高优指导高考数学一轮复习 解答题增分专项6 高考中的概率与统计课件 理 北师大版
新教材老高考适用2023高考数学一轮总复习高考解答题专项六概率与统计综合问题pptx课件北师大版

1
5)×20=0.25=4.
故从全省考生中随机选取 3 人,成绩在 110 及以上的考生人数 X~B
1
P(X=k)=C3 4
X 的分布列为
1 3-
1- 4
=
3 3-
1
C3 4
,k=0,1,2,3.
4
1
3, 4
.则
X
P
由于 X~B
1
3,
4
0
1
27
64
1
,∴EX=np=3×
, = −
∑ ( -)
=1
2
解(1) =
87+90+91+92+95
=91,
5
=
86+89+89+92+94
=90,
5
5
∑ (xi-x)2=(-4)2+(-1)2+02+12+42=34,
=1
5
∑ (xi-)(yi-)=(-4)×(-4)+(-1)×(-1)+0×(-1)+1×2+4×4=35,
i=1
^
所以 =
^= − ^=90-35×91=-125,来自35,
34
故线性回归方程为
34
35 125
Y=34X- 34 .
34
(2)随机变量ξ的可能取值为0,1,2.
因为笔试成绩在90分或90分以上的选手有S2,S3,S4,S5,共4人,
他们笔试和抢答的成绩平均分分别为89.5,90,92,94.5,平均分高于90分的有
(2)以两校这次考试成绩估计全省考生的成绩情况,现从全省考生中随机选
高考总复习优化设计一轮用书文科数学配北师版高考解答题专项六 概率与统计

高考解答题专项六 概率与统计1.(2020全国Ⅲ,文18)某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?附:χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ),解:(1)由所给数据,该市一天的空气质量等级为1,2,3,4的概率的估计值如下表:(2)一天中到该公园锻炼的平均人次的估计值为1100(100×20+300×35+500×45)=350. (3)根据所给数据,可得2×2列联表:根据列联表得χ2=100×(33×8-22×37)255×45×70×30≈5.820.由于5.820>3.841,故有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.2.(2021江苏无锡下学期2月模拟)已知某班有50位学生,现对该班关于举办辩论赛的态度进行调查,他们综合评价成绩(单位:分)的频数分布以及对举办辩论赛的赞成人数如下表:(1)请根据以上统计数据填写下面2×2列联表,并回答:是否有90%的把握认为综合评价成绩以80分为分界点与对举办辩论赛的态度有关?(2)若采用分层抽样在综合评价成绩在[60,70),[70,80)的学生中随机抽取5人进行追踪调查,并选其中2人担任辩论赛主持人,求担任主持人的2人中至少有1人在[60,70)的概率. 附:χ2=n (ad -bc )2(a+b )(c+d )(a+c )(b+d ),解:(1)2×2列联表为则χ2=50×(28×6-4×12)232×18×40×10=3.125>2.706,所以有90%的把握认为综合评价成绩以80分为分界点与对举办辩论赛的态度有关. (2)采用分层抽样,会在[60,70)里抽3人,用A ,B ,C 表示,[70,80)里抽2人,用D ,E 表示,设M 为事件“担任主持人的2人中没有人在[60,70)内”,则基本事件包含AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共10个,事件M包含DE,只有1个,则所求事件的概率即为P=1-P(A)=1-110=910.3.(2021山西太原二模)2017年国家发改委、住建部发布了《生活垃圾分类制度实施方案》,规定46个城市在2020年底实施生活垃圾强制分类.某市在实施垃圾分类之前,对人口数量在1万左右的社区一天产生的垃圾量(单位:吨)进行了调查.已知该市这样的社区有200个,如图是某天从中随机抽取50个社区所产生的垃圾量绘制的频率分布直方图.现将垃圾量超过14吨/天的社区称为“超标”社区.(1)根据上述资料,估计当天这50个社区垃圾量的平均值x(精确到整数)(同一组中的数据用该组区间的中点值为代表);(2)若以上述样本的频率近似代替总体的概率,请估计这200个社区中“超标”社区的个数;(3)市环保部门决定对样本中“超标”社区的垃圾来源进行调查,先从这些社区中按垃圾量用分层抽样抽取5个,再从这5个社区随机抽取2个进行重点监控,求重点监控社区中至少有1个垃圾量为[16,18]的社区的概率.解:(1)由频率分布直方图得该样本中垃圾量为[4,6),[6,8),[8,10),[10,12),[12,14),[14,16),[16,18]的频率分别为0.08,0.1,0.2,0.24,0.18,0.12,0.08,所以估计当天这50个社区垃圾量的平均值为x=5×0.08+7×0.10+9×0.20+11×0.24+13×0.18+15×0.12+17×0.08=11.04≈11.(2)由(1)得该样本中“超标”社区的频率为0.12+0.08=0.2,所以这200个社区中“超标”社区的概率为0.2,所以这200个社区中“超标”社区的个数为200×0.2=40.(3)由题意知按垃圾量用分层抽样抽取的5个社区中,垃圾量为[14,16)的社区有3个,分别记为a,b,c,按垃圾量为[16,18]的社区有2个,分别记为d,e,从中任选2个的基本事件有(a,b),(a,c),(a,d),(a,e),(b,c),(b,d),(b,e),(c,d),(c,e),(d,e),共10个,其中所求事件“至少有1个垃圾量为[16,18]的社区”为(a,d),(a,e),(b,d),(b,e),(c,d),(c,e),(d,e),共7个.所以重点监控社区中至少有1个垃圾量为[16,18]的社区的概率为P=710=0.7.4.(2021江苏南京二模)某公司对项目A进行生产投资,所获得的利润有如下统计数据表:(1)请用线性回归模型拟合y 与x 的关系,并用相关系数加以说明;(2)该公司计划用7百万元对A ,B 两个项目进行投资.若公司对项目B 投资x (1≤x ≤6)百万元所获得的利润y 近似满足:y=0.16x-0.49x+1+0.49,求A ,B 两个项目投资金额分别为多少时,获得的总利润最大?附:①对于一组数据(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归直线y=bx+a 的斜率和截距的最小二乘估计分别为b=∑i=1nx i y i -nxy∑i=1nx i 2-nx 2,a=y -b x .②线性相关系数r=∑i=1nx i y i -nx y√(∑i=1x i 2-nx 2)(∑i=1y i 2-ny 2).一般地,相关系数r 的绝对值在0.95以上(含0.95)认为线性相关性较强;否则,线性相关性较弱.参考数据:对项目A 投资的统计数据表中∑i=15x i y i =11,∑i=15y i 2=2.24,√4.4≈2.1.解:(1)由题意可得x =1+2+3+4+55=3,y =0.3+0.3+0.5+0.9+15=0.6,代入公式可得∑i=15x i y i -5xy =11-5×3×0.6=2,∑i=15x i 2-5x 2=55-5×32=10,∑i=15y i 2-5y 2=2.24-5×0.62=0.44, 所以b=∑i=1nx i y i -nxy∑i=1nx i 2-nx 2=210=0.2,a=y -b x =0.6-0.2×3=0,所以y=bx+a=0.2x , 且r=∑i=1nx i y i -nxy√(∑i=1x i 2-nx 2)(∑i=1y i 2-ny 2)=√10×0.44≈22.1≈0.952 4>0.95,则y 与x 的线性相关性较强.(2)由题意,公司对项目B 投资x (1≤x ≤6)百万元,则对项目A 投资(7-x )百万元,则获得的利润y=0.16x-0.49x+1+0.49+0.2(7-x )=1.89-0.49x+1-0.04x=1.93-0.49x+1+0.04(x+1)≤1.93-2√0.49x+1×0.04(x +1)=1.93-0.28=1.65,当且仅当0.49x+1=0.04(x+1),即x=2.5时等号成立,此时取到最大值为1.65百万元,而7-x=4.5百万元.答:对A ,B 两个项目投资金额分别为4.5百万元、2.5百万元时,获得的总利润最大,最大为1.65百万元.。
高考数学一轮复习高考大题增分专项6高考中的概率、统计与统计案例课件文北师大版

������=∑������1(������������-������)2������=∑������1(������������-������)2
值计算量比较大,为了计算准确,可将这个量分成几个部分分别计算,
这样等同于分散难点,各个攻破,提高了计算的准确度.
-12-
题型一 题型二 题型三 题型四 题型五
-10-
(2)质量指标值的样本平均数为
������ =80×0.3;110×0.22+120×0.08=100.
质量指标值的样本方差为
s2=(-20)2×0.06+(-10)2×0.26+0×0.38+102×0.22+202×0.08
=104. 所以这种产品质量指标值的平均数的估计值为100,方差的估计 值为104. (3)质量指标值不低于95的产品所占比例的估计值为
题型一 题型二 题型三 题型四 题型五
-7-
对点训练1从某企业生产的某种产品中抽取100件,测量这些产品 的一项质量指标值,由测量结果得如下频数分布表:
质量指标
值分组
[75,85) [85,95) [95,105) [105,115) [115,125)
频数
6
26
38
22
8
-8-
题型一 题型二 题型三 题型四 题型五
-6-
题型一 题型二 题型三 题型四 题型五
(2)由(1),100位居民月均用水量不低于3吨的频率为 0.06+0.04+0.02=0.12.
由以上样本的频率分布,可以估计30万居民中月均用水量不低于 3吨的人数为300 000×0.12=36 000.
(3)设中位数为x吨. 因为前5组的频率之和为0.04+0.08+0.15+0.21+0.25=0.73>0.5, 而前4组的频率之和为0.04+0.08+0.15+0.21=0.48<0.5,所以 2≤x<2.5. 由0.50×(x-2)=0.5-0.48,解得x=2.04. 故可估计居民月均用水量的中位数为2.04吨.
高考数学大一轮复习 专题6 概率与统计综合题的解答课件 文 北师大版

性的辨别,在解题中要根据问题的具体情况作出准确的判断.互斥事
件是不可能同时发生的两个事件,其概率满足加法公式,即若A,B
互斥,则P(A+B)=P(A)+P(B);对立事件是必然有一个发生的两个
互斥事件,也就是说对立的两个事件首先必须是互斥的,而且这两个
-
事件之和是一个必然事件,即一个事件A与它的对立事件 A 的概率之
第6页
高三大一轮复习学案
【求解】 (1)频率分布表如下表所示,频率分布直方图如图
所示:
分组 频数 频率
[1.30,1.34) 4 0.04 [1.34,1.38) 25 0.25 [1.38,1.42) 30 0.30 [1.42,1.46) 29 0.29 [1.46,1.50) 10 0.10 [1.50,1.54] 2 0.02
高三大一轮复习学案
专题六 概率与统计综合题的解答
第1页
高三大一轮复习学案
概率、统计作为考查考生应用意识的重要载体,也是高中数 学中占有课时最多的一个知识板块,已成为近几年新课标高考的 一大亮点和热点.它与其他知识融合、渗透,情境新颖,充分体 现了概率、统计的工具性和交汇性,而在知识的交汇处设计试题 是高考命题的指导思想之一.概率、统计和现实生活关系密切, 是考查数据处理能力、应用意识、必然与或然思想的主要素材, 高考命题必然会充分考虑这些因素,从而命制一定数量的各种形 式的试题达到上述目的.
分组 频数 频率
[1.30,1.34) 4
[1.34,1.38) 25
[1.38,1.42) 30
[1.42,1.46) 29
[1.46,1.50) 10
[1.50,1.54] 2
合计 100
第5页
高三大一轮复习学案
高优指导高考数学一轮复习 高考大题专项练6 高考中的概率与统计 理(含解析)北师大版-北师大版高三全

高考大题专项练61.(2015某某某某二中一模)在一次考试中,5名同学的数学、物理成绩如下表所示:(1)根据表中数据,求物理分y 对数学分x 的回归方程;(2)要从4名数学成绩在90分以上的同学中选出2名参加一项活动,以X 表示选中的同学中物理成绩高于90分的人数,求随机变量X 的分布列及数学期望EX. 附:回归方程y=bx+a 中,b=,a=-b. 解:(1)∵=93,=90,∴(x i -)2=(-4)2+(-2)2+02+22+42=40,(x i -)(y i -)=(-4)×(-3)+(-2)×(-1)+0×(-1)+2×2+4×3=30,∴b==0.75,a=-b=20.25,∴物理分y 对数学分x 的回归方程为y=0.75x+20.25.(2)随机变量X 的所有可能取值为0,1,2,P (X=0)=;P (X=1)=;P (X=2)=. 故X 的分布列为∴EX=0×+1×+2×=1.〚导学号92950958〛2.随机观测生产某种零件的某工厂25名工人的日加工零件数(单位:件),获得数据如下:28,42,41,36,44,39,37,37,25,44,29,43,31,36,49,34,33,43,38,42,32,34,46,39,36.根据上述数据得到样本的频率分布表如下:分组频数频率[25,3 0) 3 0.1 2[30,3 5) 5 0.2 0[35,4 0) 8 0.3 2[40,45)n1f1[45,50]n2f2(1)确定样本频率分布表中n1,n2,f1和f2的值;(2)根据上述频率分布表,画出样本频率分布直方图;(3)根据样本频率分布直方图,求在该厂任取4人,至少有1人的日加工零件数落在区间(30,35]的概率.解:(1)n1=7,n2=2,f1=0.28,f2=0.08;(2)样本频率分布直方图为:(3)根据样本频率分布直方图,每人的日加工零件数落在区间(30,35]的概率为0.2.设所取的4人中,日加工零件数落在区间(30,35]的人数为ξ,则ξ~B(4,0.2),所以,P(ξ≥1)=1-P(ξ=0)=1-(1-0.2)4=1-0.409 6=0.590 4.故在该厂任取的4人中,至少有1人的日加工零件数落在区间(30,35]的概率为0.590 4.〚导学号92950959〛3.(2015某某某某高三质检一)某学校为了解学生身体发育情况,随机从高一学生中抽取40人作为样本,测量出他们的身高(单位:cm),身高分组区间及人数见下表:分组 [155,160) [160,165) [165,170) [170,175)[175,180] 人数a 814 b2(1)求a ,b 的值并根据题目补全直方图;(2)在所抽取的40人中任意选取两人,设Y 为身高不低于170 cm 的人数,求Y 的分布列及数学期望. 解:(1)a=40×0.03×5=6,b=40-(6+8+14+2)=10.(2)由题意得Y 的可能取值为0,1,2,且P (Y=0)=;P (Y=1)=;P (Y=2)=. 所以Y 的分布列为Y 0 1 2 PY 的数学期望EY=0×+1×+2×.〚导学号92950960〛4.(2015某某三模)学校组织“踢毽球”大赛,某班为了选出一人参加比赛,对班上甲、乙两位同学进行了8次测试,且每次测试之间相互独立,成绩如下:(单位:个/分钟)甲80 81 93 72 88 75 83 84 乙 897878782 3 0 4 7 7 3 5(1)用茎叶图表示这两组数据;(2)从统计学的角度考虑,你认为选派哪位学生参加比赛合适?请说明理由?(3)若将频率视为概率,对甲同学在今后的三次比赛成绩进行预测,记这三次成绩高于79个/分钟的次数为ξ,求ξ的分布列及数学期望Eξ.(参考数据:22+12+112+102+62+72+12+22=316,02+112+122+22+52+52+42+32=344)解:(1)以十位数为茎,个位数为叶,由已知作出甲乙两同学“踢毽球”的茎叶图如图:(2)==82,=82,=39.5,=43.由于甲、乙的平均成绩相等,而甲的方差较小,所以甲的成绩较稳定,派甲参赛比较合适.(3)由题意可知,ξ的取值为0,1,2,3,由表格可知:高于79个/分钟的频率为,则高于79个/分钟的概率为,则P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,P(ξ=3)=,∴ξ的分布列如下:ξ0 1 2 3P∴E(ξ)=0×+1×+2×+3×.〚导学号92950961〛5.(2015某某某某一模)某市一所高中随机抽取部分高一学生调查其上学路上所需时间(单位:分钟),并将所得数据绘制成频率分布直方图(如图),其中上学路上所需时间的X围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].(1)求频率分布直方图中x的值;(2)如果上学路上所需时间不少于1小时的学生可申请在学校住宿,若招生1 200名,请估计新生中有多少名学生可以申请住宿;(3)从学校的高一学生中任选4名学生,这4名学生中上学路上所需时间少于20分钟的人数记为X,求X的分布列和数学期望.(以直方图中的频率作为概率)解:(1)由直方图可得20×x+0.025×20+0.006 5×20+0.003×2×20=1.所以x=0.012 5.(2)新生上学所需时间不少于1小时的频率为0.003×2×20=0.12,因为1 200×0.12=144,所以1 200名新生中有144名学生可以申请住宿.(3)X的可能取值为0,1,2,3,4.由直方图可知,每位学生上学所需时间少于20分钟的概率为,P(X=0)=,P(X=1)=,P(X=2)=,P(X=3)=,P(X=4)=.所以X的分布列为:X0 1 2 3 4PEX=0×+1×+2×+3×+4×=1.所以X的数学期望为1.〚导学号92950962〛6.(2015某某一模)某市为了治理污染,改善空气质量,市环境保护局决定每天在城市主要路段洒水防尘,为了给洒水车供水,供水部门决定最多修建3处供水站.根据过去30个月的资料显示,每月洒水量X(单位:百立方米)与气温和降雨量有关,且每月的洒水量都在20以上,其中不足40的月份有10个月,不低于40且不超过60的月份有15个月,超过60的月份有5个月,将月洒水量在以上三段的频率作为相应的概率,并假设各月的洒水量相互独立.(1)求未来的3个月中,至多有1个月的洒水量超过60的概率;(2)供水部门希望修建的供水站尽可能运行,但每月供水站运行的数量受月洒水量限制,有如下关系:若某供水站运行,月利润为12 000元;若某供水站不运行,月亏损6 000元.欲使供水站的月总利润的均值最大,应修建几处供水站?解:(1)依题意可得P1=P(20<x<40)=,P2=P(40≤x≤60)=,P3=P(x>60)=.由二项分布可得,在未来三个月中,至多有1个月的洒水量超过60的概率为P=(1-P3)3+(1-P3)2·P3=+3×,至多有1个月的洒水量超过60的概率为.(2)记供水部门的月总利润为Y元,①修建一处供水站的情形,由于月洒水量总大于20,故一处供水站运行的概率为1,对应的月利润为Y=12 000,EY=12 000×1=12 000(元);②修建两处供水站的情形,依题意,当20<X<40,一处供水站运行,此时Y=12 000-6 000=6000,P(Y=6 000)=P(20<X<40)=P1=;当X≥40,两处供水站运行,此时Y=12 000×2=24 000,P(Y=24 000)=P(X≥40)=P2+P3=.由此得Y的分布列为Y 600024000P则EY=6 000×+24 000×=18 000(元);③修建三处供水站情形,依题意可得当20<X<40时,一处供水站运行,此时Y=12 000-12 000=0,由此P(Y=0)=P(20<X<40)=P1=;当40≤X≤60时,两处供水站运行,此时Y=12 000×2-6 000=18 000,由此P(Y=18 000)=P(40≤X≤60)=P2=;当X>60时,三处供水站运行,此时Y=12 000×3=36 000,由此P(Y=36 000)=P(X>60)=P3=.由此得Y的分布列为由此EY=0×+18 000×+36 000×=15 000(元).欲使供水站的月总利润的均值最大,应修建两处供水站.〚导学号92950964〛。
高优指导高考数学一轮复习 大题专项练6 高考中的概率 文 北师大版-北师大版高三全册数学试题

高考大题专项练6高考大题专项练第12页1.经销商经销某种农产品,在一个销售季度内,每售出1 t该产品获利润500元,未售出的产品,每1 t亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130 t该农产品.以X(单位:t,100≤X≤150)表示下一个销售季度内的市场需求量,T(单位:元)表示下一个销售季度内经销该农产品的利润.(1)将T表示为X的函数;(2)根据直方图估计利润T不少于57 000元的概率.解:(1)当X∈[100,130)时,T=500X-300(130-X)=800X-39 000.当X∈[130,150]时,T=500×130=65 000.所以T=(2)由(1)知利润T不少于57 000元当且仅当120≤X≤150.由直方图知需求量X∈[120,150]的频率为0.7,所以下一个销售季度内的利润T不少于57 000元的概率的估计值为0.7.〚导学号32470892〛2.为了比较两种治疗失眠症的药(分别称为A药,B药)的疗效,随机地选取20位患者服用A药,20位患者服用B药,这40位患者在服用一段时间后,记录他们日平均增加的睡眠时间(单位:h).试验的观测结果如下:服用A药的20位患者日平均增加的睡眠时间:0.61.22.71.52.81.82.22.33.23.52.52.61.22.71.52.93.03.12.32.4服用B药的20位患者日平均增加的睡眠时间:3.21.71.90.80.92.41.22.61.31.41.60.51.80.62.11.12.51.22.70.5(1)分别计算两组数据的平均数,从计算结果看,哪种药的疗效更好?(2)根据两组数据完成下面茎叶图,从茎叶图看,哪种药的疗效更好?解:(1)设A 药观测数据的平均数为,B 药观测数据的平均数为.由观测结果可得 (0.6+1.2+1.2+1.5+1.5+1.8+2.2+2.3+2.3+2.4+2.5+2.6+2.7+2.7+2.8+2.9+3.0+3.1+3.2+3.5) =2.3,(0.5+0.5+0.6+0.8+0.9+1.1+1.2+1.2+1.3+1.4+1.6+1.7+1.8+1.9+2.1+2.4+2.5+2.6+2.7+3.2) =1.6.由以上计算结果可得,因此可看出A 药的疗效更好.(2)由观测结果可绘制如下茎叶图:从以上茎叶图可以看出,A 药疗效的试验结果有的叶集中在茎2,3上,而B 药疗效的试验结果有的叶集中在茎0,1上,由此可看出A 药的疗效更好.〚导学号32470893〛3.某地10户家庭的年收入和年饮食支出的统计资料如表所示: 年收入x /万元2 4 4 6 6 6 7 7 8 10年饮食支 出y0.9 1.4 1.6 2.0 2.1 1.9 1.8 2.1 2.2 2.3/万元(1)根据表中数据,确定家庭的年收入和年饮食支出的相关关系;(2)如果某家庭年收入为9万元,预测其年饮食支出.解:(1)由题意,知年收入x为解释变量,年饮食支出y为预报变量,作散点图如图.从图中可以看出,样本点呈条状分布,年收入和年饮食支出有比较好的线性相关关系,因此可以用线性回归方程刻画它们之间的关系.因为=6,=1.83,=406,=35.13.x i y i=117.7,所以b=≈0.172,a=-b≈1.83-0.172×6=0.798.从而得到线性回归方程为y=0.172x+0.798.(2)y=0.172×9+0.798=2.346(万元).所以家庭年收入为9万元时,可以预测年饮食支出为2.346万元.〚导学号32470894〛4.某产品的三个质量指标分别为x,y,z,用综合指标S=x+y+z评价该产品的等级.若S≤4,则该产品为一等品.现从一批该产品中,随机抽取10件产品作为样本,其质量指标列表如下:产品编号A1A2A3A4A5质量指标(x,y,z)(1,1,2)(2,1,1)(2,2,2)(1,1,1)(1,2,1)产品编号A6A7A8A9A10质量(1,2(2,1(2,2(1,1(2,1,2) ,1) ,1) ,1) ,2)指标(x,y,z)(1)利用上表提供的样本数据估计该批产品的一等品率;(2)在该样本的一等品中,随机抽取2件产品,①用产品编号列出所有可能的结果;②设事件B为“在取出的2件产品中,每件产品的综合指标S都等于4”,求事件B发生的概率.解:(1)计算10件产品的综合指标S,如下表:其中S≤4的有A1,A2,A4,A5,A7,A9,共6件,故该样本的一等品率为=0.6,从而可估计该批产品的一等品率为0.6.(2)①在该样本的一等品中,随机抽取2件产品的所有可能结果为{A1,A2},{A1,A4},{A1,A5},{A1,A7},{A1,A9},{A2,A4},{A2,A5},{A2,A7},{A2,A9},{A4,A5},{A4,A7},{A4,A9},{ A5,A7},{A5,A9},{A7,A9},共15种.②在该样本的一等品中,综合指标S等于4的产品编号分别为A1,A2,A5,A7,则事件B发生的所有可能结果为{A1,A2},{A1,A5},{A1,A7},{A2,A5},{A2,A7},{A5,A7},共6种.所以P(B)=.〚导学号32470895〛5.某企业有甲、乙两个研发小组,为了比较他们的研发水平,现随机抽取这两个小组往年研发新产品的结果如下:(a,b),(a,),(a,b),(,b),(),(a,b),(a,b),(a,),(,b),(a,),(),(a,b),(a,),(,b),(a,b)其中a,分别表示甲组研发成功和失败;b,分别表示乙组研发成功和失败.(1)若某组成功研发一种新产品,则给该组记1分,否则记0分.试计算甲、乙两组研发新产品的成绩的平均数和方差,并比较甲、乙两组的研发水平;(2)若该企业安排甲、乙两组各自研发一种新产品,试估计恰有一组研发成功的概率.解:(1)甲组研发新产品的成绩为1,1,1,0,0,1,1,1,0,1,0,1,1,0,1,其平均数为;方差为.乙组研发新产品的成绩为1,0,1,1,0,1,1,0,1,0,0,1,0,1,1,其平均数为;方差为.因为,所以甲组的研发水平优于乙组.(2)记E={恰有一组研发成功}.在所抽得的15个结果中,恰有一组研发成功的结果是(a,),(,b),(a,),(,b),(a,),(a,),(,b),共7个.故事件E发生的频率为.将频率视为概率,即得所求概率为P(E)=.〚导学号32470896〛6.某大学餐饮中心为了解新生的饮食习惯,在全校一年级学生中进行了抽样调查,调查结果如下表所示:(1)根据表中数据,问是否有95%的把握认为“南方学生和北方学生在选用甜品的饮食习惯方面有差异”;(2)已知在被调查的北方学生中有5名数学系的学生,其中2名喜欢甜品,现在从这5名学生中随机抽取3人,求至多有1人喜欢甜品的概率.附:χ2=,其中n=a+b+c+d.P(χ2> k0) 0.1000.0500.010k02.706 3.8416.635解:(1)将2×2列联表中的数据代入公式计算,得χ2=≈4.762.由于4.762>3.841,所以有95%的把握认为南方学生和北方学生在选用甜品的饮食习惯方面有差异.(2)从5名数学系学生中任取3人的一切可能结果所组成的基本事件空间Ω={(a1,a2,b1),(a1,a2,b2),(a1,a2,b3),(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1 ,b3),(b1,b2,b3)}.其中a i表示喜欢甜品的学生,i=1,2,b j表示不喜欢甜品的学生,j=1,2,3.Ω由10个基本事件组成,且这些基本事件的出现是等可能的.用A表示“3人中至多有1人喜欢甜品”这一事件,则A={(a1,b1,b2),(a1,b2,b3),(a1,b1,b3),(a2,b1,b2),(a2,b2,b3),(a2,b1,b3),(b1,b2,b3)}.事件A是由7个基本事件组成,因而P(A)=.〚导学号32470897〛。
北师大版高三数学(理)一轮专项复习《概率与统计》ppt课件
题型一
题型二
题型三
题型四
典例剖析 题型五
-20-
(1)求这 500 件产品质量指标值的样本平均数������和样本方差 s2(同一组中的数据用该组区间的中点值作代表).
(2)由直方图可以认为,这种产品的质量指标值 Z 服从正态分布 N(μ,σ2),其中 μ 近似为样本平均数������,σ2 近似为样本方差 s2.
93 48 65 81 74 56 54 76 65 79
题型一
题型二
题型三
题型四
典例剖析 题型五
-12-
(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎 叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具 体值,给出结论即可);
题型一
题型二
题型三
题型四
典例剖析 题型五
-13-
故预测该地区2017年农村居民家庭人均纯收入为6.8千元.
典例剖析
-7-
题型一 题型二 题型三 题型四 题型五
对点训练1 (2015课标全国Ⅰ,理19)某公司为确定下一年度投
入某种产品的宣传费,需了解年宣传费x(单位:千元)对年销售量y(单 位:t)和年利润z(单位:千元)的影响.对近8年的年宣传费xi和年销售 量yi(i=1,2,…,8)数据作了初步处理,得到下面的散点图及一些统计 量的值.
所以当 ������ = 132.6=6.8,即 x=46.24 时,z 取得最大值. 故年宣传费为 46.24 千元时,年利润的预报值最大.
典例剖析
-11-
题型一 题型二 题型三 题型四 题型五
题型二依据统计数据求事件发生的概率 求某事件发生的概率,首先分析所求事件可由哪些小事件组成, 并设出各个小事件,其次分析这些小事件间的关系(独立、互斥),并 写出由小事件组成的所求事件,最后用小事件的频率充当其概率求 出所求事件的概率.
全国统考2022高考数学一轮复习高考大题专项六概率与统计学案理含解析北师大版
概率与统计高考大题专项(六)概率与统计考情分析一、考查范围全面概率与统计解答题对知识点的考查较为全面,近五年的试题考点覆盖了概率与统计必修与选修的各个章节内容,考查了抽样方法、统计图表、数据的数字特征、用样本估计总体、回归分析、相关系数的计算、独立性检验、古典概型、条件概率、相互独立事件的概率、独立重复试验的概率、离散型随机变量的分布列、数学期望与方差、超几何分布、二项分布、正态分布等基础知识和基本方法.二、考查方向分散从近五年的高考试题来看,对概率与统计的考查主要有四个方面:一是统计与统计案例,其中回归分析、相关系数的计算、独立性检验、用样本的数字特征估计总体的数字特征是考查重点,常与抽样方法、茎叶图、频率分布直方图、概率等知识交汇考查;二是统计与概率分布的综合,常与抽样方法、茎叶图、频率分布直方图、频率、概率以及函数知识、概率分布列等知识交汇考查;三是期望与方差的综合应用,常与离散型随机变量、概率、相互独立事件、二项分布等知识交汇考查;四是以生活中的实际问题为背景将正态分布与随机变量的期望和方差相结合综合考查.三、考查难度稳定高考对概率与统计解答题的考查难度稳定,多年来都控制在中等或中等偏上一点的程度,解答题一般位于试卷的第18题或第19题的位置.近两年有难度提升的趋势,位置有所后调.典例剖析题型一相关关系的判断及回归分析【例1】近年来,随着互联网技术的快速发展,共享经济覆盖的范围迅速扩张,继共享单车、共享汽车之后,共享房屋以“民宿”“农家乐”等形式开始在很多平台上线.某创业者计划在某景区附近租赁一套农房发展成特色“农家乐”,为了确定未来发展方向,此创业者对该景区附近六家“农家乐”跟踪调查了100天.得到的统计数据如下表,x为收费标准(单位:元/日),t为入住天数(单位:天),以频率作为各自的“入住率”,收费标准x与“入住率”y的散点图如图.x50100150200300400t906545302020(1)若从以上六家“农家乐”中随机抽取两家深入调查,记ξ为“入住率”超过0.6的农家乐的个数,求ξ的概率分布列.(2)令z=ln x ,由散点图判断y=bx+a 与y=bz+a 哪个更合适于此模型(给出判断即可,不必说明理由)?并根据你的判断结果求回归方程.(b 的结果保留一位小数)(3)若一年按365天计算,试估计收费标准为多少时,年销售额L 最大?(年销售额L=365·入住率·收费标准x )参考数据:b=∑i=1nx i y i -n。
北师版高考总复习一轮理科数精品课件 第12章 概率 解答题专项六 概率与统计
附:相关系数 r=
∑ ( -)( -)
=1
∑ ( -) ∑ ( -)2
=1
2
=1
, 1.896≈1.377.
解:(1)依题意, =
0.6
=0.06,
10
=
3.9
=0.39,
10
0.6
故估计该林区这种树木平均一棵的根部横截面积为 10 =0.06,
3.9
及数学期望.
2
(
-
)
参考公式及数据:χ2=(+)(+)(+)(+),其中
n=a+b+c+d.
解:(1)∵在这200名学生中随机抽取1人抽到喜欢跑步的概率为0.6,
∴喜欢跑步的人数为200×0.6=120,
可得2×2列联表如下.
性别
男
女
总计
喜欢跑步
80
40
120
2
200×(80×20-60×40)
进一步点燃.正值寒假期间,嵩山滑雪场迎来了众多的青少年.某滑雪俱乐
部为了解中学生对滑雪运动是否有兴趣,从某中学随机抽取男生和女生各
3
50人进行调查,对滑雪运动有兴趣的人数占总人数的 4 ,女生中有5人对滑
雪运动没有兴趣.
(1)完成下面2×2列联表,并判断是否有99%的把握认为对滑雪运动是否有
兴趣与性别有关?
的准确度.
对点训练2(2020全国Ⅱ,理18)某沙漠地区经过治理,生态系统得到很大改
善,野生动物数量有所增加,为调查该地区某种野生动物的数量,将其分成
面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作
为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区
高考数学一轮总复习高考解答题专项六概率与统计综合问题课件北师大版
44
44
2
7
22
=
7
.
4
3
21
44
7
44
名师点析频率分布直方图、条形图等是考查数据收集和整理的常用依据,
掌握图中常见数据的提取方法,将频率看作概率是解决这类问题的关键.
对点训练1(2021陕西洛南中学月考)在一次联考中某两校共有3 000名学生
参加,成绩的频率分布直方图如图所示.
(1)求在本次考试中成绩处于[110,130)内的学生人数;
理能力、运算求解能力及应用意识.
对点训练2某品牌汽车4S店对2020年该市前几个月的汽车成交量(单位:辆)
进行统计,用Y表示2020年第T月份该店汽车成交量,得到统计表格如下:
T
1
2
3
4
5
6
7
8
Y
14
12
20
20
22
24
30
26
^ ^
(1)求出 Y 关于 T 的线性回归方程 Y= T+a ,并预测该店 9 月份的成交量;
(2)以两校这次考试成绩估计全省考生的成绩情况,现从全省考生中随机选
取3人,记成绩在110分(包含110)以上的考生人数为X,求X的分布列和数学
期望.
解(1)由题知,成绩处于[110,130)的频率为0.01×20=0.2,
∴成绩处于[110,130)的人数为3 000×0.2=600.
(2)由频率分布直方图可知,成绩在110及以上的考生概率为
(1)求抢答分数Y关于笔试分数X的线性回归方程;
(2)现要从笔试成绩在90分或90分以上的选手中选出2名参加一项活动,以ξ
表示选中的选手中笔试和抢答成绩的平均分高于90分的人数,求随机变量