因式分解之平方差公式法

合集下载

初中数学 什么是平方差公式

初中数学 什么是平方差公式

初中数学什么是平方差公式
平方差公式是初中数学中一个重要的公式,用于计算两个数的平方差。

它的一般形式可以表示为:
(a + b)(a - b) = a^2 - b^2
其中,a和b是任意实数。

平方差公式的推导可以通过展开左边的乘积来得到。

具体步骤如下:
1. 将(a + b)(a - b)展开:
(a + b)(a - b) = a(a - b) + b(a - b)
= a^2 - ab + ab - b^2
= a^2 - b^2
在这个过程中,我们可以看到中间的两项-ab和ab相互抵消,最终得到了平方差公式的形式。

平方差公式的应用非常广泛,可以帮助我们简化复杂的计算,解决各种数学问题。

一些常见的应用包括:
1. 因式分解:
平方差公式可以用于因式分解,特别是当我们需要将一个差的平方进行因式分解时,可以直接应用平方差公式得到因式分解形式。

2. 简化计算:
平方差公式可以帮助我们简化各种数学计算。

例如,当需要计算一个数的平方与另一个数的平方之差时,可以直接应用平方差公式,避免繁琐的计算步骤。

3. 解方程:
平方差公式可以用于解一些特殊的方程。

例如,当我们需要解一个二次方程时,可以通过平方差公式将其转化为两个一次方程,从而求得方程的解。

总之,平方差公式是初中数学中一个重要的工具,可以帮助我们简化计算,解决各种数学问题。

通过掌握平方差公式,我们可以更好地理解和运用数学知识。

因式分解之四大基本解法

因式分解之四大基本解法

因式分解之四大基本解法知识锦囊经典例题【必会考点1】提取公因式1.因式分解:2281012x y xy --【解答】解:原式222(456)x y xy =--2(43)(2)xy xy =+-.2.因式分解:324824m m m -+-.【解答】解:32248244(26)m m m m m m -+-=--+.3.因式分解:325()10()x y y x -+-.【解答】解:325()10()x y y x -+-325()10()x y x y =-+-25()[()2]x y x y =--+25()(2)x y x y =--+.4.因式分解:3()3()a x y b y x ---.【解答】解:3()3()a x y b y x ---3()3()a x y b x y =-+-3()()x y a b =-+.【必会考点2】公式法1.因式分解:(1)22169x y - (2)22222()4x y x y +-. 【解答】解:(1)原式22(4)(3)(43)(43)x y x y x y =-=+-;(2)原式222222(2)(2)()()x y xy x y xy x y x y =+++-=+-.2.分解因式:22(23)m m -+.【解答】解:原式(23)(23)m m m m =++--(33)(3)m m =+--3(1)(3)m m =-++.3.因式分解:2()6()9x y y x -+-+【解答】解:2()6()9x y y x -+-+2()6()9x y x y =---+2(3)x y =--.【必会考点3】提取公因式与公式法综合1.因式分解:(1)2x xy -; (2)329189x x x -+; 【解答】解:(1)22(1)(1)(1)x xy x y x y y -=-=+-;(2)322291899(21)9(1)x x x x x x x x -+=-+=-;2.因式分解:(1)244am am a -+; (2)22()()a x y b y x -+-. 【解答】解:(1)22242(44)(2)am am a a m m a m -+=-+=-;(2)2222()()()()()()()a x y b y x x y a b x y a b a b -+-=--=-+-.【必会考点3】分组分解法1.因式分解:2m my mx yx -+- 【解答】解:(3)2m my mx yx -+-2()()m my mx yx =-+-()()m m y x m y =-+-()()m y m x =-+.2.因式分解:2221b bc c -+-【解答】解:2221b bc c -+-2()1b c =--(1)(1)b c b c =-+--.【必会考点4】十字相乘法1.因式分解:(1)256x x +- (2)2234a ab b -- 【解答】解:(1)256(1)(6)x x x x +-=-+(2)2234a ab b --(4)()a b a b =-+.2.分解因式:2231x x -+【解答】解:2231(1)(21)x x x x -+=--.巩固练习1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.2.分解因式:(1)()()x x a y a x -+- (2)321025x y x y xy -+3.因式分解:53242357a b c a b c a bc +-4.分解因式:222(4)16m m +-.5.分解因式(1)222(1)4a a +- (2)229()25()a b a b +--.6.因式分解:22436x xy x y -+-7.因式分解:22144a ab b -+-8.分解因式(1)2249x y - (2)2221x y y -+-9.分解因式:22221x y x y -+-.10.分解因式①226x x -- ②332x x -+11.分解因式:2228x xy y --.12.十字相乘法因式分解:(1)256x x ++ (2)256x x --(3)2231x x -+ (4)2656x x +-.13.因式分解:(1)23a b b -; (2)1n m mn -+-;(3)2221x x y -+-; (4)2()()()x y x y x y -++-14.把下列各式分解因式:(1)225x -; (2)2816a a -+;(3)2()9()x x y x y +-+; (4)3222a a b ab -+-.15.因式分解:(1)236x xy x -+; (2)3241628m m m -+-;(3)2318()12()a b b a ---.巩固练习解析1.因式分解:(1)2()3()m a b n b a ---; (2)2282()x x y --.【解答】解:(1)2()3()m a b n b a --- 2()3()m a b n a b =-+- ()(23)a b m n =-+;(2)2282()x x y --222[4()]x x y =-- 2(3)()x y x y =-+.2.(1)分解因式()()x x a y a x -+- (2)分解因式321025x y x y xy -+ 【解答】(1)解:()()x x a y a x -+- (x =x a -)(y -x a -) (=x a -)(x y -);(2)解:321025x y x y xy -+ (xy =21025)x x -+ (xy =25)x -.3.因式分解:53242357a b c a b c a bc +- 【解答】解:原式322(57)a bc a b c ab =+-; 4.分解因式:222(4)16m m +-. 【解答】解:222(4)16m m +-22(44)(44)m m m m =+++- 22(2)(2)m m =+-.5.分解因式 (1)222(1)4a a +- (2)229()25()a b a b +--. 【解答】解:(1)222(1)4a a +-22(12)(12)a a a a =+++- 2(1)a =+2(1)a -; (2)229()25()a b a b +--[3()5()][3()5()]a b a b a b a b +=+--+- .4(4)(4)a b b a =--.6.因式分解:22436x xy x y -+- 【解答】解:原式2(2)3(2)x x y x y =-+- (2)(23)x y x =-+.7.22144a ab b -+-【解答】解:22144a ab b -+-221(44)a ab b =--+ 21(2)a b =--(12)(12)a b a b =+--+.8.分解因式 (1)2249x y - (2)2221x y y -+-【解答】解:(1)原式(23)(23)x y x y =-+; (2)原式22(21)x y y =--+22(1)x y =--(1)(1)x y x y =+--+.9.分解因式:22221x y x y -+-.【解答】解:原式222222(1)1(1)(1)(1)(1)(1)x y y y x y y x =-+-=-+=+-+. 10.分解因式 ①226x x -- ②332x x -+【解答】解:①226(23)(2)x x x x --=+-; ②332x x -+ 342x x x =-++ (2)(2)(2)x x x x =+-++2(2)(21)x x x =+-+ 2(2)(1)x x =+-.11.分解因式:2228x xy y --. 【解答】解:2228x xy y -- (4)(2)x y x y =-+.12.十字相乘法因式分解: (1)256x x ++ (2)256x x -- (3)2231x x -+ (4)2656x x +-.【解答】解:(1)原式(2)(3)x x =++; (2)原式(6)(1)x x =-+; (3)原式(21)(1)x x =--; (4)原式(23)(32)x x =+-. 13.因式分解: (1)23a b b -; (2)1n m mn -+-; (3)2221x x y -+-;(4)2()()()x y x y x y -++-【解答】解:(1)原式22()()()b a b b a b a b =-=-+;(2)原式(1)()(1)(1)(1)(1)n m mn n m n m n =-+-=-+-=+-;(3)原式2222(21)(1)(1)(1)x x y x y x y x y =-+-=--=---+;(4)原式()()2()x y x y x y x x y =--++=-.14.把下列各式分解因式:(1)225x -;(2)2816a a -+;(3)2()9()x x y x y +-+;(4)3222a a b ab -+-.【解答】解:(1)原式(5)(5)x x =+-;(2)原式2(4)a =-;(3)原式2()(9)x y x =+-()(3)(3)x y x x =++-;(4)原式22(2)a a ab b =--+2()a a b =--.15.因式分解:(1)236x xy x -+;(2)3241628m m m -+-;(3)2318()12()a b b a ---.【解答】解:(1)236(361)x xy x x x y -+=-+;(2)322416284(47)m m m m m m -+-=--+;(3)23218()12()6()(322)a b b a a b a b ---=-+-.。

因式分解-平方差公式

因式分解-平方差公式

知识探索
2、口答下列各题: (1) a2-1=( a )2-( 1 )2 (2) x4y2-4= ( x2y )2-( 2 )2 (3) 0.49x2-0.01y2=( 0.7x )2-( 0.1y )2
(4) 0.0001-121x2=( 0.01 )2-( 11x )2 3、能用平方差公式因式分解的多项式有 何特征?①有且只有两个平方项; ②两个平方项异号;
)
是 否 否
把下列各式进行因式分解 1. a3b3-a2b-ab ab(a2b2-a-1)
2. -9x2y+3xy2-6xy -3xy(3x-y+2)
在横线内填上适当的式子,使等式成立: (1)(x+5)(x-5)= (2)(a+b)(a-b)= (3) x2-25 = (x+5)( (4) a2-b2 = (a+b)( x2-25 a2-b2 x-5 a-b ; ; ); )。
2
2
= (a ▲ + b )( a b) ▲
(1)公式左边:(是一个将要被分解因式的多项式)
★被分解的多项式含有两项,且这两项异号, 并且能写成( )2-( )2的形式。
(2) 公式右边:
(是分解因式的结果)
★分解的结果是两个底数的和乘以两个底数 的差的形式。
你对平方差公式认识有多深?
2 2 a -b =(a+b)(a-b)
进一步分解因式。
4.分解因式要彻底。要注意每一个因式的形式要最简,
直到不能再分解为止。
小试身手
把下列各式分解因式:
(1) (2) 2 2 2 解:(1) 36-25x =6 -(5x) =(6+5x)(6-5x) (2) 16a2-9b2 =(4a)2-(3b)2 =(4a+3b)(4a-3b)

利用平方差公式进行因式分解

利用平方差公式进行因式分解
2)每项可写成平方的形式
3)两项的符号相反
关键:找准公式中的a和b
注意:
1.有公因式要先提取公因式 2.再应用平方差公式分解 3.每个因式要化简,并且分解彻底
7.两个连续偶数的平方差 能被4整除吗?
请与你的同伴交流。
Good bye !
(4)
2 2 9(x+y) -(x-y)
5.把下列各式分解因式:
(1) 3ax2-3ay4
(22y
动脑筋
6、已知:a+b=3,a-b=2,
求a2 - b2 的值
解: a2 - b2 =(a+b)(a-b) =3×2
=6
谈谈你有何收获
条件:1) 是一个二项式(或可看成一个二项式)
2
将下列各式分解因式的正确答案用线连接起来
9a2 –25b2
(6a+7)(6a-7)
16x2 –4y2
36a2 –49
(8x+9)(8x-9)
(3a+5b)(3a-5b)
64x2 –81
(4x+2y)(4x-2y)
3.选择题:
1)下列各式能用平方差公式分解因式
的是 ( D )
A. x² +y²
C. x² +(-y)2
分解因式—运用公式法(一)
康杰初中
董明军
平方差公式:
(a+b)(a-b) = a²- b²
两个数的平 方差,等于 这两个数的
整式乘法
和与这两个
数的差的积
a²- b² = (a+b)(a-b) 分解因式
1 熟练运用平方差公 式分解因式
1.能用平方差公式 2.运用平方差公
分解因式的多项式

平方差公式法因式分解

平方差公式法因式分解

平方差公式法因式分解掌握使用平方差公式进行因式分解的方法,并能熟练使用平方差公式进行因式分解;情感态度与价值观:在应用平方差公式分解因式的过程中让学生体验换元思想,同时增强学生的观察能力和归纳总结的能力。

[ 教学重点 ] 掌握可用平方差公式分解因式的特点,并能使用平方差公式分解因式[ 教学难点 ] 使学生能把多项式转换成符合平方差公式的形式进行因式分解。

[ 教学过程 ] 一:复习旧知:A 因式分解的概念是什么?B 平方差公式的内容用字母怎样表示?计算:1)运用平方差公式计算:2+a)(a-2);(-4s+t)(t+4s)(m2+2n2)(2n 2- m2)(x+2y) (x-2y)(2a +b-c)(2a-b+c )二:导入新课: 平方差公式: (a+b)(a-b) = a 2 - b 2理解运用平方差公式分解因式与整式乘法是相反的变形: 对照平方差公式怎样将下面的式子相乘过程与方法: 通过知识的迁移经历运用平方差公式分解因式的过程;[ 教学目标 ]知识与技能:(1) (m+4 (m-4) (2 ) (2x —3y)(2x+3y)(m+4 (m-4)=m2-162 2(2x —3y)(2x+3y)=4x -9y这是我们学习的整式的乘法运算。

如果上述等式左右两边互换位置,又是什么形式呢?01-9= ( m+4 (m-4)16x2-9y2=(2x —3y)(2x+3y)三:新课讲解:我们可以发现,刚才因式分解的过程中我们是逆用平方差公式的方法,像这样逆用乘法公式将一个多项式分解因式的过程叫做公式法分解因式。

今天我们主要学习使用平方差公式进行因式分解。

平方差公式反过来可得:a2-b 2=(a+b)(a-b)这个公式叫做因式分解中的平方差公式。

学生思考:当一个多项式具有什么特点时可用平方差公式因式分解? 1、填空:(1)a 6=( ) 2; (2) 9x 2=()(4) 25x4=( ) 2 (5) 0.25a 2=()4平方差公式反过来就是说:两个数的平方差,8 10 z 、⑶ m n =()2等于这两个数的和与这两个数的差的练习I :2、分解因式:(1) 16a2- 1 四:练习巩固分解因式:(1)(2 )(3)2 2 2 2 2 2 (2 ) 4x 2 m2n2 (3) 1-25a ;⑷-9x +y; (5) a b-c ;2 2 (a+b) -(a-c); x4-16;3x3-12x;(9y 2-x2)+(x+3y).(5) ( x + z )2- ( y + z ) 2(6) 4( a + b) 2- 25(a - c) 2 (7) 4a3- 4a4、练习巩固2:分解因式:(1) -a 4 + 16 (2) 6a2b _54b(3) (x+y+z) 2 - (x-y-z) 23⑷(x-y) +(y-x).5、用平方差公式进行简便计算:382-37 2五:类型小结: 平方差公式的四种应用1、直接应用例1、分解因式解::x2-4=x2- 22= (x+2)( x-2) 2、提后用公式例2、分解因式:3x2-27=解: 3x2-27=3 (X2-9)=3( x2- 32)=3 (x+3)( x-3)3、变化指数后用公式例3、224-1能被1和10之间的两个数整除。

平方差公式因式分解课件

平方差公式因式分解课件

平方差公式的证明
以几何解释和代数推导的方式,详细介绍平方差公式的证明,并提供一些实例来巩固理解。
平方差公式的应用
展示平方差公式在解决实际数学问题中的应用,包括面积计算、数列求和和方程式的变形等。
因式分解实例1:4x^2 - 9y^2
通过实际例子演示如何应用平方差公式进行因式分解,帮助学生更好地理解 和掌握这一概念。
平方差公式的探究
发掘更深层次的平方差公式相关概念,讨论剩余和约分等概念,并展示它们 是如何相互影响的。
平方差公式的历史背景
介绍平方差公式的历史渊源和相关数学家,帮助学生了解数学知识的发展和演变。
平方差公式在实际生活中的应用
探索平方差公式在实际生活中的实际应用,如建筑设计、物理力学和经济分析等领域。
平方差公式因式分解ppt 课件
本课件将带您了解平方差公式因式分解的概念、应用和推广。深入浅出,轻 松掌握这一数学难题,让您的数学技巧更上一层楼!
平方差公式介绍
通过直观的示意图,了解平方差公式是什么,并掌握其重要性以及在因式分解中的作用。
பைடு நூலகம்
什么是因式分解?
深入分析因式分解的定义,展示因式分解在数学中的重要性,以及为什么它 是数学解决难题的基础。
因式分解实例5:9a^2 - 16b^2
最后一个实例将帮助学生巩固平方差公式因式分解的知识,并解决更具挑战 性的方程式问题。
平方差公式的推广
探讨平方差公式的推广应用,如立方差公式和高次幂差公式,并帮助学生扩 展他们的数学思维。
平方差公式的变形1:(a+b)^3
了解如何将平方差公式应用于(a+b)^ 3的展开,并解决更复杂的代数问题。
平方差公式的变形2:(a+b)^4

因式分解的五个公式

因式分解的五个公式导读a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a& ...因式分解有哪些公式?因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)平方差公式:a²-b²=(a+b)(a-b)推导过程:a²-b²=a²+ab-(b²+ab)=a(a+b)-b(a+b)=(a+b)(a-b)说明:这里推导过程使用了后面的课程添项折项法(添项),这个因式分解添加了ab一项,构造了a+b的公因式,同学们也可以自己试试,添加-ab,也是一样的。

应该问哪些方法!常见的有:(1)提取公因式法(2)公式法(3)十字相乘法(4)分组分解法……因式分解的方法因式分解八大公式如下:1、平方差公式a²-b²=(a+b)(a-b)2、完全平方公式a²+2ab+b²=(a+b)²3、立方和公式a³+b³=(a+b)(a²-ab+b²)4、立方差公式a³-b³=(a-b)(a²+ab+b²)5、完全立方和公式a³+3a²b+3ab²+b³=(a+b)³6、完全立方差公式a³-3a²b+3ab²-b³=(a-b)³7、三项完全平方公式a²+b²+c²+2ab+2bc+2ac=(a+b+c)²8、三项立方和公式a³+b³+c³-3abc=(a+b+c)(a²+b²+c²-ab-bc-ac)因式分解原则:1.因式分解因子是多项式的常数变形,要求方程的左边必须是多项式。

因式分解平方差公式


注意 • 公式中的字母a、b也可以表示 多项式
试一试 把下列各式分解因式: (1)4a2-(b+c)2 (2)(3m+2n)2-(m-n)2
例3、把下列各式分解因式: (1)x5-x3 解:x5-x3 =x3(x2-1) =x3(x+1)(x-1) (2)x4-y4 解:x4-y4=(x2)2-(y2)2 =(x2+y2)(x2-y2) =(x2+y2)(x+y)(x-y)
2 2 ( m 0.1n)( m 0.1n) 3 3
注意 • 用平方差公式分解因式时一定 要写成两个数的平方差的形式
试一试 把下列各式分解因式:
1 2 (1) a x 9
2
(2)4x2-9y2 (4)0.81a2-16b2
(3)36n2-1
判断、下列多项式能否用平方差公式分解因
2、完全平方公式:(a+b)2=a2+2ab+b2
(a-b)2=a2-2ab+b2
四、整式乘法和因式分解的关系?
因式分解公式:
1、平方差公式:a2-b2=(a+b)(a-b)
即:两个数的平方差等于这两个数的 和与这两个数的差的积
运用公式法:
利用公式来分解多项式的方法叫运用 公式法
例1、把下列各式分解因式:
(100 1) 100 2
=5050
=100+99+98+97+…+2+1
1 1 1 (3)(1 2 )(1 2 )(1 2 ) 2 3 4
1 1 1 1 1 1 解:原式 (1 )(1 )(1 )(1 )(1 )(1 2 2 3 3 4 4)

第43课时 因式分解(2)——公式法(平方差公式)


2. 计算: (1)(a+2)(a-2)=____a_2-_4____; (2)(-x+3)(-x-3)=____x_2-_9____; (3)(3a+2b)(3a-2b)=___9_a_2_-_4_b_2 __.
启后
任务三:学习教材第116页,完成下列题目. 1. 填空: (1)a2-b2=__(__a_+_b_)__(__a_-_b_)__; (2)能够运用平方差公式分解因式的多项式必须 是__二____项式,两项都能写成___平__方___的形式,且 符号___相__反___.
13、He who seize the right moment, is the right man.谁把握机遇,谁就心想事成。2021/8/292021/8/292021/8/292021/8/298/29/2021 •14、谁要是自己还没有发展培养和教育好,他就不能发展培养和教育别人。2021年8月29日星期日2021/8/292021/8/292021/8/29 •15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年8月2021/8/292021/8/292021/8/298/29/2021 •16、教学的目的是培养学生自己学习,自己研究,用自己的头脑来想,用自己的眼睛看,用自己的手来做这种精神。2021/8/292021/8/29August 29, 2021 •17、儿童是中心,教育的措施便围绕他们而组织起来。2021/8/292021/8/292021/8/292021/8/29
课堂小测
5. (10分)分解因式: (1)x3-9xy2;(2)(x+2)2-9.
解:(1)原式=x(x+3y)(x-3y). (2)原式=(x+5)(x-1).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§9.6因式分解之平方差公式法研究课
学习目标
1. 使学生进一步理解因式分解的意义;
2. 使学生理解平方差公式的意义,弄清公式的形式和特征;
3. 会运用平方差公式分解因式.
学习重点 用平方差公式法进行因式分解.
自主学习
一. 创设情境
★试一试
1. 992-1是100的整数倍吗?
2. 和老师比一比,看谁算的又快又准确:①572-562 ; ②962-952; ③(1725)2-(825
)2.
★做一做:
整式乘法中我们学习了乘法公式:两数和乘以这两数差:即:(1)(a +b )(a -b )=a 2-b 2
左边是整式的乘积,右边是一个多项式,把这个等式反过来就是_________________________ (平方差公式),左边是__________,右边是___________请你判断一下,第二个式子从左到右是不是因式分解?
像这样将乘法公式反过来用,对多项式进行因式分解,这种因式分解方法称为_______.
★议一议:下列多项式可以用平方差公式分解吗?
(1)x 2-y 2 (2)x 2+y 2 (3)-x 2-y 2 (4)-x 2+y 2 (5)64-a 2 (6)4x 2-9y 2
总结平方差公式的特点:
1.左边特征是: .
2.右边特征是: .
探究新知
例1.依葫芦画瓢:(体验用平方差公式分解因式的过程)
(1)x 2-4=x 2-22= (x +2)(x -2) (2)x 2-16 =( )2-( )2= ( )( )
(3)9-y 2=( )2-( )2= ( )( )(4)1-a 2 =( )2-( )2= ( )( ) 例2.把下列多项式分解因式:
(1) 36-25x 2 (2) 16a 2-9b 2 (3)49
m 2-0.01n 2
例3.观察公式a 2-b 2 =(a +b )(a -b ),你能抓住它的特征吗?公式中的字母a 、b 不仅可以表示数,而且都可以表示代数式.尝试把下列各式分解因式
(1)(x +p )2-(x +q )2 (2)16(m -n )2-9(m +n )2 (3)9x 2-(x -2y ) 2
例4.把下列各式分解因式
(1)4a 2-16 (2)a 5-a 3 (3)x 4-y 4 (4)32a 3-50ab 2
一句话点评: .
趁热打铁:
1. 课本P 73练一练
2.下列分解因式是否正确:
(1)-x 2-y 2=(x +y )(x -y )(2)9-25a 2=(9+25a )(9-25a )(3)-4a 2+9b 2=(-2a +3b )(-2a -3b )
3.把下列各式分解因式:
(1)4a 2-(b +c )2 (2)(3m +2n )2-(m -n )2
(3)(4x -3y )2-16y 2 (4)-4(x +2y )2+9(2x -y )2
课外延伸
一.判断:下列各式能不能写成平方差的形式(能画“√”,并分解,不能的画“×”)
(1)x 2+64 ( ); (2)-x 2-4y 2 ( )
(3)9x 2-16y 4 ( ); (4)-14
x 6+9n 2 ( )
(5)-9x 2-(-y )2 ( ); (6)-9x 2+(-y )2 ( )
(7)(-9x )2-y 2 ( ); (8)(-9x )2-(-y )2 ( )
二.选择题
1. 下列各式中,能用平方差公式分解因式的是 ( )
A .22b a +-
B .22b a --
C .22b a +
D .33b a -
2. (x +1)2-y 2分解因式应是 ( )
A . (x +1-y )(x +1+y )
B . (x +1+y )(x -1+y )
C . (x +1-y )(x -1-y )
D . (x +1+y )(x -1-y )
三、填空:
1.填空(把下列各式因式分解)
(1)21p -=____________ (2)=-36492c ________________ (3)=-256
942n m ___________ (4)925.022+-m a =______________ (5)n x 24-=______________ (6)1)(2-+b a =__________________
2.把下列各式分解因式
(1)()==-_____335x x x ________________________
(2)()==-________2223ab ab ab __________________
(3)()==-________163x x x ___________________
(4)()==-________23342ab ay ax ___________________
(5)=-2428y y ______________________________________
四.把下列各式分解因式
2294)1(y x - 221681.0)2(b a - 2201.09
4)3(-m
(4) 23)1(28+-a a a (5) ()224a c b +-- (6)44161b a -
(7)()()2223n m n m --+ (8)()224y x z +- (9) ()()22254y x y x +--
(10)()()22c b a c b a -+-++ (11)()()b a b a +-+43
五.运用简便方法计算
(1)4920072- (2)433.1922.122⨯-⨯
(3)已知x =1175,y =2522
,求(x +y )2-(x -y )2的值.
在错题中成长:。

相关文档
最新文档