高三数学一轮复习ppt课件

合集下载

第四讲+简单的三角恒等变换 课件——2025届高三数学一轮复习

第四讲+简单的三角恒等变换 课件——2025届高三数学一轮复习

【题后反思】(1)解决三角函数的求值问题的关键是把“所求 角”用“已知角”表示.①当“已知角”有两个时,“所求角”一 般表示为两个“已知角”的和或差的形式;②当“已知角”有一 个时,此时应着眼于“所求角”与“已知角”的和或差的关系.
(2)常见的配角技巧:2α=(α+β)+(α-β),α=(α+β)-β, β=α+2 β-α-2 β,α=α+2 β+α-2 β,α-2 β=α+β2-α2+β等.
1-cos α 2.
(2)cos α2=± (3)tan α2=±
1+cos α 2.
1-cos 1+cos
αα=1+sicnoαs
α=1-sincoαs
α .
以上称之为半角公式,符号由α2所在象限决定.
考点一 三角函数式的化简 1.化简:22tcaonsπ44x--x2scions22π4x++12x=________.
2025年高考一轮总复习
第三章 三角函数、解三角形
第四讲 简单的三角恒等变换
1.辅助角公式的应用 (1)a sin α+b cos α= a2+b2sin α· a2a+b2+cos α· a2b+b2, 不妨记 cos φ= a2a+b2,sin φ= a2b+b2, 则 a sin α+b cos α= a2+b2(sin αcos φ+cos αsin φ)= a2+b2sin (α+φ).
答案:B
考向 3 给值求角
[例 3]已知 α,β∈(0,π),且 tan(α-β)=21,tan β=-17,则 2α-β 的值为________.
解析:∵tan α=tan [(α-β)+β]=1t-ant(aαn-(αβ-)+β)ttaannββ =1+12-12×17 17=13>0, ∴0<α<π2.

空间直线平面的平行课件高三数学一轮复习

空间直线平面的平行课件高三数学一轮复习

【命题说明】
考向 考法
预测
高考命题常以空间几何体为载体,考查直线、平面平行的判断 和证明.线面平行的证明是高考的热点.常以解答题的形式出现. 2025年高考这一部分知识仍会考查,以解答题第(1)问的形式出 现,难度中档.
必备知识·逐点夯实
知识梳理·归纳 1.直线与平面平行 (1)直线与平面平行的定义 直线l与平面α__没__有__公__共__点__,则称直线l与平面α平行.
角度2 平面与平面平行的性质 [例4](2023·承德模拟)如图,正方体ABCD-A1B1C1D1的棱长为3,点E在棱AA1上,点F 在棱CC1上,G在棱BB1上,且AE=FC1=B1G=1,H是棱B1C1上一点.
(1)求证:E,B,F,D1四点共面;
【证明】(1)如图,在DD1上取一点N使得DN=1, 连接CN,EN,则AE=DN=1.CF=ND1=2, 因为CF∥ND1,所以四边形CFD1N是平行四边形,所以D1F∥CN. 同理四边形DNEA是平行四边形, 所以EN∥AD,且EN=AD, 又BC∥AD,且AD=BC, 所以EN∥BC,EN=BC, 所以四边形CNEB是平行四边形, 所以CN∥BE,所以D1F∥BE, 所以E,B,F,D1四点共面;
对点训练 如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面
PDC∩平面PBE=l.证明:
(1)DF∥平面PBE;
如图,四边形ABCD为矩形,PD=AB=2,AD=4,点E,F分别为AD,PC的中点.设平面 PDC∩平面PBE=l.证明:
(2)DF∥l. 【证明】(2)由(1)知DF∥平面PBE, 又DF⊂平面PDC,平面PDC∩平面PBE=l, 所以DF∥l.
解题技法 1.判断或证明线面平行的常用方法 (1)利用线面平行的定义(无公共点). (2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α). (3)利用面面平行的性质(α∥β,a⊂α⇒a∥β). (4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β). 2.应用线面平行的性质定理的关键是确定交线的位置,有时需要经过已知直线作 辅助平面确定交线.

指数+课件-2025届高三数学一轮复习

指数+课件-2025届高三数学一轮复习
16的4次方根有两个,为±2,故B正确;
负数没有偶次方根,故C错误;
x + y 2 是非负数,所以
x+y
2
= |x + y|,故D正确.
)
例1-2 [教材链接题]已知a,b ∈ ,下列各式总能成立的有( B )
A.
3
a−b
4
3
=b−a
B.
4
C. a4 − b 4 = a − b
【解析】
3
a−b
3
【答案】 − = − =

− ,∴
− =

+


− = − ,


− =



=


+−

=



=



,

,

故 − + �� − = − +




.

− × = ( − ) =
再将x + x −1 = 7平方并化简得x 2 + x −2 = 47,
3
2
x +x
3
−2
1
2
= x +x
1
−2
1
2
x−x ⋅x
3
2
1
−2
方和公式展开求解,也可由x + x
解)
从而
3
3

x2 +x 2 +2
x2 +x−2 +3
=
18+2

2025届高三数学一轮复习课件-+简单的三角恒等变换

2025届高三数学一轮复习课件-+简单的三角恒等变换

)
A.π 3
B.5π 12
C.π6
D.π4
解析 ∵0<α<π2,0<β<π2,∴0<α+β<π,由 cosα=17,sin(α+β)=5143,得 sinα=473,
cos(α+β)=±1114.若 cos(α+β)=1114,则 sinβ=sin[(α+β)-α]=sin(α+β)cosα-cos(α+
解析
sinα -
3
cosα

2
12sinα-
3
2
cosα

2sin
α-π3

m

1




1≤sinα-π3≤1,所以-2≤2sinα-π3≤2,所以-2≤m-1≤2,解得-1≤m≤3,
则 m 的取值范围是[-1,3].
课堂小结(1分钟)
【通性通法】 三角恒等变换的综合应用主要是将三角变换与三角函数的性质相结合,通常是 把复杂的三角函数通过恰当的三角变换,转化为一种简单的三角函数,再研究转化 后函数的性质.在这个过程中通常利用辅助角公式,将 y=asinx+bcosx 转化为 y= Asin(x+φ)或 y=Acos(x+φ)的形式,以便研究函数的性质,解题时注意观察角、函 数名、结构等特征,注意利用整体思想解决相关问题.
因为 x∈π4,32π,所以 x-71π2∈-π3,1112π,
所以 sinx-71π2∈- 23,1,
所以- 22sinx-71π2∈- 22, 46,
即函数
f(x)在区间π4,32π上的最大值为
46,最小值为-
2 2.
(2)因为 cosθ=45,θ∈32π,2π, 所以 sinθ=-35,所以 sin2θ=2sinθcosθ=-2245, cos2θ=cos2θ-sin2θ=1265-295=275, 所以 f2θ+π3=- 22sin2θ+π3-71π2 =- 22sin2θ-π4=-12(sin2θ-cos2θ) =12(cos2θ-sin2θ)=12×275+2245=3510.

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

新课标2023版高考数学一轮总复习第1章预备知识第1节集合课件

根据集合的运算结果求参数的值或范围的方法 (1)将集合中的运算关系转化为两个集合之间的关系.若集合中 的元素能一一列举,则用观察法得到不同集合中元素之间的关系;若 是与不等式有关的集合,则一般利用数轴解决,要注意端点值能否取 到. (2)将集合之间的关系转化为解方程(组)或不等式(组)问题求解.
1.设集合 A={(x,y)|x2+y2=1},B={(x,y)|x+y=1},则 A∩B
(5,6] 解析:因为 P 中恰有 3 个元素,所以 P={3,4,5},故 k 的取值范围为(5,6].
与集合中的元素有关问题的求解思路 (1)确定集合中元素的特征,即集合是数集还是点集或其他集合. (2)看清元素的限制条件. (3)根据限制条件求参数的值或确定集合中元素的个数,但要检 验参数是否满足集合元素的互异性.
1.A∪B=A⇔B⊆A. 2.A∩B=A⇔A⊆B. 3.∁U(∁UA)=A.
4.常用结论 (1)若有限集 A 中有 n 个元素,则 A 的子集有 2n 个,真子集有(2n -1)个,非空真子集有(2n-2)个. (2)子集的传递性:A⊆B,B⊆C⇒A⊆C. (3)∁U(A∩B)=(∁UA)∪(∁UB), ∁U(A∪B)=(∁UA)∩(∁UB).
(4)集合与集合间的基本关系 ①子集:集合A中任意一个元素都是集合B中的元素.用符号表 示为 A⊆B (或 B⊇A ). Venn图如图所示:
②真子集:集合 A⊆B,但存在元素 x∈B,且 x A.用符号表示 为:A B(或 B A).
Venn 图如图所示:
③集合相等:集合A的任何一个元素都是集合B的元素,同时集 合B的任何一个元素都是集合A的元素.用符号表示为 A=B .
1.设全集 U=R,则集合 M={0,1,2}和 N={x|x·(x-2)·log2x=0} 的关系可表示为( )

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

第一讲+数列的概念与简单表示法课件-2025届高三数学一轮复习

a6=( )
A.3×44
B.3×44+1
C.44
D.44+1
解析:由an+1=3Sn,得到an=3Sn-1(n≥2),
两式相减,得an+1-an=3(Sn-Sn-1)=3an, 则an+1=4an(n≥2),因为a1=1,a2=3S1=3a1=3,所以此数 列除去第一项后,为首项是3,公比为4的等比数列,所以an= a2qn-2=3×4n-2(n≥2).则a6=3×44.故选A.
1

(2n

1)
7 8
n+1

an+1 an

(2n+1)78n+1 (2n-1)78n

14n+7 16n-8
.

aan+n1>1 时,n<125;当aan+n1<1 时,n>125.∵an>0,∴数列{an}的最大项 是 a8.
答案:8
考向 2 数列的周期性
[例3]已知数列{an}满足:an+1=an-an-1(n≥2,n∈N*),a1=
2.数列的表示方法
列表法
列表格表示n与an的对应关系
图象法
把点(n,an)画在平面直角坐标系中
公 通项公式 把数列的通项用公式表示
式 法
递推公式
使用初始值a1和an+1=f(an)或a1,a2和an+1=f(an, an-1)等表示数列的方法
3.an 与 Sn 的关系 若数列{an}的前 n 项和为 Sn, 则 an=SS1n, -nSn=-11,,n≥2.
4.数列的分类
分类标准
类型
项数
有穷数列 无穷数列
项与项间的 大小关系
递增数列 递减数列
常数列

新课标2023版高考数学一轮总复习第1章预备知识第2节充分条件与必要条件课件

新课标2023版高考数学一轮总复习第1章预备知识第2节充分条件与必要条件课件

03
一题N解·深化综合提“素养”
已知 p:x>1 或 x<-3,q:5x-6>x2,则 p 是 q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件
[四字程序]




1.充分条件、必要
判断充分条 条件的概念. 件、必要条件 2.判断充分条件、
解不等式
转化与化归
(1)若已知p:x>1和q:x≥1,则p是q的充分不必要条件.
(√)
(2)当q是p的必要条件时,p是+b2≠0”是“a,b不全为0”的充要条
件.
(√)
(4)若“x∈A”是“x∈B”的充分不必要条件,则B是A的真子
集.
(√)
2.(2021·惠州市二调)“θ=0”是“sin θ=0”的( )
A.充分不必要条件 B.必要不充分条件 C.充分必要条件 D.既不充分也不必要条件
B 解析:设等比数列{an}的公比为 q, 充分性:当 a1>0,q<0 时,Sn+1-Sn=an+1=a1qn,无法判断其正 负,显然数列{Sn}不一定是递增数列,充分性不成立; 必要性:当数列{Sn}为递增数列时,Sn-Sn-1=an>0,可得 a1>0, 必要性成立.
A 解析:由题意,若 a>6,则 a2>36,故充分性成立;若 a2>36, 则 a>6 或 a<-6,推不出 a>6,故必要性不成立.所以“a>6”是 “a2>36”的充分不必要条件.
2.已知 a,b,c∈R,则“abbc>>00, ”是“b-a c<b+a c”的(
)
A.充分不必要条件

高三数学第一轮复习课件(ppt)目录

高三数学第一轮复习课件(ppt)目录

Page 12
目录 CONTENTS
第二章
2.1 函数及其表示 2.2 函数的单调性与最值 2.3 函数的奇偶性与周期性 2.4 一次函数、二次函数 2.5 指数与指数函数 2.6 对数与对数函数 2.7 幂函数 2.8 函数的图象及其变换 2.9 函数与方程
函数
2.10 函数模型及其应用
第一讲:三角函数
S ABC=1/2bcsinA=1/2absinC=1/2ah,可得sinA=√15/8,sinC=√15/4。
∴cosA=7/8,cosC=1/4,
∴cos(A-C)=7/8 x 1/4 + √15/8 x √15/4
=11/16 c=2
A
b=2
h=√15/2
Page 21
B
C 1/2 a
1/2
C、﹙1,+∞﹚
D、[1,+∞﹚
解析:由于3x>0,所以3x+1>1,所以f(x)>0,集合表示为(0,+∞),答案为A
2、已知函数y=2x+1的值域为(5,7),则对应的自变量x的范围为(

A、[2,3)
B、[2,3]
C、(2,3)
D、(2,3]
解析:根据题意:5<2x+1<7,解得2<x<3,用集合表示为(2,3),答案为C
A [1,2]
解析:解二元一次不等式x2 +2x-8≤0,可得-4≤x≤2,所以M为[-4,2]; 解不等式3x-2≥2x-1,可得x≥1,所以N为[1,+∞﹚。此时我们可以应用数轴马 上解决问题:
-4 0 1 2
如图所示,阴影部分即为所求。答案:A 启示:掌握好数轴工具,在集合、函数问题( B
B、﹙-∞,5]

D、[5,+∞﹚
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

A,y∈A}中元素的个数是( C )
A.1
B.3
C.5
D.9
13
[解析] ∵A={0,1,2},∴B={x-y|x∈A,y∈A}={0,-1, -2,1,2}.故集合 B 中有 5 个元素.
14
(2)若集合 A={x∈R|ax2-3x+2=0}中只有一个元素,则
a=( B )
9 A.2
B.98
C.0
9
(2)设全集 U=R,A={x|0<x<2},B={x|x<1},则图中阴 影部分表示的集合为___{_x_|1_≤__x_<_2_}__.
解析:图中阴影部分可用(∁UB)∩A 表示,故(∁UB)∩A= {x|1≤x<2}.
10
解决集合问题的两个方法:列举法;图示法. (1)若集合 A={1,2,3},B={1,3,4},则 A∩B 的子集的个数 为____4____. 解析:A∩B={1,3},其子集分别为∅,{1},{3},{1,3}, 共 4 个.
D.0 或98
15
[解析] 当 a=0 时,显然成立;当 a≠0 时,Δ=(-3)2-8a =0,即 a=98.
16
(3)[2017·甘肃白银期末]已知集合 A={1,3, m},B={1,
m},A∩B1
B.0 或 3
C.1 或 3
D.0 或 1 或 3
17
[解析] ∵A={1,3, m},B={1,m},且 A∩B=B,∴m =3 或 m= m,但 m≠1,解得 m=0 或 m=3.当 m=0 时,A= {0,1,3},B={1,0},满足 A∩B=B;当 m=3 时,A={1,3, 3}, B={1,3},满足 A∩B=B.综上,m=0 或 3.故选 B.
的个数为 2n,真子集的个数为 2n-1.
22
集合中的两个易混结论:集合中元素的个数;集合的子集的 个数.
(1)[2015·江苏卷]已知集合 A={1,2,3},B={2,4,5},则集合 A ∪B 中元素的个数为___5_____.
解析:因为 A∪B={1,2,3,4,5},所以 A∪B 中元素的个数为 5.
18
[点石成金] 与集合中的元素有关问题的求解策略 (1)用描述法表示集合,首先要搞清楚集合中代表元素的含 义,再看元素的限制条件,明白集合的类型,是数集、点集还是 其他类型集合. (2)集合中元素的三个特性中的互异性对解题的影响较大,特 别是含有字母的集合,在求出字母的值后,要注意检验集合中的 元素是否满足互异性.
24
[典题 2] (1)已知集合 A={x|x2-3x+2=0,x∈R},B
={x|0<x<5,x∈N},则满足条件 A⊆C⊆B 的集合 C 的个
数为( D )
A.1
B.2
C.3
D.4
25
[解析] 由 x2-3x+2=0,得 x=1 或 x=2, ∴A={1,2}. 由题意知 B={1,2,3,4}, ∴满足条件的 C 可为{1,2},{1,2,3},{1,2,4},{1,2,3,4}.
5
考点 1 集合的基本概念
6
元素与集合 (1)集合元素的特性:__确__定__性__、__互__异__性__、无序性. (2)集合与元素的关系:若 a 属于集合 A,记作___a_∈__A__;若 b 不属于集合 A,记作___b_∉_A___. (3)集合的表示方法:__列__举__法__、__描__述__法__、图示法. (4)集合的分类:集合按元素个数的多少分为有限集、无限 集.有限集常用列举法表示,无限集常用描述法表示.
___A_⊆__B____或 ___B_⊇__A____ ___A___B____或 ___B__A_____
A⊆B 且 B⊆A ⇔A=B
21
关系 表示
文字语言
记法
空集
空集是__任__何____集 合的子集
∅⊆A
空集是任__何__非__空__集 ∅ B 且 B≠∅
合的真子集
拓展:集合子集的个数:若集合 A 中有 n 个元素,则其子集
必考部分
1
第一章 集合与常用逻辑用语
2
3
§1.1 集合及其运算
4
考纲展示► 1.了解集合的含义,体会元素与集合的属于关系. 2.理解集合之间包含与相等的含义,能识别给定集合的子集. 3.理解两个集合的并集与交集的含义,会求两个简单集合的 并集与交集. 4.理解在给定集合中一个子集的补集的含义,会求给定子集 的补集. 5.能使用韦恩(Venn)图表达集合间的基本关系及运算.
11
(2)[2015·北京卷改编]若集合 A={x|-5<x<2},B={x|-3 <x<3},则 A∩B=_____{_x_|-__3_<__x_<__2_}_______.
解析:在数轴上画出表示集合 A,B 的两个区间,观察可知 A∩B={x|-3<x<2}.
12
[典题 1] (1)已知集合 A={0,1,2},则集合 B={x-y|x∈
23
(2)集合 A={1,4,7,10,13,16,19,21},则集合 A 有___2_8____个 子集、___2_8-__1__个真子集、__2_8_-__1__个非空子集、__2_8-__2___个非 空真子集.
解析:因为集合 A 中有 8 个元素,所以集合 A 有 28 个子集, 28-1 个真子集,28-1 个非空子集,28-2 个非空真子集.
19
考点2 集合间的基本关系
20
集合间的基本关系
表示 关系
文字语言
记法
集合 间的 基本 关系
子集 真子集
相等
集合 A 中任意一个元素都是集 合 B 中的元素 集合 A 是集合 B 的子集,并且 B 中至少有一个元素不属于 A 集合 A 的每一个元素都是集合 B 的元素,集合 B 的每一个元 素也都是集合 A 的元素
7
(5)常见数集及其符号表示:
数集 自然数集 正整数集 整数集 有理数集 实数集
符号 ___N_____ N*或 N+
Z
Q
R
8
集合表示的两个误区:集合的代表元素;图示法. (1)已知集合 A={y|y=sin x},B={x|y=sin x},则 A∩B= __[_-__1_,1_]_. 解析:集合 A 表示的是函数 y=sin x 的值域,即 A=[-1,1]; 集合 B 表示的是函数 y=sin x 的定义域,即 B=R,所以 A∩B =[-1,1].
相关文档
最新文档