多边形的内角和教案设计

合集下载

多边形的内角和教案(优秀范文5篇)[修改版]

多边形的内角和教案(优秀范文5篇)[修改版]

第一篇:多边形的内角和教案多边形的内角和教案教学目标通过探索多边形的对角线研究多边形的内角和公式,并会应用它们进行有关计算.教学重点、难点重点:多边形的内角和公式的理解和运用.难点:多边形的内角和公式的推导.教学流程设计一、回顾1.我们知道三角形的内角和为180°.2.我们还知道,正方形的四个角都等于90°,那么它的内角和为360°,同样长方形的内角和也是360°.3.正方形和长方形都是特殊的四边形,其内角和为360°,那么一般的四边形的内角和为多少呢?4. 什么是多边形的对角线?二、学生问题探究1.从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?2.从五边形一个顶点出发可以引几条对角线?它们将五边形分成几个三角形?那么这五边形的内角和为多少度?3.从n边形的一个顶点出发,可以引几条对角线?它们将n边形分成几个三角形?n边形的内角和等于多少度?n边形一共有多少条对角线.三、教师引导学生分析总结:1.通过以上探索我们知道:从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

这(n-2)个三角形的内角和正好是这个n边形的内角和。

由此我们推导出n边形内角和公式:n边形的内角和:(n一2)·180°.2.n边形一共有n(n-3)/2条对角线.四、示例讲解例1:求八边形的内角和。

例2:如果一个多边形的内角和是2160度,求这个多边形的边数。

五、课堂练习P:86 练习1、2.六、课时小结1.从n边形一个顶点出发可作(n-3)条对角线,这些对角线把n边形分成(n-2)个三角形。

n边形一共有n(n-3)/2条对角线.2.n边形的内角和:(n一2)·180°.七、学生课后思考:要得到多边形的内角和需通过“三角形的内角和”来完成,就是把一个多边形分成几个三角形.除利用对角线把多边形分成几个三角形外,还有其他的分法吗?你会用新的分法得到n边形的内角和公式吗?第二篇:《多边形的内角和》教案《多边形的内角和》教案以下是查字典数学网为您推荐的《多边形的内角和》教案,希望本篇文章对您学习有所帮助。

多边形内角和教学设计3篇

多边形内角和教学设计3篇

多边形内角和教学设计3篇多边形内角和教学设计1《多边形内角和》教学设计一、教材分析本节课是人民教育出版社义务教育课程标准实验教科书(六三学制)七年级下册第七章第三节多边形内角和。

二、教学目标1、知识目标:(1)使学生了解多边形的有关概念。

(2)使学生掌握多边形内角和公式,并学会运用公式进行简单的计算。

2、能力目标(1)通过对“多边形内角和公式”的探究,培养学生分析问题、解决问题的能力,同时让学生充分领会数学转化思想。

(2)通过变式练习,培养学生动手、动脑的实践能力。

3、情感态度目标:通过猜想、推理活动感受数学活动充满着探索以及数学结论的确定性,提高学生学习热情。

三、教学重、难点重点:探索多边形内角和。

难点:探索多边形内角和时,如何把多边形转化成三角形。

四、教学方法:引导发现法、讨论法五、教具、学具及辅助教学媒体教具:多媒体课件学具:三角板、量角器教学媒体:大屏幕、实物投影六、教学过程:(一)创设情境,设疑激思1、以疑导入,引发求知欲。

先展示六螺帽,八角石英钟、多边形水果盘等多边形实物。

由此激发学生自己要设计,怎样设计的求知欲。

然后提出具体问题。

2、复习提问,知识巩固。

(1)三角形内角和等于多少度?(2)四边形内角和定理以及推导方法。

3、引入新课上一节课学习了求四边形内角和的方法,怎样求五边形、六边形……n边形的内角和呢?下面我们一起来讨论这个问题。

师:你知道五边形的内角和吗?六边形呢?十边形呢?你是怎样得到的?活动二:探究五边形、六边形、十边形的内角和。

学生先独立思考每个问题再分组讨论。

关注:(1)学生能否类比四边形的方式解决问题得出正确的结论。

(2)学生能否采用不同的方法。

学生分组讨论后进行交流(五边形的内角和)方法1:把五边形分成三个三角形,3个180o的和是540o。

方法2:从五边形内部一点出发,把五边形分成五个三角形,然后用5个180o的和减去一个周角360o。

结果得540o。

方法3:从五边形一边上任意一点出发把五边形分成四个三角形,然后用4个180o的和减去一个平角180o,结果得540o。

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计(精选8篇)

八年级上册《多边形的内角和》教学设计八年级上册《多边形的内角和》教学设计(精选8篇)作为一名默默奉献的教育工作者,通常需要用到教学设计来辅助教学,借助教学设计可以更好地组织教学活动。

我们该怎么去写教学设计呢?下面是小编收集整理的八年级上册《多边形的内角和》教学设计,希望能够帮助到大家。

八年级上册《多边形的内角和》教学设计篇1教学目标:1、理解多边形及正多边形的定义2、掌握多边形内角和公式。

教学重、难点:教学重点:1、多边形内角和公式。

2、计算多边形的内角和及依据内角和确定多边形边数。

教学难点:多边形内角和公式的推导。

一、创设情境,导入新课前面我们学过了三角形内角和定理,你还记得三角形内角和是多少度吗?你知道四边形内角和的度数吗?如何计算多边形内角和吗?今天,老师想和同学们一起走进多边形的家园去揭开多边形的内角和的奥秘。

(设计说明:复习引入,开门见山,提出简单的问题,吸引学生的注意力,激发学生自主学习的兴趣和积极性,从而自然引入新课。

)二、自主探究,发现新知自学教材内容,动手操作,并思考:1、三角形内角和多少度?2、分别从四边形、五边形、六边形一个顶点出发可以引出多少条对角线?你能类比归纳出从n边形的一个顶点出发可以引出多少条对角线吗?3、分别四边形、五边形、六边形从一个顶点出发引出的对角线将原图形分割成多少个三角形?你能类比归纳出从n边形的一个顶点出发引出的对角线把这些多边形分别分割成了多少个三角形吗?4、请结合图形计算四边形、五边形、六边形的内角和。

5、从n边形一个顶点出发可以引出多少条对角线呢?这些对角线将n边形分割成了多少个三角形?现在你知道多边形内角和公式了吗?6、用几何符号表示你的发现。

(师生活动:学生自学教材,结合探究提纲思考、作图、观察、讨论,教师做好板书准备后巡视检查学生自学情况,深入学生之间交流,掌握学情,为展示交流做准备。

)(设计意图:从简单的四边形入手,让学生亲自操作寻求结论,易于引起学习兴趣,让学生体会分割的过程,有利于深入领会转化的本质——n边形转化为三角形,也让学生体验数学活动充满探索和解决问题方法的多样性, 同时,渗透类比的数学思想。

多边形的内角和教学教案

多边形的内角和教学教案

多边形的内角和教学教案多边形的内角和教案篇一一、教学目标知识与技能目标:能够说出多边形的内角和公式并会运用过程与方法目标:通过多边形内角和公式的推导过程,提高逻辑思维能力。

情感态度与价值观目标:养成实事求是的科学态度。

二、教学重难点教学重点:多边形的内角和公式教学难点:多边形内角和公式三、教学方法讲解法、练习法、分小组讨论法四、教学过程结合新课程标准及以上的分析,我将我的教学过程设置为以下五个教学环节:导入新知、生成新知、深化新知、巩固新知、小结作业。

1. 导入新知首先是导入新知环节,我会引导学生回顾三角形的内角和,紧接着提出问题:四边形的内角和是多少?五边形的内角和是多少?六边形的内角和是多少?引发学生思考,由此引出本节课的课题:多边形的内角和(板书)。

通过提问的方式帮助学生回顾旧知识的同时,引导学生思考,也激发学生的求知欲,为本节课的多边形内角和的学习奠定了基础。

2. 生成新知接下来,进入生成新知环节,我会引导学生将四边形分成两个三角形来求内角和,由此得出四边形的内角和是2个三角形的内角和,即2*180=360,那同样的引导学生将五边形,六边形分别从同一个顶点出发划分为3个4个三角形,从而得出五边形的内角和为3*180=540,然后,让学生前后桌四个人为一个小组,五分钟时间,归纳n变形的内角和是多少,讨论结束后,找一个小组来回答他们讨论的结果。

由此生成我们的新知识:多边形的内角和公式180*(n-2)。

验证:七边形验证在本环节中通过学生自主学习归纳总结得出多边形的内角和公式,充分发挥了他们的自主探讨能力,提升逻辑思维能力。

3. 深化新知再次是深化新知环节,在本环节,我会引导学生思考一下有没有其他的将多边形分隔求内角和的方法,引导学生思考,可不可以将六边形从多个顶点出发,然后用公式验证一下我们这样分割可行不可行。

这时候会发现有的分割可行有的分割不可行,在这个时候给他们讲解为什么不可行为什么可行,以此来引出分割时对角线不能相交,从而强调我们分隔的一个原则。

优秀数学教案:多边形的内角和

优秀数学教案:多边形的内角和

优秀数学教案:多边形的内角和一、教学目标1.让学生理解多边形内角和的概念,掌握计算多边形内角和的方法。

2.培养学生运用多边形内角和的知识解决实际问题的能力。

3.培养学生的逻辑思维能力和空间想象能力。

二、教学重点与难点1.教学重点:多边形内角和的概念及计算方法。

2.教学难点:多边形内角和的计算方法在实际问题中的应用。

三、教学过程第一环节:导入新课1.回顾三角形内角和定理,让学生举例说明三角形内角和为180度。

2.提问:那么四边形、五边形等其他多边形的内角和是多少呢?今天我们就来学习多边形的内角和。

第二环节:探究多边形内角和的计算方法1.让学生拿出一张纸,剪出一个四边形,然后尝试将四边形的内角拼在一起。

2.学生发现,四边形的内角和为360度。

3.引导学生思考:能否通过将四边形分割成三角形,来计算四边形的内角和?4.学生动手操作,发现四边形可以分割成两个三角形,因此四边形的内角和为两个三角形的内角和之和,即360度。

第三环节:推广到一般多边形1.让学生尝试将五边形、六边形等更多边形分割成三角形,计算它们的内角和。

2.学生发现,无论多少边的多边形,都可以分割成若干个三角形,且多边形的内角和等于这些三角形的内角和之和。

第四环节:应用多边形内角和解决问题1.出示例题:一个五边形的一个内角为120度,求其余四个内角的和。

2.学生根据多边形内角和公式,计算出五边形的内角和为540度,然后减去已知的120度,得出剩余四个内角的和为420度。

3.让学生尝试解决实际问题,如:一个六边形的一个内角为150度,求其余五个内角的和。

第五环节:课堂小结2.强调多边形内角和在实际问题中的应用,提醒学生注意灵活运用。

第六环节:课后作业1.请学生课后收集生活中常见的多边形,计算它们的内角和。

2.请学生编写一道关于多边形内角和的应用题,并尝试解答。

通过本节课的学习,学生能够掌握多边形内角和的计算方法,并能够运用该方法解决实际问题。

在教学过程中,教师应注重培养学生的逻辑思维能力和空间想象能力,提高学生的数学素养。

《多边形及其内角和》教案

《多边形及其内角和》教案

《多边形及其内角和》教案《多边形及其内角和》教案1一、教学目标1、掌握多边形的内角和公式,并能熟练运用。

2、通过探索多边形的内角和公式,感受数学思考过程的条理性,发展推理能力和语言表达能力,体会从特殊到一般的认识问题的方法。

3、通过探索多边形内角和公式,尝试从不同的角度寻求解决问题的方法,并能有效的解决问题。

4、通过猜想,推理等数学活动,感受数学活动充满探索以及数学结论的确定性,提高学生的学习热情。

二、教学重点、难点重点:探索多边形的内角和公式。

难点:探索多边形内角和时,如何把多边形转化成三角形,利用三角形内角和180度求出多边形内角和。

三、教学方法:学生自主探究、合作交流与教师启发引导相结合.四、教具准备①每个小组一张“探究实验报告单”(活动1)②每人一张“类比探索五边形、六边形、七边形的内角和的答题纸”(活动2)③多媒体课件五、教学过程(一)创设情境,引入新课问题1:把一个长方形纸片剪去一个角还剩几个角。

【学生给出的答案可能是---三个角、四个角、五个角,教师演示动画。

】问题2:你知道所得图形的内角和吗。

你知道102边形的内角和吗。

【根据学生的回答,教师指出本课内容,板书课题: 多边形的内角和。

】(二)合作交流,探索新知活动1:猜想验证四边形的内角和问题:(1)任意四边形的内角和等于多少度。

(2)你是怎样得到的。

你能找到几种方法。

【问题(1)学生很容易猜到360°,问题(2)组织学生四人一组拿出课前老师发给每个小组的探究实验报告,讨论并记录探究方法。

在讨论的过程中,教师给出合格、良好、优秀的“自我评价标准”,每个小组对照评价表给出自我评价,教师深入到学生讨论中,以“边听—边问—边导”的形式,适时对各小组进行点拨。

讨论结束后,小组学生代表用实物投影展示探究实验报告,说明求四边形内角和的方法,并讲述想法。

教师对学生找到的不同方法都给予肯定和评价,并加以总结,归纳学生提出的探究方法:度量、剪拼、分割。

多边形的内角和数学教案

多边形的内角和数学教案一、教学目标1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、操作、推理等方法探究多边形的内角和定理。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 多边形的内角和概念:多边形内角和指的是多边形所有内角的总和。

2. 多边形的内角和定理:n边形的内角和等于(n-2)×180°。

三、教学重点与难点1. 教学重点:多边形的内角和定理的推导和应用。

2. 教学难点:多边形内角和定理的理解和运用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、操作、推理等方法探究多边形的内角和定理。

2. 利用多媒体课件辅助教学,直观展示多边形的内角和定理。

3. 分组讨论,合作学习,提高学生的参与度和积极性。

五、教学过程1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。

2. 新课导入:介绍多边形的内角和概念,引导学生理解多边形的内角和。

3. 探究活动:引导学生通过观察、操作、推理等方法探究多边形的内角和定理。

4. 讲解与演示:利用多媒体课件,讲解多边形的内角和定理,并展示定理的推导过程。

5. 练习与巩固:布置一些练习题,让学生运用内角和定理解决问题,巩固所学知识。

6. 课堂小结:对本节课的内容进行总结,强调多边形的内角和定理的应用。

7. 课后作业:布置一些课后作业,让学生进一步巩固多边形的内角和定理。

六、教学评估1. 课堂提问:通过提问了解学生对多边形内角和概念的理解程度。

2. 练习反馈:收集学生的练习题答案,分析其对多边形内角和定理的掌握情况。

3. 课后作业:检查课后作业的完成质量,评估学生对课堂所学知识的巩固程度。

七、教学反思1. 针对课堂提问和练习反馈,反思教学过程中的不足之处,如讲解不清、学生理解困难等问题。

2. 根据课后作业的完成情况,分析学生的学习效果,调整教学方法和策略。

3. 针对教学反思的结果,制定改进措施,提高教学质量。

多边形的内角和教案

多边形的内角和教案一、教学目标1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。

3. 培养学生的观察能力、思考能力和数学推理能力。

二、教学重点与难点1. 教学重点:多边形的内角和的概念,多边形内角和的计算规律。

2. 教学难点:多边形内角和的计算规律的发现和证明。

三、教学准备1. 教师准备:多媒体教学设备,PPT课件。

2. 学生准备:笔记本、文具。

四、教学过程1. 导入新课:通过展示一些多边形的图片,引导学生关注多边形的内角。

2. 讲解多边形的内角和概念:多边形的内角和是指一个多边形所有内角的总和。

3. 探究多边形内角和的计算规律:a. 引导学生通过观察、测量多边形的内角,总结多边形内角和的特点。

b. 引导学生用数学方法证明多边形内角和的计算规律。

c. 引导学生运用计算规律解决实际问题。

4. 课堂练习:布置一些有关多边形内角和的练习题,让学生巩固所学知识。

五、课后作业1. 完成练习册上的相关题目。

2. 深入研究多边形的内角和,尝试解决更复杂的多边形内角和问题。

1. 课堂练习环节,观察学生对多边形内角和的理解和运用情况。

2. 课后收集学生的作业,评估学生对多边形内角和的掌握程度。

3. 在下一节课开始时,进行一个简短的知识点回顾,检查学生对多边形内角和的记忆和理解。

七、教学拓展1. 引导学生思考:多边形的内角和与边数之间的关系。

2. 鼓励学生进行课外阅读,了解多边形内角和的更多性质和应用。

八、教学反思1. 反思本节课的教学效果,观察学生对多边形内角和的掌握程度。

2. 根据学生的反馈,调整教学方法和策略,以提高教学效果。

九、教学评价1. 根据学生的课堂表现、作业完成情况和知识点回顾,对学生进行综合评价。

2. 鼓励学生自我评价,反思自己在学习多边形内角和过程中的优点和不足。

十、教学总结1. 总结本节课的教学目标和成果,评估教学目标的达成情况。

2. 反思教学过程中的优点和不足,为下一节课的教学做好准备。

《多边形的内角和》优秀教学设计

《多边形的内角和》优秀教学设计《多边形的内角和》优秀教学设计作为一位不辞辛劳的人民教师,通常需要用到教学设计来辅助教学,借助教学设计可以提高教学效率和教学质量。

我们该怎么去写教学设计呢?以下是店铺整理的《多边形的内角和》优秀教学设计,希望对大家有所帮助。

学情分析:学生已经学过三角形的内角和定理的知识基础,并且具备一定的化归思想,但是推理能力和表达能力还稍稍有点欠缺。

针对这种情况,我会引导学生利用分类、数形结合的思想,加强对数学知识的应用,发展学生合情合理的推理能力和语言表达能力。

教学目标:1.知识与技能:运用三角形内角和定理来推证多边形内角和公式,掌握多边形的内角和的计算公式。

2.过程与方法:经理探究多边形内角和计算方法的过程,培养学生的合作交流的意识。

3.情感态度与价值观:感受数学化归的思想和实际应用的价值,同时培养学生善于发现,积极探究,合作创新的学习态度。

教学重点:多边形的内角和公式。

教学难点:探索多边形的内角和定理的推导教学过程:一、创设情境,导入新课1、请看:我身后的建筑物是什么?─水立方。

我看到水立方时发现它的膜结构的结合处都是多边形,你们想知道这些多边形的内角和吗?(多媒体展示)这节课咱们一起来探究《多边形的内角和》。

二、合作交流,探究新知1、多边形的内角和问:要求内角和你联想到什么图形的内角和?(示三角形的内角和定理)。

如果两个三角形能够拼成四边形,你能求出四边形的内角和是多少度呢?预设回答:三角形的内角和360°。

四边形的内角和360°知道四边形的内角和为360°,现在你能利用三角形的内角和定理证明吗?自主学习教材第34页“动脑筋”【教学说明】“解放学生的手,解放学生的大脑”,鼓励学生积极参与合作交流,寻找多种图形形式,深入全面转化的本质——将四边形转化为三角形问题来解决.2、是否所有的多边形的内角和都可以“转化”为两个三角形的内角和来求得呢?如何“转化”?预设回答:能,可以引对角线,将多边形分成几个三角形。

《多边形的内角和》教案

《多边形的内角和》教案一、教学目标:1. 让学生理解多边形的内角和的概念。

2. 引导学生通过观察、思考、探究,发现多边形内角和的计算规律。

3. 培养学生运用数学知识解决实际问题的能力。

二、教学内容:1. 多边形的内角和的概念。

2. 多边形内角和的计算规律。

三、教学重点与难点:重点:多边形的内角和的概念,多边形内角和的计算规律。

难点:发现并证明多边形内角和的计算规律。

四、教学方法:1. 采用问题驱动的教学方法,引导学生观察、思考、探究。

2. 利用几何画板软件,直观展示多边形的内角和。

3. 分组讨论,合作学习,培养学生的团队协作能力。

五、教学过程:1. 导入:通过展示一些多边形图片,引导学生关注多边形的内角和。

2. 新课导入:介绍多边形的内角和的概念,让学生理解多边形内角和的意义。

3. 探究活动:引导学生观察、思考多边形内角和的计算规律。

4. 小组讨论:分组讨论,让学生合作探究多边形内角和的计算规律。

5. 成果展示:各小组代表展示探究成果,总结多边形内角和的计算规律。

6. 讲解与示范:讲解多边形内角和的计算方法,并利用几何画板软件进行示范。

7. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题。

8. 总结与反思:对本节课的内容进行总结,引导学生反思学习过程。

9. 课后作业:布置一些课后作业,巩固所学知识。

10. 教学反思:对课堂教学进行总结,反思教学过程中的优点与不足,为下一步教学做好准备。

六、教学评价:1. 评价学生对多边形内角和概念的理解程度。

2. 评价学生是否能运用多边形内角和计算规律解决实际问题。

3. 评价学生在小组讨论中的参与程度及团队协作能力。

七、教学反馈:1. 课后收集学生练习作业,分析学生掌握情况。

2. 课堂观察学生参与度,了解学生对教学内容的兴趣。

3. 听取学生对教学过程的建议和意见,以便改进教学方法。

八、教学拓展:1. 引导学生进一步研究多边形的其他性质,如外角和、对角线等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

多边形的内角和教案设计
一.知识目标:
了解多边形的内角和与外角和公式,进一步了解转化的数学思想二.能力目标:
1、让学生经历猜想、探索、推理、归纳等过程,发展学生的合情推理能力和语言表达能力,掌握复杂问题化为简单问题,化未知为已知的思想方法。

2、通过把多边形转化为三角形,体会转化思想在几何中的运用,让学生体会从特殊到一般的认识问题的方法。

3、通过探索多边形的内角和与外角和,让学生尝试从不同的角度寻求解决问题的方法,并能有效地解决问题。

三过程与方法
教师引导下的自主探究,小组合作,归纳得出多边形的内外角和公式
四。

情感态度与价值观:
通过学生间交流、探索,进一步激发学生的学习热情,求知欲望,养成良好的数学思维品质。

重点:探索多边形的内角和及外角和公式
难点:如何把多边形转化成三角形,用分割多边形法推导多边形的内角和与外角和。

一、教学流程安排
活动流程活动内容和目的
活动1 展示图片,学生观看。

引入课题回顾三角形内角和知识,激发学生的学习兴趣,为后继问题解决作铺垫。

活动2 探索四边形内角和鼓励学生寻找多种分割形式,深入领会转化思想的本质—将四边形转化为三角形问题来解决。

活动3 探索五边形内角和,推导出任意多边形内角和公式。

通过类比得出方法,探索多边形内角和公式,体会数形间的联系,感受从特殊到一般的思考问题的方法。

活动4 通过列表探索多边形内角和与其边数的关系。

活动5 多边形内角和公式的应用。

活动6 探索四边形及n边形外角和通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未知为已知的思想方法。

活动7 多边形内角和与外角和公式的运用综合运用所学知识去解决问
活动8 归纳总结,布置作业小结及课后探究习题梳理所学知识,达到巩固,发展提高的目的。

二:教学过程设计
活动1
问题:你知道三角形的内角和是多少度吗?
三角形的内角和等于180°
课题:多边形的内角和与外角和1、教师提问,学生思考作答。

2、教师总结:三角形的内角和等于180°。

3、引出课题:您想知道任意一个多边形的内角和吗?今天我们就来进一步探讨多边形的内角和与外角和。

回顾已学知识:三角形的内角和等于180°,为后继问题的解决作铺垫。

利用学生的好奇心设疑,激发学生的求知欲望,使他们能自觉地参与到下面多边形内角和探索的活动中去。

问题:你知道任意一个四边形的内角和是多少吗?
分成2个三角形
180°×2=360°
分割成4个三角形
180°×4-360°=360°
分割成3个三角形
180°×3-180°=360°
1、引导学生猜想:四边形的内角和等于360°。

并用实验的方法进行验证。

2、学生分小组交流与探究,进一步来论证自己的猜想。

3、由各小组成员汇报探索的思路与方法,讲明理由。

4、教师汇总学生所探索出的不同方法,除测量与拼凑法外,并提出疑问:你们添加辅助线的目的是什么?说一说你的想法。

5、教师在学生回答的基础上小结:借助辅助线把四边形分割成几个三角形,利用三角形内角和求得四边形内角和。

教师可点拨学生从正方
形、长方形这两个特殊的多边形的内角和,进而猜测出四边形的内角和等于360°。

“解放学生的手,解放学生的大脑”,鼓励学生积极参与,合作交流,用自己的语言表达解决问题的方式方法,发展学生的语言表达能力与推理能力。

鼓励学生寻找多种分割形式,深入领会转化的本质——将四边形转化为三角形问题来解决。

活动3
问题1:你知道五边形的内角和是多少度吗?
问题2:你知道n边形的内角和吗?
(n-2)·180°
180°n-360°
180°(n-1)-180°
板书:
多边形内角和公式:(n-2)·180°
例:求15边形内角和的度数1、教师提出问题,学生思考后分组活动。

2、教师深入小组,参与小组活动,及时了解学生探索的情况。

3、让学生归纳借助辅助线将五边形分割成三角形的不同分法。

4、探究五边形的边数与所分割的三角形个数间的关系,进而得出五边形内角和与边数的关系。

5、根据以上分割三角形的方法,引导学生归纳n边形内角和公式及不同公式间的联系,指明为了书写整齐,便于记忆,我们选择(n-2)·180°这个公式。

6、通过计算让学生巩固并掌握n边形内角和公式。

通过增加图形的复杂性,让学生再一次经历转化的过程,加深对转化思想方法的理解,在探索过程中进一步体现新课标“以人为本”的思想,再一次发展学生的平理能力和语言表达能力。

通过四边形、五边形特殊,多边形内角和的探索,让学生从特殊到一般归纳总结出多边形内角和公式,体会数形间的联系,感受从特殊到一般的数学推理过程和数学思考方法。

活动4 师:问题:多边形内角和与其边数有何关系?
生:列表探究
生:归纳得出结论:n边形内角和为(n-2)×180º
活动5 利用多边形内角和公式解决实际问题。

师:课件展示习题
生:思考讨论并作答。

活动6 探究多边形外角和
问题1:小明家有一张六边形的地毯,小明绕各顶点走了一圈,回到起点A,他的身体旋转了多少度?
例:六边形外角和等于多少度?
问题2:n边形外角和等于多少度?
n边形外角和等于360°1、学生思考作答,教师作适当点拨。

通过课件演示,由学生发现:六边形的外角和等于360°。

2、教师引导学生利用多边形的内角和公式,进一步论证六边形外角和等于360°。

即:六个平角减去六边形内角和等于六边形外角和360°
3、进行类比推理并小结:n边形外角和等于n个平角减去n边形内角和,与边数无关。

180°n-(n-2)·180°=360°经历现实情况引出六边形的外角和等于360°,从学生已有的生活经验出发,更能激发学生的学习兴趣。

通过类比和扩展方法的使用,使学生掌握复杂问题化为简单问题,化未
知为已知的思想方法。

活动7
问题:你能运用多边形内角和与外角和公式解决问题吗?
(1)教科书P88例1
(2)一个多边形的内角和与外角和相等,它是几边形?
探究题:小明有一个设想:2008年奥运会在北京召开,他设计一个内角和是2008°的多边形图案多有意义,小明的想法能实现吗?1、学生利用当堂所学的知识通过小组合作解决问题,巩固本节知识。

2、教师从学生的回答中,了解学生有条理表达自己的思考过程。

3、引导学生利用多边形的内角和公式解释小明的设想能否实现,进一步让学生感受到数学的趣味性,以及与实际生活间的密切联系。

学生自主探索巩固知识和获得技能,掌握基本的数学思想。

教师及时了解学生的学习效果,让学生经历用知识解决问题的过程。

同时激发学生的学习和积极性,建立学好数学的自信心。

学生巩固、发展、提高。

活动6
问题:谈谈本节课你有哪些收获?
作业:课本P83. 1,2,3
1、学生反思学习和解决问题的过程。

2、鼓励学生大胆表达,并对学生的进步给予肯定,树立学生学好数学的自信心。

通过回顾和反思,让学生看到自己的进步,激励学生,使学生自己在今后的学习中会不断进步,提高学生的学习热情。

相关文档
最新文档