区间()A.(0,1)B.(1,1.25)C.(1.25,1.75)D.(1.75,2)4.函数x xx xe eye e--+=-的图像大致为()5.设}21sin|{<=xxA,{|cosB x x=>,则()A. BA⊂ B. BA= C. BA⊃ D. BA⊆6.已知函数tany xω=在(2π-,2π)内是减函数,则()A.01ω<≤B.10ω-≤<C.1ω≥D.1ω≤-7.若函数()y f x=的图象上每一点的纵坐标保持不变,横坐标伸长到原来的2倍,再将整个图象沿x轴向左平移2π个单位,沿y轴向下平移1个单位,得到函数1sin2y x=的图象则()y f x=是()A.1sin(2)122y xπ=++ B.1sin(2)122y xπ=-+ C.1sin(2)124y xπ=++ D.1sin(2)124y xπ=-+ 8.设点M是线段BC的中点,点A在直线BC外,216,BC AB AC AB AC=∣+∣=∣-∣,则AM∣∣=()A. 8B. 4C. 2D. 1二、填空题(每小题6分,共42分) 9.设25abm ==,且112a b+=,则m = . 10.已知函数3log ,0()2,0x x x f x x >⎧=⎨≤⎩,则1(())9f f = .11.设函数)()()(R x ae e x x f xx ∈+=是偶函数,则实数=a _______________. 12.已知函数21,0()1,0x x f x x ⎧+≥=⎨<⎩,则满足不等式2(1)(2)f x f x ->的x 的范围是___ _.13.已知α为第二象限的角,则2α所在的象限是 . 14.函数xxxx y tan tan cos cos +=的值域为 . 15.点P 在平面上作匀速直线运动,速度向量(4,3)v =-(即点P 的运动方向与v 相同,且每秒移动的距离为v 个单位.设开始时点P 的坐标为(-10,10),则5秒后点P 的坐标为 . 三、解答题(10分)16.如图,已知点G 是△ABO 的重心.⑵若PQ 过△ABO 的重心G ,且,,b OB a OA ==OP ma =,OQ nb =.求证:113m n+=.高一数学清北班入学考试(必修1、4)试卷答案一、选择题(每小题6分,共48分) 1.C 2.B3.D4. A5.C6.B7.B8.C二、填空题(每小题6分,共42分)10.1411.1- 12.)12,1(-- 13.一、三14.}{2.2,0-15.(10,-5)三、解答题(10分) 16.解:显然OM ).(21b a += 因为G 是ABC ∆的重心, 所以=OG 321()3OM a b =⋅+由P 、G 、Q 三点共线,有GQ PG ,共线,所以,有且只有一个实数λ, .GQ PG λ=而OP OG PG -=,31)31()(31b a m a m b a +-=-+=GQ =OQ -OG =b n a b a b n )31(31)(31-+-=+-,所以1111()[()]3333m a b a n b λ-+=-+-.又因为a 、b 不共线,所以113311()33m n λλ⎧-=-⎪⎪⎨⎪=-⎪⎩,消去λ,整理得3mn =n m +,故311=+nm .65分以上进清北班。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高一数学必修①④综合练习(一)一.填空题1.已知集合{13}A x =,,,2{1}B x =,,{13}A B x = ,,,则这样的x 的不同值有 个.2.已知39()[(4)]9x x f x f f x x -⎧=⎨+<⎩, ≥,,则(5)f 的值为 .3.已知函数()f x 的定义域为R ,满足(2)()f x f x +=-,当01x ≤≤时,()f x x =,则(8.5)f 等于 .4.等于 .5.若lg2a =,lg 3b =,则5log 12等于 .6.若log 2log 20a b >>,那么有,,1a b 三者关系为 .7.函数1()4x f x a -=+的图象恒过定点P ,则P 点坐标是 .8. 122333111,,225⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭下列大小关系为 . 9.设角α是第四象限角,且|cos |cos 22αα=-,则2α是第 象限角.10.函数()lg sin f x x =+的定义域是 . 11.已知1sin 1,cos 2xx +=-那么cos sin 1xx -的值是 .12.在锐角A B C ∆中,cos A 与sin B 的大小关系为 .13.函数()tan ()43f x x x ππ=-≤<的值域是 .14.将函数()y f x =的图象上的每一点的纵坐标变为原来的13得到图象1C ,再将1C 上每一点的横坐标变为原来的12得到图象2C ,再将2C 上的每一点向右平移3π个长度单位得到图象3C ,若3C 的表达式为sin y x =,则()y f x =的解析式为 .15.已知tanx=6,那么21sin 2x+31cos 2x=_______________.16.已知(,),(,),tan 2222ππππαβα∈-∈-与tan β是方程240x ++=的两个实根,则__________.αβ+=二.解答题17.设集合{|2135}A x a x a =+-≤≤,{|322}B x x =≤≤,求能使A A B ⊆ 成立的a 值的集合.18.设函数2()log ()x x f x a b =-,且(1)1f =,2(2)log 12f =. (1)求 a b ,的值; (2)当[12]x ∈,时,求()f x 的最大值.19.已知1211log 21x f x x ⎛⎫-= ⎪+⎝⎭.(1)求()f x 的解析式;(2)判断()f x 的奇偶性; (3)判断()f x 的单调性并证明.20.已知函数y=21cos 2x+23sinxcosx+1,x ∈R .(1)求它的振幅、周期和初相; (2)用五点法作出它的简图;(3)该函数的图象是由y=sinx(x ∈R )的图象经过怎样的平移和伸缩变换得到的?21.某宾馆有相同标准的床位100张,根据经验,当该宾馆的床价(即每张床价每天的租金)不超过10元时,床位可以全部租出,当床位高于10元时,每提高1元,将有3张床位空闲. 为了获得较好的效益,该宾馆要给床位订一个合适的价格,条件是:①要方便结账,床价应为1元的整数倍;②该宾馆每日的费用支出为575元,床位出租的收入必须高于支出,而且高出得越多越好. 若用x 表示床价,用y 表示该宾馆一天出租床位的净收入(即除去每日的费用支出后的收入) (1)把y 表示成x 的函数,并求出其定义域;(2)试确定该宾馆床位定为多少时既符合上面的两个条件,又能使净收入最多?22.已知函数()sin()(0,0)f x x ωϕωϕπ=+>≤≤在R 上是偶函数,其图象关于点3(,0)4M π对称,且在区间[0,]2π上是单调函数,求ϕ和ω的值.高一数学必修①④综合测试卷(一)答案一.填空题1. 3个 2. 6 3. 0.5 4.5.21a b a +-6. 1a b << 7. (15),8. 221333111522⎛⎫⎛⎫⎛⎫<< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭9.二10.[2,2)()3k k k Z ππππ++∈11.1212.cos A <sin B13.[1,- 14.1()3sin()23f x x π=+15.111551363136211tan 31tan21cossin cos31sin 21222222=++⨯=++=++x x x x x .16.23π-二.解答题17.解:由A A B ⊆ ,得A B ⊆,则 21352133522a a a a +-⎧⎪+⎨⎪-⎩≤,≥,≤,或2135a a +>-. 解得69a ≤≤或6a <. 即9a ≤.∴使A A B ⊆ 成立的a 值的集合为{9}a a ≤.18.解:由已知,得22222log ()1log log 12a b a b -=⎧⎨-=⎩,, 22212a b a b -=⎧∴⎨-=⎩,,解得42a b ==,. 19.解:(1)令121log 2t x =,则21124ttt x ⎛⎫⎛⎫∈== ⎪⎪⎝⎭⎝⎭R ,,11144().1411414()().14tt ttx xf t f x x ⎛⎫- ⎪-⎝⎭==+⎛⎫+ ⎪⎝⎭-∴=∈+R(2)x ∈R ,且1441()()4141xxxxf x f x -----===-++,()f x ∴为奇函数.(3)2()114xf x =-++ ,()f x ∴在()-∞+∞,上是减函数.证明:任取12x x ∈R ,,且12x x <,则21121212222(44)()()111414(14)(14)xxx x x x f x f x -⎛⎫⎛⎫-=-+---= ⎪ ⎪++++⎝⎭⎝⎭. 4xy = 在()-∞+∞,上是增函数,且12x x <,1244x x∴<.12()()0f x f x ∴->,即12()()f x f x >.14()14x xf x -∴=+在()-∞+∞,上是减函数.20.解:y=21cos 2x+23sinxcosx+1=41cos2x+23sin2x+45=21sin(2x+6π)+45.(1)y=21cos 2x+23sinxcosx+1的振幅为A=21,周期为T=22π=π,初相为φ=6π.(2)令x 1=2x+6π,则y=21sin(2x+6π)+45=21sinx 1+45,列出下表,并描出如下图象:x 12π-6π125π32π 1211πx 10 2ππ 32π2π y=sinx 1 01 0-1y=21sin(2x+6π)+4545 4745 43 45(3)解法一:将函数图象依次作如下变换:函数y=sinx 的图象−−−−−→−个单位向左平移6π函数y=sin(x+6π)的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin(2x+6π)的图象 −−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)的图象−−−−−→−个单位向上平移45函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.解法二:函数y=sinx 的图象−−−−−−−−−−→−)(21纵坐标不变的各点横坐标缩短到原来函数y=sin2x 的图象−−−−−→−个单位向左平移12π函数y=sin(2x+6π)的图象−−−−−→−个单位向上平移25函数y=sin(2x+6π)+25的图象−−−−−−−−−−→−)(21横坐标不变的各点纵坐标缩短到原来函数y=21sin(2x+6π)+45的图象.即得函数y=21cos 2x+23sinxcosx+1的图象.21.解:(1)由已知有10057510(1303)57510x x y x x x x *-⎧=∈⎨-->⎩N , ≤,, ,令0y >.由100575010x x ->⎧⎨⎩,≤,得610x ≤≤,x *∈N又由(1303)57500x x x -->⎧⎨>⎩ ,,得1038x x *<∈N ≤,所以函数为210057561031305751038x x x y x x x x **⎧-∈⎪=⎨-+-<∈⎪⎩NN, ≤≤,且, ≤,且函数的定义域为{638}x x x *∈N ≤≤,.(2)当10x ≤时,显然,当10x =时,y 取得最大值为425(元);当0x >时,23130575y x x =-+-,仅当130652(3)3x =-=⨯-时,y 取最大值,又x *∈N ,∴当22x =时,y 取得最大值,此时m ax 833y =(元)比较两种情况的最大值,833(元)>425(元) ∴当床位定价为22元时净收入最多.22.解:2,23πϕω==或2。