第1章 流体力学基本知识

合集下载

流体力学基础知识

流体力学基础知识
流体力学基础知识 流体力学基础知识
目 录 Contents
一 绪论 二 流体静力学 三 流体运动学 四 流体动力学
第一章: 绪论
1.1 流体力学的研究对象
流体力学是研究流体平衡与运动的规律以及它与固 体之间相互作用规律的科学。
其中流体包括液体和气体,相对于固体,它在力学 上表现出以下特点: 流体不能承受拉力。 流体在宏观平衡状态下不能承受剪切力。 对于牛顿流体(如水、空气等)其切应力与应变的时间 变化率成比例,而对弹性体(固体)来说,其切应力则 与应变成比例。
• 数值方法 计算机数值方法是现代分析手段中发展最快的方法之一
1.4 流体力学的发展史
• 第一阶段(16世纪以前):流体力学形成的萌芽阶段 • 第二阶段(16世纪文艺复兴以后-18世纪中叶)流体力学
成为一门独立学科的基础阶段 • 第三阶段(18世纪中叶-19世纪末)流体力学沿着两个方
向发展——欧拉、伯努利 • 第四阶段(19世纪末以来)流体力学飞跃发展
体静力学的基础
第二阶段(16世纪文艺复兴以后-18世纪中叶) 流体力学成为一门独立学科的基础阶段
• 1586年 斯蒂芬——水静力学原理 • 1650年 帕斯卡——“帕斯卡原理” • 1612年 伽利略——物体沉浮的基本原理 • 1686年 牛顿——牛顿内摩擦定律 • 1738年 伯努利——理想流体的运动方程即伯努利方程 • 1775年 欧拉——理想流体的运动方程即欧拉运动微分方
1.2 连续介质模型
• 连续介质 流体微元——具有流体宏观特性的最小体积的流体团
• 理想流体 不考虑粘性的流体
• 不可压缩性 ρ=c
1.3 流体力学的研究方法
理论分析方法、实验方法、数值方法相互配合,互为补充

(完整版)流体力学知识点总结汇总

(完整版)流体力学知识点总结汇总

流体力学知识点总结 第一章 绪论1 液体和气体统称为流体,流体的基本特性是具有流动性,只要剪应力存在流动就持续进行,流体在静止时不能承受剪应力。

2 流体连续介质假设:把流体当做是由密集质点构成的,内部无空隙的连续体来研究。

3 流体力学的研究方法:理论、数值、实验。

4 作用于流体上面的力(1)表面力:通过直接接触,作用于所取流体表面的力。

作用于A 上的平均压应力作用于A 上的平均剪应力应力法向应力切向应力(2)质量力:作用在所取流体体积内每个质点上的力,力的大小与流体的质量成比例。

(常见的质量力:重力、惯性力、非惯性力、离心力)单位为5 流体的主要物理性质 (1) 惯性:物体保持原有运动状态的性质。

质量越大,惯性越大,运动状态越难改变。

常见的密度(在一个标准大气压下): 4℃时的水20℃时的空气(2) 粘性ΔFΔPΔTAΔAVτ法向应力周围流体作用的表面力切向应力A P p ∆∆=A T ∆∆=τAF A ∆∆=→∆lim 0δAPp A A ∆∆=→∆lim 0为A 点压应力,即A 点的压强 ATA ∆∆=→∆lim 0τ 为A 点的剪应力应力的单位是帕斯卡(pa ),1pa=1N/㎡,表面力具有传递性。

B Ff m =2m s 3/1000mkg =ρ3/2.1mkg =ρ牛顿内摩擦定律: 流体运动时,相邻流层间所产生的切应力与剪切变形的速率成正比。

即以应力表示τ—粘性切应力,是单位面积上的内摩擦力。

由图可知—— 速度梯度,剪切应变率(剪切变形速度) 粘度μ是比例系数,称为动力黏度,单位“pa ·s ”。

动力黏度是流体黏性大小的度量,μ值越大,流体越粘,流动性越差。

运动粘度 单位:m2/s 同加速度的单位说明:1)气体的粘度不受压强影响,液体的粘度受压强影响也很小。

2)液体 T ↑ μ↓ 气体 T ↑ μ↑ 无黏性流体无粘性流体,是指无粘性即μ=0的液体。

无粘性液体实际上是不存在的,它只是一种对物性简化的力学模型。

流体力学基础知识

流体力学基础知识

第一章流体力学基本知识学习本章的目的和意义:流体力学基础知识是讲授建筑给排水的专业基础知识,只有掌握了该部分知识才能更好的理解建筑给排水课程中的相关容。

§1-1 流体的主要物理性质1.本节教学容和要求:1.1本节教学容:流体的4个主要物理性质。

1.2教学要求:(1)掌握并理解流体的几个主要物理性质(2)应用流体的几个物理性质解决工程实践中的一些问题。

1.3教学难点和重点:难点:流体的粘滞性和粘滞力重点:牛顿运动定律的理解。

2.教学容和知识要点:2.1 易流动性(1)基本概念:易流动性——流体在静止时不能承受切力抵抗剪切变形的性质称易流动性。

流体也被认为是只能抵抗压力而不能抵抗拉力。

易流动性为流体区别与固体的特性2.2密度和重度(1)基本概念:密度——单位体积的质量,称为流体的密度即:Mρ =VM——流体的质量,kg ;V——流体的体积,m3。

常温,一个标准大气压下Ρ水=1×103kg/ m3103kg/ m3Ρ水银=13.6×基本概念:重度:单位体积的重量,称为流体的重度。

重度也称为容重。

Gγ =VG——流体的重量,N ;V——流体的体积,m3。

∵G=mg ∴γ=ρg 常温,一个标准大气压下γ水=9.8×103kg/ m3103kg/ m3γ水银=133.28×密度和重度随外界压强和温度的变化而变化液体的密度随压强和温度变化很小,可视为常数,而气体的密度随温度压强变化较大。

2..3 粘滞性(1)粘滞性的表象基本概念:流体在运动时抵抗剪切变形的性质称为粘滞性。

当某一流层对相邻流层发生位移而引起体积变形时,在流体中产生的切力就是这一性质的表现。

为了说明粘滞性由流体在管道中的运动速度实验加以分析说明。

用流速仪测出管道中某一断面的流速分布如图一所示设某一流层的速度为u,则与其相邻的流层为u+du,du为相邻流层的速度增值,设相邻流层的厚度为dy,则du/dy叫速度梯度。

流体力学基本知识

流体力学基本知识
流体在长直管(或明渠)中流动,所受的摩 擦阻力称为沿程阻力。为了克服沿程阻力而消耗 的单位重量流体的机械能量,称为沿程水头损失
hf。
(二)局部阻力和局部水头损失 流体的边界在局部地区发生急剧变化时,迫
使主流脱离边壁而形成漩涡,流体质点间产生剧 烈地碰撞,所形成的阻力称局部阻力。为了克服 局部阻力而消耗的重力密度流体的机械能量称为
5.断面平均流速:流体流动时,断面各点流速一般 不易确定,当工程中又无必要确定时,可采用断
面平均流速(v)简化流动。断面平均流速为断
面上各点流速的平均值。
精品课件
二、恒定流的连续性方程
压缩流体容重不变,即体积流 量相等。流进A1断面的流量等于流 出A2断面的流量;
精品课件
三、恒定总流能量方程
(一)恒定总流实际液体的能量方程
〈1〉温度升高,液体的粘度减小(因为T上 升,液体的内聚力变小,分子间吸引力减 小;)
〈2〉温度升高,气体的粘度增大(气体的内 聚力很小,它的粘滞性主要是分子间动量 交换的结果。当T上升,作相对运动的相邻 流层间的分子的动量交换加剧,使得气体 的粘度增大。)
精品课件
压缩性:流体压强增大体积缩小的性质。 不可压缩流体:压缩性可以忽略不计的流体。 可压缩流体:压缩性不可以不计的流体。
精品课件
一、流体静压强及其特性
表面压强为: p=△p/△ω (1-6)
点压强为:
lim ( Pa)
p=dp/dω
点压强就是静压强
精品课件
流体静压强的两个特征:
(1)流体静压强的方向必定沿着作用面的 内法线方向。 (2)任意点的流体静压强只有一个值,它 不因作用面方位的改变而改变。
精品课件
二、流体静压强的分布规律

建筑设备ppt1 流体力学基本知识

建筑设备ppt1 流体力学基本知识
非均匀流可分为:
渐变流:流体运动中流线接近于平等线的流动。
急变流:流体运动中流线不能视为平行直线的流动。
三、流体运动的基本知识
基本概念: 元流:微小面积dw上引出流线形成的流 束。dw上运动要素(压强与流速)相等。 总流:无数元流的总和。
三、流体运动的基本知识
过流断面:流体流动时,与元流或总 流全部流线正交的横断面。
H Z r 2g
三、恒定总流能量方程式
测压管水头线:把各断面上的测压管 水头连成的一条线。
p Z r
测压管水头线可能上升、下降、水平。
三、恒定总流能量方程式
水力坡度:沿流程单位长度上的水头 损失。
h i l
在实际水流中,由于水头损失的存在, 所以总水头线总是沿流程下降的倾斜 线。
三、恒定总流能量方程式
一、流体的主要物理性质
液体的压缩性和热胀性都很小。 工程上除管中水击和热水循环系统一 般忽略不计。
水从1个大气压增加到100个大气压时, 每增加1个大气压,水的密度增加1/20000。 水在温度较低(10-20℃)时,温度每增 加1℃,水的密度减小1.5/10000,当温度 较高(90-100℃)时,温度每增加1℃,水的 密度减小为7/10000。
Z1、Z 2 — 单位重量液体的位能 也称位置水头 , p1 p2 、 — 单位重量液体的压能 也称压强水头 , r r 2 a1v12 a2 v2 、 — 单位重量液体的动能 也称流速水头 , 2g 2g hw1 2 — 平均能量损失, 也称水头损失
三、恒定总流能量方程式
总水头线:把各断面上总水头顶点连 成的一条线。 p av2
称为流速系数或谢才系 数
C
8g

四、流动阻力和水头损失

流体力学知识点

流体力学知识点

第一章流体流动§1.1.1、概述1、流体—液体和气体的总称。

流体具有三个特点①流动性,即抗剪抗张能力都很小。

②无固定形状,随容器的形状而变化。

③在外力作用下流体内部发生相对运动。

2、流体质点:含有大量分子的流体微团。

流体分子自由程<流体质点尺寸<设备大小,流体质点成为研究流体宏观运动规律的考察对象。

3、流体连续性假设:假设流体是由大量质点组成的彼此间没有空隙,完全充满所占空间的连续介质。

连续性假设的目的是为了摆脱复杂的分子运动,而从宏观的角度来研究流体的流动规律,这时,流体的物理性质及运动参数在空间作连续分布,从而可用连续函数的数学工具加以描述。

流体流动规律是本门课程的重要基础,这是因为:①流体的输送研究流体的流动规律以便进行管路的设计、输送机械的选择及所需功率的计算。

②压强、流速及流量的测量为了了解和控制生产过程,需要对管路或设备内的压强、流量及流速等一系列的参数进行测量,这些测量仪表的操作原理又多以流体的静止或流动规律为依据的。

③为强化设备提供适宜的流动条件化工生产中的传热、传质过程都是在流体流动的情况下进行的。

设备的操作效率与流体流动状况有密切的联系。

因此,研究流体流动对寻找设备的强化途径具有重要意义。

本章将着重讨论流体流动过程的基本原理及流体在管内的流动规律,并运用这些原理及规律来分析和计算流体的输送问题。

第二节流体静力学方程流体静力学是研究流体在外力作用下处于平衡的规律。

本节只讨论流体在重力和压力作用下的平衡规律。

§1.2.1流体的密度和比容1、流体的密度:单位体积的流体所具有的质量。

/m V ρ=∆∆当V ∆趋近于零时,/m V ∆∆的极限值为流体内部某点的密度,可以写成:0limV mVρ∆→∆=∆各种流体的密度可以从物理化学手册和有关资料中查得。

气体具有可压缩性及膨胀性,故其密度随温度及压强而变化,因此对气体密度必须标出其所处的状态。

从手册中查出的气体密度是某指定状态下的数值 ,应用时一定要换算到操作条件下的数值。

第一章 流体力学基础知识


物质导数表示流体微团通过点1时密度的瞬时变化率
上式右端第一项反映流场中静止一点密度的瞬时振荡
D V Dt t
五.作用在流体微团上的力 流体静平衡方程
• 表面力:相邻流体或物体作用于所研 究流体团块外表面,大小与流体团块 表面积成正比的接触力。
• 彻体力:外力场作用于流体微团质量 中心,大小与微团质量成正比的非接 触力。
N ∞ =法向力=合力在垂直于弦线方向分力;A∞ =轴向力=合力在平行于弦线方向分力;
dNu pucos dsu usin dsu dAu pusin dsu ucos dsu
dNl plcos dsl lsin dsl dAl pusin dsl lcos dsl
M z xcp N
xcp
M z N
由图中可以看出, N会产生一个关于前缘的负力矩(使机翼低头),故上式中含有负号。 Xcp定义为翼型压力中心,是翼型上气动力合力作用线与弦线的交点。 当合力作用在这个点上时,产生与分布载荷相同的效果。 为了确定分布载荷产生的气动力-气动力矩系统,最终的力系可以作用在物体的任何处,只要同 时给出关于该点的力矩值。
这种流动称为连续流。连续流流过的空间称为流场。
• 流体微团:想象流场中有一个个小的流体团,体积为dv。宏观上足够小,但其内部含有足够多的分 子,依然可以视为连续介质。在流场中运动,流体质量保持不变。
• 控制体:流场中的有限封闭区域。固定在流场中,体积形状保持不变。
• 在连续介质前提下,可以讨论介质内部某一几何点的密度
围绕点P划取一块微小空间,容积为ΔV,所包含介质质量Δm,则该空间内平均密度: = m
取极限ΔV→0,此极限值定义为P点介质密度: = lim m

第一章 流体力学的基础知识


u P u Z1 Z2 2g 2g P
假设从1—1断面到2—2断面流动过程中损失为h, 则实际流体流动的伯努利方程为
2 u12 P u2 Z1 Z2 h 2g 2g
2 1
2 2
P
第一章 流体力学的基础知识
1.3 流体动力学基础
【例 1.2 】如图 1-7所示,要 用水泵将水池中的水抽到用 水设备,已知该设备的用水 量为 60m3/h ,其出水管高
单体面积上流体的静压力称为流体的静压强。
若流体的密度为ρ,则液柱高度h与压力p的关系 为:
p=ρgh
第一章 流体力学的基础知识
1.2 流体静力学基本概念
1.2.1 绝对压强、表压强和大气压强
以绝对真空为基准测得的压力称为绝对压力,它是流 体的真实压力;以大气压为基准测得的压力称为表压 或真空度、相对压力,它是在把大气压强视为零压强 的基础上得出来的。
第一章 流体力学的基础知识
1.3 流体动力学基础
(3) 射流
流体经由孔口或管嘴喷射到某一空间,由于运动的 流体脱离了原来的限制它的固体边界,在充满流体的空 间继续流动的这种流体运动称为射流,如喷泉、消火栓 等喷射的水柱。
第一章 流体力学的基础知识
1.3 流体动力学基础
4. 流体流动的因素
(1) 过流断面
2. 质量密度
单位体积流体的质量称为流体的密度,即ρ=m/V
3. 重量密度
流体单位体积内所具有的重量称为重度或容重,以γ 表示。γ=G/V
第一章 流体力学的基础知识
1.1 流体主要的力学性质
质量密度与重量密度的关系为:
γ=G/V=mg/V=ρg
4. 粘性
表明流体流动时产生内摩擦力阻碍流体质点或流层 间相对运动的特性称为粘性,内摩擦力称为粘滞力。 粘性是流动性的反面,流体的粘性越大,其流动性

流体力学基本知识.

内容主要包括建筑设备基本知识、给水、 排水、消防、采暖、燃气、通风与空气调 节、供配电、照明、安全用电与防雷、建 筑弱电系统
第一章 流体力学基本知识
了解流体力学的主要内容;掌握流体的主要物 理性质;掌握流体静压强的分布规律和压强表 示方式;掌握流体运动的基本规律和流体能量
损失。
1.1 流体的主要物理性质
v2 2g
水泵的吸水管装置如图所示。设水泵的最大许可真空度为 lOmp,k =弯7m头H2局0,部工阻作力流系量数Q:=8ξ.3弯L头/=s0,.7吸,水ξ 管底阀直=8径,d求=8水0㎜泵,的长最度大l= 许可安装高度Hs。(λ =0.04)
【解】以吸水井的水面为基准面,列断面0-0,与1—1的能量
p2=-γh=-9 800N/m3×0.02m=-196N/m2 此外,若能量方程所需基面取为轴流风机的水平中心轴线,用气体能量方程式:
p1

2 1
2g

p2


2 2
2g
hl12
将上列各项数值代入上式,并且忽略过流断面1—1、2—2之间能量损失,在1—2 之间为连续流条件下,可得:
2.表面力 表面力是指作用在流体表面上的力,其大小与受力表面的面积 成正比。它包括有表面切向力(摩擦力)和法向力(压力)。
1.2 流体静压强的基本概念
1.2.1流体静压强及其特性 流体静压强具有两个重要特性: 1.流体静压强永远垂直于作用面,并指向该作用面的内法 线方向。 2.静止流体中任一点的静压强只有一个值,与作用面的方 向无关,即任意点处各方向的静压强均相等。
10 0.8

8

0.7

1.652 2 9.81
1.91mH2O

第1章 流体力学基本知识


数学表达式:
二、流体的粘滞性 粘滞性 :流体内部质点间或层流间因相对运动 而产生内摩擦力(切力)以反抗相对运动的 性质。
牛顿内摩擦定律:
F-内摩擦力,N; S-摩擦流层的接触面面积,m2;
τ-流层单位面积上的内摩擦力(切应力),N/
m2;
du/dn-流速梯度,沿垂直流速方向单位长度 的流速增值;

hω1-2 =Σhf+Σhj
二、流动的两种型态--层流和紊流
二、流动的两种型态--层流和紊流

实验研究发现,圆管内流型由层流向湍流 的转变不仅与流速u有关,而且还与流体的 密度、粘度 以及流动管道的直径d有关。 将这些变量组合成一个数群du/,根据该 数群数值的大小可以判断流动类型。这个 数群称为雷诺数,用符号Re表示,即

从元流推广到总流,得:

由于过流断面上密度ρ为常数,以
u d u d
1 1 1 2 2 1 2
2

带入上式,得:


ρ1Q1 =ρ2 Q2 Q=ωv ρ1ω1v 1=ρ2ω2v 2
(1-11)
(1-11a)

(1-11)、 (1-11a) --质量流量的连 续性方程式。
建筑设备工程
第一章 流体力学基本知识 第1节 流体的主要物理性质 第2节 流体静压强及其分布规律 第3节 流体运动的基本知识 第4节 流动阻力和水头损失 第5节 孔口、管嘴出流及两相流体简介

本章介绍流体静力学,流体动力学,流体运动 的基本知识,流体阻力和能量损失,通过本章 的学习可以对流体力学有一个大概的了解,但 讲到的内容是很基础的。


v
2 2 2
2g
h12
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P
大气压
绝对真空
P P P
b
P
Байду номын сангаас
2、压强度量单位 定义出发:1Pa=1N/㎡
工程大气压的倍数:
以液柱高度表示:mmH2O
3、压强测量
液柱测压计,金属压力表、真空表
金属压力表
例:分析如图密闭容器内气体的压强。
气 水
2m 水
气 1m 水

水银 1m
§1-3 流体流动的基本知识
一、流体流动的基本概念
1、研究流体常用名词
所以对于管流来说,流入、流出的流体质量相 等。对于不可压缩流体流入、流出的体积或流量 相同。
三、恒定流总流能量方程
1、流体的能量(以单位重量流体的能量来计) (1)流体的动能(流速水头)
α -以平均流速代替质点流速的修正系数 (2)流体的势能(位能、压能)
V 2 1 2 MV G 单位- m 2 2g
流线:是指同一时刻不同质点所组成的运动的方 向线。该线的切线方向为质点该时刻的流 速方向。
迹线:流体质点在连续时间内运动的轨迹。
流线
2、流体的流动状态
按流动要素是否随时间变化分类
恒定流
非恒定流
按流线是否是平行直线分类 均匀流 非均匀流 按流动时的承压情况分类
有压流
无压流
3、流体流动参数
过流断面ω :
流体流动时,与流线正交的断面称为过流断面。
流速V:
单位时间内流体前进的距离。分质点流速、平均 流速等描述方法。 流量Q=V·ω 单位时间内通过过流断面的流体体积称为流体的 体积流量,一般用Q 表示,单位为L/s。
二、恒定流的连续性方程
流体力学从微观入手得到整体结论。(元流与总流)
由于: (1)恒定流中元流形状及各点流速不随时间变化 (2)流体为连续介质 (3)流体不能从元流侧壁流入流出
(1)
h
h2
h1
水银
建立1-1、2-2断面能量方程:
H1
文丘里流量计
V12
2g

p1

H2
V22
2g

p2

(2) Hw
压强规律得:p1 H 2O h1
p2 H2O h2 Hg h (3)
忽略Hw,取α =1则以上三式可求出管道的流速及流 量
本章思考题: 1、何为流体的粘滞性?粘滞性的影响因素有哪些? 粘滞性会导致什么结果? 2、建筑设备中如何看待流体? 3、水头损失有哪两种形式?各应该如何计算? 4、绘文丘里流量计简图,推导文丘里流量计流量 算公式。
目录 §1-1 流体的主要物理性质 §1-2 流体静压强及其分布规律 §1-3 流体流动的基本知识 §1-4 流动阻力和水头损失
§1-1 流体的主要物理性质 一、密度和容重
1、单位体积物质的量
密度ρ 和容重γ 均为描述单位体积物质的量的指 标。 G M g M g V V V
2 L V 沿程水头损失 H y DN 2 g
L V2 Hy DN 2 g
局部水头损失
总水头损失
V2 Hj 2g
L V2 V2 Hw DN 2 g 2g
DN
1
1
DN
2
2 水 2
1
设 1-1 、 2-2 断面水流速为 V1 、 V2 ,则根据连续性方程:
1 1 2 DN 1 V1 DN 22V2 4 4
2、建筑设备对ρ 、γ 的认识 ρ 、γ 随温度T、压强P 变化而有微量变化,但 建筑设备工程中一般认为ρ 、γ 为定值,只有在自 然循环热水、水击现象中认为是变值。
二、流体的粘滞性 1、概念
流体流动过程中,各部分运动不一致,各部分 之间存在着内摩擦力,也叫粘滞力(粘滞性)。 粘滞力使流体内部存在着相互影响运动趋势的性 质。
当温度不过低、压强不过高、流速不过高时, 能量损失较少,压强p变化不大。因R为常数, T 变化不大,故密度ρ 不变。
建筑设备中对流体的认识: 建筑设备中一般认为流体流动过程中具有 粘滞性,且不可压缩(除液击、热水循环外), 为研究方便,经常将流体看作内部全充满的均 质的连续体,因此可以通过研究质点(无数分 子组成,有一定的体积和质量)规律,进而推 广到全局。
水柱
位能: H ;单位-m 水柱
压能:
(3)总能
H
P 单位- m 水柱
V 2
2g

p1

2、恒定流的能量方程(伯努力方程) 液体 气体
H1
V12
2g
p1
p1

H2 2g
V22
2g

p2

Hw
V12
2g


V22
p2

Hw
§1-4 流动阻力和水头损失 一、流动阻力和水头损失形式 沿程阻力及水头损失 局部阻力及水头损失 二、水头损失计算
二、静压强分布规律
推广为普遍规律:
物理意义:液体内部任意一点的强值的大 小,仅与液体表面、该点与液面垂直高差及液 体的容重有关。
三、压强应用
1、绝对压强、相对压强、真空值概念
绝对压强Pj:以绝对真空为压强零点的压强值。 相对压强Px:以大气压为压强零点的压强值。 真空值 Pk :当绝对压强小于大气压时,大气压 与绝对压强的差值。
管道中断面流速分布
2、粘滞性大小影响因素
粘滞性大小受压强影响较小,主要影响因素 是流体种类和环境温度。温度升高粘性降低, 温度降低粘滞性升高。
3、粘滞性存在的意义 静止流体不显示粘滞性,流体流动时,粘滞 性会使流体损失能量。
三、压缩性膨胀性
1、液体难于压缩、膨胀
压强在 1 ~ 100atm 之间,每增加 1atm ,水 的体积减少2万分之1,温度90~100℃之间, 每增加1℃,水的体积增加万分之7。 2、气体易于压缩、膨胀,但流动状态的气体不 可压缩。 p RT
§1-2 流体静压强及其分布规律
一、静压强及其特性
1、静压强概念
静压强 p 为单位面积ω 上的静压力 P,当作用 面积无限小时形成点压强 pa。 P pa Lim 0 2、静压强特性
流体静压强总是垂直并指向作用面 — 静止流体 不抗拉不存在粘滞力。 任意一点各方向上静压强值相等—流体不可压 缩。
相关文档
最新文档