安全工程专业瓦斯抽放系统毕业设计指导书-2014修订版
瓦斯抽放设计说明书

瓦斯抽放设计说明书瓦斯抽放设计说明书1、介绍1.1 项目概述该设计说明书旨在为瓦斯抽放系统的设计和实施提供详细的指导。
该系统旨在有效地控制和处理矿井内的瓦斯,并确保矿井的安全运营。
1.2 目标该设计旨在实现以下目标:- 最大限度地减少矿井内的瓦斯浓度;- 确保矿井安全,并为矿工提供良好的工作环境;- 提高矿井的生产效率。
2、设计参数2.1 矿井信息- 矿井名称:- 矿井深度:- 瓦斯产量:- 瓦斯成分及浓度:- 其他相关信息:2.2 设计要求- 瓦斯抽放效率要求:- 瓦斯抽放系统运行负荷要求:- 抽放区域划分和布局要求:- 设备操作和监控要求:3、瓦斯抽放系统设计3.1 抽放管道设计3.1.1 管道材料选择耐腐蚀性能好、耐高压、耐磨损的管道材料。
3.1.2 管道直径和厚度根据瓦斯产量、管道长度和压力损失计算,确定合适的管道直径和厚度。
3.1.3 管道布置根据矿井地质条件、工作面布局和瓦斯产区域分布,合理布置抽放管道。
3.2 抽放设备选择3.2.1 抽放风机选择适当的抽放风机,确保能够有力地抽放瓦斯。
3.2.2 瓦斯抽放泵根据矿井水文条件和瓦斯产区域的排水要求,选择合适的瓦斯抽放泵。
3.2.3 其他设备根据实际需要,选择合适的控制设备、管道阀门等。
4、瓦斯抽放系统实施计划4.1 设备采购计划详细说明所需设备的类型、数量、规格和技术要求,并制定采购计划。
4.2 施工进度计划按照矿井的实际情况和需求,制定详细的施工进度计划,确保按时完成系统的实施。
4.3 资金预算估计项目所需的资金,并制定详细的资金预算计划。
5、附件本文档涉及的附件包括但不限于:- 矿井地质调查报告;- 矿井平面布置图;- 设备选型与技术参数表;- 施工进度计划。
6、法律名词及注释- 安全生产法:指中华人民共和国国家安全生产法;- 矿井安全规程:指矿山安全监察局制定的矿井安全管理规定;- 瓦斯抽放设备检测标准:指国家质量监督检验检矿山产品质量监督检验检测标准。
瓦斯抽放设计共41页word资料

http://mkaq/show.php?contentid-24037.html概述某煤矿为某集团公司所属的大型煤矿之一.1958年投产,设计生产能力为600kt/年.1976年进行了生产环节改造,1980年核定生产能力为1200kt/年.根据该矿提供的矿井设计和矿井瓦斯涌出资料(2019年鉴定报告),矿虽然煤矿周边煤矿瓦斯涌出不大,为低瓦斯矿井(表1-2),但随开采深度的增加,瓦斯涌出量有增大的趋势.2019年8月某矿瓦斯鉴定结果表明全矿井绝对瓦斯涌出量为21.84.0m3/min,相对瓦斯涌出量为7.49m3/t.由于目前21181工作面开采的煤层厚度达到20m以上,工作面回采期间的绝对瓦斯涌出量就已经超过10.0m3/min.邻近煤矿都在考虑建立地面永久瓦斯抽放系统或井下移动瓦斯抽放系统.表1-2邻近矿井瓦斯等级鉴定结果(2019年8月)2矿井瓦斯抽放的必要性与可行性根据国家煤矿安全监察局2019年颁布的《煤矿安全规程》第145条规定,如果矿井绝对瓦斯涌出量超过40.0m3/min,无论井型大小,也不管煤层有无煤与瓦斯突出危险性,必须建立地面永久抽放瓦斯系统或井下临时抽放瓦斯系统.虽然某煤矿的绝对瓦斯涌出量还没有达到40.0m3/min,但现有的通风系统无法排放回采工作面所产生的瓦斯.《煤矿安全规程》,《矿井瓦斯抽放管理规范》以及《煤炭工业设计规范》有关条款规定:当一个回采工作面的绝对瓦斯涌出量大于5m3/min或一个掘进工作面的瓦斯涌出量大于3m3/min,采用通风方法解决瓦斯问题不可能或不合理时应采用瓦斯抽放措施.除此而外, 某矿煤层极易自燃, 过大的风量会导致煤层的自燃发火. 为贯彻国家安全生产监督管理局”先抽后采, 以风定产, 监测监控”的安全生产方针, 某煤矿已经在井下建立了一个临时抽放瓦斯泵站(两台40 m3/min抽放泵, 一台20 m3/min抽放泵, 一台60 m3/min抽放泵)为21181工作面抽放瓦斯服务.井下抽放泵站的安装和清洗维护费用较高, 又便于管理. 2019年投入使用的材料井距离井下临时抽放泵站的排气点的水平距离很近. 只要延伸500m左右的抽放管路(不包括已经安装的材料立井内的580m管道)就可以将抽放瓦斯泵站布置在地面为今后开采的各个采区服务.2.1 矿井瓦斯涌出量预测结果表2-1至表2-4是二-1和二-3煤层开采时,对应于不同生产时期的回采工作面、掘进工作面、采区及矿井瓦斯涌出量鉴定结果,由此可知,无论是当前生产时期、中期还是后期,某煤矿都属于低瓦斯矿井.表2-1给出了回采工作面瓦斯涌出量预测(或鉴定)结果. 瓦斯含量是根据21181工作面的瓦斯涌出统计, 21181工作面煤样的吸附实验等确定的. 由于现场的煤层瓦斯含量及瓦斯压力的实测数据十分有限, 表2-1中的数据只作为设计参考. 建议某矿将来进行这方面的实测工作.表2-1 回采工作面瓦斯涌出量预测(或鉴定)结果统计表明, 21181工作面掘进期间瓦斯绝对涌出量为1.8-2.4m3/min.因此, 当前阶段和以后生产时期的每个掘进工作面的绝对瓦斯涌出量定为2.4m3/min(表2-2).目前某矿布置一个工作面(21181工作面), 今后考虑布置两个回采工作面, 即一个综采综放工作面和一个综采工作面. 今后考虑布置4个掘进工作面. 表2-3给出了各个生产时期的瓦斯涌出量预测.表2-3 采区瓦斯涌出量预测结果表2-4给出了当前和今后生产时期的矿井瓦斯涌出量预测. 由于地面瓦斯抽放系统为一工程量较大的项目, 服务年限长, 一旦管路安装完毕不易更换. 因此, 对将来矿井瓦斯涌出量的预测留有一定余地.表2-4 矿井瓦斯涌出量预测结果2.2 回采工作面瓦斯涌出来源与构成在二-1和二-3煤层工作面采空区, 生产工作面(按两个回采工作面考虑)和掘进工作面(按4个掘进工作面考虑), 预计将来的最大瓦斯涌出量可达到38.6m3/min.2.3 瓦斯抽放的必要性2.3.1 相关法规的要求按照《煤矿安全规程》规程的有关规定及”先抽后采, 以风定产, 监测监控”的十二字方针,无论高瓦斯矿井的井型大小,也不管煤层有无煤与瓦斯突出危险性,必须建立地面永久抽放瓦斯系统或井下临时抽放瓦斯系统.某煤矿设计生产能力为600Mt/年, 目前生产能力达到1000Mt/年. 从瓦斯涌出量预测结果(表2-4)来看,矿井在生产过程中的瓦斯涌出量将达38.6 m3/min, 单纯靠通风系统来稀释瓦斯是不可能的. 因此,必须建立瓦斯抽放系统.2.3.2 采掘工作面瓦斯治理的需要《煤矿安全规程》、《矿井瓦斯抽放管理规范》以及《煤炭工业设计规范》有关条款规定:当一个回采工作面的绝对瓦斯涌出量大于5m3/min 或一个掘进工作面的瓦斯涌出量大于3m3/min,采用通风方法解决瓦斯不可能或不合理时应采用瓦斯抽放措施. 虽然, 该矿回采工作面的绝对瓦斯涌出量已经超过5m3/min. 产量和瓦斯涌出量都有进一步增加的趋势.采掘工作面需要采取瓦斯抽放的必要性判断标准是: 在给定的巷道通风断面条件下,采掘工作面设计通风能力小于稀释瓦斯所需的风量,即式(2-1)成立时, 抽放瓦斯才是必要的.…………………………………(2-1)式中:Q0 - 采掘工作面设计风量, m3/s;Q - 采掘工作面瓦斯涌出量, m3/min;K - 瓦斯涌出不均衡系数,取K=1.5;C -《煤矿安全规程》允许的采掘工作面瓦斯浓度,%,取C=1.根据采掘工作面瓦斯涌出量预测结果,由式(2-1)计算得到的回采工作面(按综采和炮采两个工作面考虑)、掘进工作面(按3个掘进工作面考虑)瓦斯抽放必要性判断结果如表2-5所示.由表2-5可以看出,对回采工作面和采空区而言,单纯靠通风方法不能解决工作面瓦斯超限问题. 对掘进工作面而言, 部分掘进工作面可能存在供风难的问题, 也可能需要采取瓦斯抽放措施.表2-5 矿井瓦斯涌出量预测结果2.4 瓦斯抽放的可行性本煤层瓦斯抽放的可行性是指在自然透气条件下进行预抽的可能性.衡量本煤层瓦斯预抽可行性指标有三个:煤层透气性系数(λ),钻孔瓦斯流量衰减系数(α)和百米钻孔瓦斯极限抽放量衰减系数(Qj).按λ、α和Qj判定本煤层瓦斯抽放可行性标准如表2-6示.目前,某煤矿基本没有测定煤层透气性系数、钻孔瓦斯流量衰减系数和百米钻孔瓦斯极限抽放量.考虑到某煤矿毗邻的其他矿井的情况和地质勘探资料及有关文献,可以断定,某煤矿二煤属于较难抽放煤层(表2-6),如不采取其他技术措施, 基本不具备预抽本煤层瓦斯的可行性. 因此, 回采工作面将继续采用高位瓦斯抽放来治理工作面的瓦斯超限.2.5 矿井瓦斯储量与可抽量矿井瓦斯储量是指在煤田开发过程中能够向矿井排放瓦斯的煤层及围岩所储存的瓦斯量. 开采二煤时,应该纳入矿井瓦斯储量计算有二-1和二-3煤层和围岩(含煤线)的瓦斯储量,计算公式如下:…………………………(2-2)式中:Wk —确矿井瓦斯储量,万m3;C —围岩瓦斯储量系数,取C = 1.05;A —二煤工业储量,万吨;X —二煤平均瓦斯含量,m3/t.可抽量是指矿井瓦斯储量中能被抽出的瓦斯量,由下式计算:……………………………………(2-3)式中:Wkc ---- 矿井瓦斯可抽量,万m3;ηk ---- 矿井瓦斯抽放率,按照义马矿区生产矿井的现状预计,ηk =25~35%,取平均值ηk = 30%;Wk ---- 矿井瓦斯储量,万m3.表2-7 矿井瓦斯储量及可抽取量计算结果矿井瓦斯储量和可抽量计算结果如表2-7所示. 由表可知,矿井瓦斯储量和可抽取量分别为86373万m3和25911.9万m3. 矿井的煤炭工业储量是根据1990年的《河南省义马矿务局某煤矿矿井地质报告》给出的可采储量减去1991-2019的采出量进行估算的.煤炭工业储量 = 17752 – 100 x 13 = 16452 万吨3 矿井瓦斯抽放方案初步设计3.1 抽放方法选择的原则选择矿井瓦斯抽放方法应根据矿井煤层赋存条件, 瓦斯基本参数, 瓦斯来源, 巷道布置, 抽放瓦斯的目的及瓦斯利用等因素来确定, 并应遵守以下原则:(1).抽放方法应适合煤层赋存状况, 巷道布置,地质条件和开采技术条件.(2).应根据矿井瓦斯涌出来源及涌出量构成分析, 有针对性地选择抽放瓦斯方法, 以提高瓦斯抽放效果.(3).在满足瓦斯抽放的前提下, 应尽可能地利用生产巷道, 以减少抽放工程量.(4).选择的抽放方法应有利于抽放巷道的布置和维护.(5).选择的抽放方法应有利于提高瓦斯抽放效果, 降低瓦斯抽放成本.(6).瓦斯抽放应有利于钻场, 钻孔的施工和抽放系统管网的设计, 有利于增加钻孔的抽放时间.3.2抽放瓦斯方法选择某煤矿抽放瓦斯的目的是消除或缓解瓦斯突出的危险性及使工作面的瓦斯涌出量降低到通风能解决的水平或减轻矿井通风负担. 因此, 确定矿井抽放瓦斯的方法为开采煤层抽放(包括开采工作面和掘进工作面抽放)和采空区抽放等方式.在二-1和二-3煤层开采时,必须对所有的回采工作面进行高位抽放或本煤层预抽、对大多数的掘进工作面进行瓦斯预抽放. 选择的瓦斯抽放方法如下:⑴.采用边采边抽相结合方式抽放回采工作面采空瓦斯;⑵.掘进工作面采用边掘边抽方法抽放本煤层瓦斯;⑶.采用高位钻孔抽放回采工作面及采空区瓦斯.由于某矿煤层具有自燃倾向性, 不宜采用采用采空区抽放.3.2.1回采工作面本煤层瓦斯抽放由于煤层的透气性低, 采用预抽和边采边抽相结合的抽放方法,即:利用工作面胶带顺槽或轨道顺槽向煤层打迎向平行钻孔预抽本煤层瓦斯,并利用回采工作面前方超前卸压效应边采边抽本煤层瓦斯,以提高煤层瓦斯抽放效率.推荐的钻孔布置方式如图3-1示.图3-1 回采工作面本煤层瓦斯抽放钻孔布置示意图推荐的本煤层预抽钻孔布置参数如下:钻孔长度 80-100m;钻孔直径∮75mm;钻孔与工作面夹角 4°~6°;钻孔间距 10m;封孔深度 5m;封孔方式聚胺脂封孔.3.2.2 掘进工作面瓦斯抽放掘进工作面抽放瓦斯的方法有边掘边抽和先抽后掘瓦斯抽放两种方式.考虑到某煤矿掘进工作面瓦斯涌出较小,采用边掘边抽比较合适. 采用边掘边抽时, 抽放钻孔布置方式如图3-2示.推荐的钻孔布置参数如下:钻孔长度 60-100 m;钻孔直径∮75 mm;相邻孔间夹角 3°~5°;钻场间距 50 m;钻场内钻孔数 3个;封孔深度 5m;封孔方式聚胺脂封孔.图3-2 掘进工作面边掘边抽瓦斯钻孔布置示意图在煤巷掘进工作面后5m处的巷道两邦各施工一个钻场. 钻场的规格应根据巷邦瓦斯抽放钻孔布置的要求, 选用钻机的外形尺寸及钻杆长度而定. 根据该矿的具体情况, 每组钻场在煤巷两侧错开布置, 其规格为: 4 x 4 x 2m, 采用木棚支护. 相邻两组钻场之间的间距为40-50m.在每一钻场内, 沿走向布置3个边掘边抽钻孔, 即左, 右钻场各三个, 孔深60m左右.掘进工作面先抽后掘就是在煤巷掘进工作面向前方煤层施工扇形钻孔, 每个循环6-9个钻孔, 钻孔深度50-60m, 每个循环间距40-50m, 预计抽放时间为20左右. 钻孔终孔点分别距离巷道中心线0m, 2.5m和4m.钻孔布置的原则就是保证将钻孔布置在煤层内, 钻孔倾角与巷道底板平行或根据煤层的厚度向上或下倾斜. 当掘进工作面抽放钻孔数量较多时, 为扩大钻孔覆盖范围, 抽放钻孔应以巷道中线为基准, 向周围煤体呈放散状排列, 以提高抽放效果.3.2.3 回采工作面高位抽放采用高位抽放就把回采工作面上部煤层中和部分采空区中的瓦斯通过钻孔和瓦斯抽放管道排放到地表或井下回风巷中. 图3-3为回采工作面高位钻孔布置示意图.需要注意的是设计中的瓦斯抽放钻孔设计仅供该矿工程技术人员参考. 在生产实际中, 应根据现场实际监测参数对抽放钻孔的布置进行调整, 以达到最好的抽放效果.3.2 抽放量预计及抽放服务年限3.2.1 回采工作面本煤层预抽量预计由于二-1和二-3煤层的透气性低及回采工作面巷道面积较小等原因, 尽量不采用边采边抽的方式, 而着重考虑采用高位钻孔抽放的方式.3.2.2 掘进工作面边掘边抽瓦斯量预计某煤矿回采工作面顺槽实行单巷掘进,每一条单巷掘进工作面的最大边掘边抽瓦斯量由下式计算:(3-1)式中:Q1 - 单巷掘进工作面边掘边抽瓦斯量,m3 /min;N - 每个钻场内边掘边抽钻孔数,N=3;L2 - 掘进工作面平均走向长度,m,L2=2000m;L3 - 钻场间距,m,L3=100m;L1 - 单孔有效抽放长度,m,L1=95m;Qj - 百米钻孔瓦斯极限抽放量,m3,Qj =67825 m3;α - 钻孔瓦斯流量衰减系数,d-1,α=0.0014d-1;t - 巷道掘进期间边掘边抽钻孔平均抽放瓦斯时间,d,在巷道长度为240m(包括联络横贯长度)、掘进速度30m/mon条件下,t=120d.代入各参数值,计算得 Q1=0.691m3/min.按全矿4个单巷掘进工作面考虑,边掘边抽瓦斯总量为2.764m3/min.3.2.3 矿井瓦斯抽放量预计当矿井实施高位钻孔抽放、边采边抽和边掘边抽等措施时,预计矿井最大瓦斯抽放总量可以达到11.58m3/min.按年抽放365天、日抽放24小时计算,矿井年最大年瓦斯抽放量可以达到6086448m3.3.2.4 抽放服务年限由于矿井瓦斯抽放方式为高位钻孔抽放、边采边抽和边掘边抽,瓦斯抽放服务年限与矿井生产服务年限相同.3.2.5 抽放参数的确定根据目前矿井的具体情况和所选用的抽放瓦斯方法, 设计矿井的瓦斯抽放浓度为30%.设计掘进工作面的预抽(尽量不采用预抽)时间为20天, 回采面的预抽时间大于3个月, 回采面预抽钻孔可作为边采边抽钻孔, 当采煤工作面推进至该孔孔口附近时, 拆除钻孔. 瓦斯抽放实践证明, 由于预抽煤体瓦斯, 使煤体发生收缩变形, 当煤体原来占据的空间体积相等时, 煤体的收缩既使原有的裂隙加大, 又可以产生新的裂隙. 从而使煤层的透气性增加, 提高瓦斯抽放效果.3.3 瓦斯抽放钻孔施工及设备3.3.1 钻机的选择选择钻机需要考虑的因素包括: 1).钻进深度; 2).转速范围; 3).给进, 起拔能力; 4).液压系统; 5).价格.某矿现在使用的钻机采用整体箱式结构, 具有体积小, 重量轻, 移动安装方便, 机械效率高等优点,完全能够满足井下瓦斯抽放钻孔钻进的要求. 该钻机主要用于井下钻探深度为50m-200m的各种角度的瓦斯抽放钻孔, 勘探钻孔等多用途的工程钻孔施工.3.3.2 钻孔施工技术安全措施除了采取钻孔施工技术的一般安全措施(略)外, 还必须采取以下特殊措施:(1). 在施钻地点附近安设一组(6个)压风自救器和一台电话;(2). 调整通风系统, 使采煤工作面回风不直接流经施钻地点, 开始以前完成该区域通风系统调整;(3). 采煤工作面放炮时, 撤出施钻人员至安全地点, 放炮期间, 所有人员均不得进入回风系统;(4). 放炮后, 待施钻现场瓦斯不超限, 整个区域无安全异常, 则可保持正常施钻;(5). 若施钻现场发生安全异常, 则立即按安全路线撤离.3.3.3 钻孔封孔抽放钻孔封孔方式主要有水泥注浆泵封孔, 人工水泥沙浆封孔和聚胺脂封孔等. 在岩层中封孔长度不小于3m. 在煤层中封孔长度不小于5m.考虑到某煤矿的钻孔数量不大, 没有必要购买价格昂贵的封孔泵或采用人工水泥沙浆封孔. 因为使用水泥沙浆封孔, 凝固时间长, 对于倾斜钻孔不易充满. 因此, 应该使用人工聚胺脂封孔.聚胺脂封孔就是由异氰酸脂和聚醚并添加几种助剂反应而生成硬质泡沫体密封钻孔. 聚胺脂封孔采用卷缠药液与压注药液两种工艺方法. 现主要应用卷缠药液法封孔, 封孔深度一般为3-6m即可符合要求.虽然聚胺脂封孔(见图3-4)的成本略高于水泥浆封孔, 但聚胺脂封孔操作简单, 省时省力, 气密性好, 抽放效果好, 非常适用于某煤矿.3.3.4 瓦斯抽放参数监测采用孔板或便携式数字钻孔瓦斯参数监测仪对钻孔或采空区抽放管进行监测很有必要. 除此之外, 在抽放巷道口设瓦斯抽放监测传感器, 对抽放管道的负压, 瓦斯浓度, 瓦斯流量, 温度进行监测. 井下抽放支管和地面主管都应装备管道监测系统, 并将其尽可能地将管道监测系统挂靠入矿井环境监测系统.4 瓦斯管网系统选择与管网阻力计算及设备选型4.1 矿井瓦斯抽放设计参数根据煤矿提供的地质资料和矿井设计资料, 某煤矿的设计瓦斯抽放量按一台抽放泵同时服务两个回采工作面(目前只布置一个回采工作面)和三个掘进工作面, 纯瓦斯抽放量取11.58m3/min(将来最大瓦斯抽放量). 瓦斯抽放浓度按30%计算.4.2 瓦斯管网系统选择与管网阻力计算4.2.1 瓦斯抽放管网系统在选择瓦斯抽放管路系统时, 主要根据抽放泵站位置, 开拓巷道布置, 管路安装条件等进行确定. 抽放管路应尽量选择敷设在巷道曲线段少和距离短的线路中, 尽可能避开运输繁忙巷道, 同时还要考虑供电, 供水, 运输方便.抽放泵的位置可以布置在地面也可以布置在井下. 井下布置是将瓦斯抽放泵布置在井下靠近抽放地点的进风流中, 这样可以减少抽放管路的长度, 并随时根据抽放地点的需要改变抽放泵的位置, 可以节省管路投资, 节省防爆装置和避雷装置, 其必要条件是抽放管路的瓦斯排放到采区回风巷或总回风巷后, 在较小范围内经过稀释达到风流瓦斯浓度不超限.当矿井总回风巷瓦斯浓度高, 抽出的瓦斯不能排放到总回风巷, 或井下供水,供电及安装成本较高, 或地面距离抽放地点较近时, 把瓦斯抽放泵安装到地面具有明显的经济和管理方面的优势.某煤矿开采服务年限长,工作面到新材料井井口的距离较短, 且工作面需要抽放的瓦斯量较大,因此,建立地面永久瓦斯抽放系统较为合理.根据矿井采掘工作面的具体位置及开拓布置, 确定将地面永久瓦斯抽放站布置在距离新材料井附近且地势平坦, 无地质灾害和洪水影响的地点. 要求瓦斯抽放泵站房50m范围内无主要建筑及民房, 在泵房周围20m设立围墙或栅栏, 并严禁明火.根据某煤矿的井下开拓巷道和地表设施的具体情况,考虑了两种井下管道布置最长路线.方案1:21171工作面顺槽二一区专用回风下山东轨大巷材料立井抽放泵房放空管;方案2:21171工作面顺槽二一区轨道下山东轨大巷材料立井抽放泵房放空管;如果把主管道延伸到21171工作面回风顺槽与二一区专用回风下山汇合处, 两个方案的井下主管道长度基本相同, 即1280m.4.2.2 瓦斯抽放管管径计算及管材选择瓦斯抽放管管径按下式计算:………………………………(3-5)式中 D-----瓦斯抽放管内径,m;Q-----抽放管内混合瓦斯流量,m3/min;V-----抽放管内瓦斯平均流速,经济流速V=5-15m/s, 取V=7 m/s.约定:•采区、回风井及地面瓦斯抽放管为干管;•综采综放工作面瓦斯抽放管为支管1;• (将来)综采工作面瓦斯抽放管为支管2.根据各瓦斯抽放管内预计的瓦斯流量,按式(3-5)计算选择的瓦斯抽放管管径如表3-2示. 瓦斯抽放管选用无缝钢管.表3-2 瓦斯抽放管管径计算选择结果抽放管材均选择无缝钢管, 经过计算得出主管直径D = 0.342m, 支管1直径 D = 0.242m, 支管2直径 D = 0.242m. 故主管选择直径为Φ402mm的无缝钢管, 壁厚可选择9mm或10mm. 掘进及回采工作面支管可选择直径为Φ275mm的无缝钢管, 壁厚可选择7mm.4.2.3 管网阻力计算⑴. 摩擦阻力(Hm)计算………………… (3-6)式中:Hm —管路摩擦阻力,Pa;L —负压段管路长度,m;Q —抽放管内混合瓦斯流量,m3/h;γ—混合瓦斯对空气的密度比;K —与管径有关的系数;D —抽放管内径,cm.为了保证选用的瓦斯抽放泵能满足抽放系统最困难时期所需抽放负压,应根据矿井各生产时期瓦斯抽放系统中管路最长、流量最大、阻力最高的抽放管线来计算矿井抽放系统总阻力.由于矿井的服务年限较长,且中后期开采的采区煤层瓦斯含量高,考虑到瓦斯抽放泵的有效使用年限仅为15年左右,故计算矿井生产时期的瓦斯抽放系统最大阻力. 根据矿井前期采掘接替安排,确定的瓦斯抽放系统最困难管线如下:地面抽放泵站干管(长度为材料立井抽放干管(长度为采区抽放干管(长度为工作面抽放支管(长度为1200m).前期最困难抽放管线阻力计算结果如表3-3示.表3-3 生产前期瓦斯抽放系统最困难管网阻力计算结果⑵.局部阻力(Hj)计算管路局部阻力损失按直管阻力损失的15%计算,则抽放管路系统的局部阻力损失为:Hj =0.15 Hm = 0.15 x 3526.95 = 529.04 Pa.(3). 总阻力(H)计算H = Hm + Hj= 3526.95 + 529.04 = 4055.99 Pa4.2.4 瓦斯抽放管路与瓦斯抽放钻孔的连接用弹簧软管或矿用PVC管将钻孔套管与钻场汇流管(也称混合器)相连, 汇流管与钻场瓦斯管连接, 然后钻场瓦斯管与布置在巷道中的瓦斯抽放支管相连接. 瓦斯抽放主管均采用法兰盘螺栓紧固连接, 中间夹橡胶密封圈.4.2.5 瓦斯抽放管路敷设1). 瓦斯抽放管路敷设的一般要求由于煤矿井下的环境条件比较恶劣, 巷道变形较大高低不平, 坡度大小不一, 空气潮湿管路易生锈, 为此对煤矿井下瓦斯抽放管路的敷设有如下要求:(1). 瓦斯抽放管路应采取防腐, 防锈蚀措施;(2). 在倾斜巷道中, 应用卡子把瓦斯抽放管道固定在巷道支架上, 以免下滑;(3). 瓦斯抽放管路敷设要求平直, 尽量避免急弯;(4). 瓦斯抽放管路敷设时要考虑流水坡度, 要求坡度尽量一致, 避免由于高低起伏引起的局部积水. 在低洼处需要安装放水器;(5). 新敷设的管路要进行气密性试验.地面敷设的管道除了满足井下管路的有关要求外, 还需要符合以下要求:(1). 在冬季寒冷地区应采取防冻措施;(2). 瓦斯抽放管路不宜沿车辆来往繁忙的主要交通干线敷设;(3). 瓦斯抽放管路不允许与自来水管, 暖气管, 下水道管, 动力电缆, 照明电缆和电话线缆等敷设于一个地沟内;(4). 在空旷的地带敷设瓦斯抽放管路时, 应考虑未来的发展规划和建筑物的布置情况;(5). 瓦斯抽放主管路距建筑物的距离大于5m, 距动力电缆大于1m, 距水管和排水沟大于5m, 距铁路大于4m, 距木电线杆大于2m;(6). 瓦斯抽放管路与其他建筑物相交时, 其垂直距离大于0.15m, 与动力电缆, 照明电缆和电话线大于0.5m, 且距相交建筑物2m范围内, 管路不准有接头.2). 管路安装井下瓦斯抽放管路采用吊挂或打支撑墩沿巷道底板敷设.掘进工作面瓦斯抽放管路可采用巷道侧邦吊挂安全方式. 地面瓦斯管路安装采用沿地表架空敷设方式, 架空高度0.5m. 每隔5-6m设置一个支撑架(支撑墩), 必要时在支撑墩上设半圆形管卡固定管路, 以防滑落.3). 管道防腐防锈所有金属管道外表均要进行防锈处理,即在管道外表先涂刷两层樟丹, 在刷一层调和漆.。
瓦斯抽采毕业设计

瓦斯抽采毕业设计引言瓦斯抽采在矿业工程中起到了重要的作用,它能有效地利用矿井中的瓦斯资源,并防止瓦斯积聚引发安全事故。
在本毕业设计中,我将研究和设计一套瓦斯抽采系统,以提高矿井的安全性和瓦斯资源的利用效率。
研究背景随着工业化进程的加快和对能源的需求不断增加,煤矿等矿井的开采活动日益频繁。
然而,矿井中的瓦斯问题成为了一个亟需解决的难题。
瓦斯积聚不仅会引发爆炸等安全事故,还会对矿工的健康造成严重影响。
因此,设计一套高效的瓦斯抽采系统对矿井的安全运营至关重要。
目标与方法本毕业设计的主要目标是设计一套能够高效抽采矿井中瓦斯的系统。
为了实现这一目标,我将采用以下方法:1.理论研究:通过对矿井瓦斯抽采相关的文献资料进行阅读和分析,了解目前行业内的最新研究成果和技术进展。
2.现场调研:选择一座具有代表性的煤矿,进行实地考察和调研,了解其瓦斯抽采系统的运行情况和存在的问题。
3.设计方案:基于理论研究和现场调研的结果,设计一套适用于矿井的瓦斯抽采系统,并进行详细的技术细节和工程设计。
4.实施方案:建立起一个实体模型进行试验验证,评估设计方案的可行性和效果。
5.结果分析:对实验结果进行分析和对比研究,评估设计方案的优劣,提出改进意见。
预期成果通过本毕业设计的研究和实施,预期将获得以下成果:1.一套高效的瓦斯抽采系统设计方案,具有一定的创新性和实用性。
2.实体模型试验结果和数据分析,验证设计方案的可行性和效果。
3.对矿井瓦斯抽采系统的问题进行分析和解决方案提出,为相关行业提供参考和指导。
计划安排为了按时完成本毕业设计,我将按照以下计划进行工作:1.第一阶段:调研和理论研究,了解瓦斯抽采系统的基本原理和技术方案。
预计耗时2周。
2.第二阶段:实地调研和现场考察,了解一座典型砟矿的瓦斯抽采系统运行情况和存在的问题。
预计耗时1周。
3.第三阶段:设计方案的详细技术细节和工程设计,包括系统结构、设备选择和布局等。
预计耗时3周。
4.第四阶段:建立实体模型并进行试验验证,对设计方案的可行性和效果进行评估。
瓦斯防治技术课程设计某矿井综采面瓦斯抽放系统设计

《瓦斯防治技术》课程设计任务书设计题目某矿井综采面瓦斯抽放系统设计设计周数第18周班级安全工程专业0234091班指导教师王洪义马春莲万祥云0232111班瓦斯抽放系统课程设计任务书一.设计任务书:矿井回采(掘进)工作瓦斯抽放系统设计按设计任务书给定的原始资料,进行某矿井某回采工作面瓦斯抽放系统的工艺设计。
二.原始资料:1.地质条件本采区开采煤层厚度为~,平均厚度为5m;赋存稳定,倾角为2~5°顶板为砂质泥岩,岩层不能致密,距开采层8~10m,顶部位上临近层,该煤层在本区域内厚度0~为不可采煤层。
本采区内有小断层,对开采影响不大。
2.主要瓦斯参数本工作面位于标高-650水平,为矿井开采第三水平,煤层瓦斯含量为8m 3/t,煤的密度为m3,有突出危险,经预测工作面绝对瓦斯涌出量Q CH4为19m3/min。
3.通风方式及风量采区采用抽出式内,回风由采区主要扇风机排出地面,经计算工作面供风量为1500m3/min。
4.采煤方式及巷道布置:采用走向长壁全数跨落顶板管理法,工作面后退式倾斜分层开采,上分层采用综合机械化采煤,采高为采用两班采煤,一班抽放瓦斯,工作面日推动度为3m,下分层采高为。
巷道布置如图1所示。
7图1 巷道布置平面图5.已知抽放瓦斯参数:经实测煤层透气性系数λ=(m2/,如用未卸压长钻孔预测抽煤层瓦斯,百米钻孔瓦斯抽放量为min•hm;如用卸压浅孔抽放瓦斯,百米钻孔瓦斯抽放量为min •hm,同时λ值提高到(m2/;如用卸压长钻孔预测抽煤层瓦斯,百米钻孔瓦斯抽放量为~min•hm;学生可按照以上测定的抽放参数选择抽放方式。
(1)卸压浅孔抽放时,抽放影响半径为,钻孔所需要的抽放孔口负压为12KPa,边采煤边抽放瓦斯。
(2)未卸压长钻孔抽放:钻孔抽放半径为,钻孔孔口需负压为20KPa,掘进期间边掘进边抽放瓦斯。
(3)卸压长钻孔抽放,钻孔抽放影响半径为,钻孔孔口需要负压为20KPa,边采煤边抽放。
瓦斯抽放设计指导书

矿井瓦斯抽放系统方向本科毕业设计指导书河南理工大学安全工程专业目录第一篇设计大纲 (4)第二篇毕业设计资料收集 (4)第三篇毕业设计具体内容 (5)第一章矿井概况 (5)1.1 井田概况 (5)1.2 井田地质特征 (5)1.3 矿井开拓、开采概况 (6)第二章矿井瓦斯赋存 (7)2.1 煤层瓦斯基本参数 (7)2.2 矿井瓦斯储量 (11)2.3矿井可抽瓦斯量及可抽期 (12)第三章瓦斯抽放的必要性和可行性论证 (14)3.1瓦斯抽放的必要性 (14)3.2瓦斯抽放的可行性 (15)第四章抽放方法 (16)4.1 规定 (16)4.2矿井瓦斯来源分析 (16)4.3 抽放方法选择 (17)4.4 钻孔及钻场布置 (18)4.5 封孔方法 (19)第五章瓦斯抽放管路系统及设备选型 (20)5.1抽放管路选型及阻力计算 (20)5.2瓦斯抽放泵选型 (23)5.3辅助设备 (26)第六章经济概算 (27)6.1编制依据 (27)6.2费用概算范围 (27)第七章安全技术措施 (27)7.1抽放系统及井下移动抽放瓦斯泵站安全措施 (27)7.2地面抽放瓦斯站安全措施 (28)第八章瓦斯的综合利用与配套设施 (29)8.1抽放瓦斯的综合利用及评价 (29)8.2配套设施 (29)8.3监测监控系统 (30)8.4地面建筑及环保 (30)第九章抽放瓦斯管理 (30)9.1瓦斯抽放管理及规章制度 (30)9.2瓦斯抽放人员配备 (31)9.3瓦斯抽放技术资料 (31)第四篇毕业论文要求 (32)第五篇建议设计参考文献 (32)第一篇设计大纲矿井瓦斯抽放系统设计是安全工程专业本科毕业设计的方向之一,根据《煤矿安全规程》、《GB50215-2005煤炭工业矿井设计规范》、《AQ1027-2006煤矿瓦斯抽放规范》、《MT5018-96矿井瓦斯抽放工程设计规范》、《煤矿瓦斯抽放管理规范》及《AQ1026-2006煤矿瓦斯抽采基本指标》等法规的要求,矿井瓦斯抽放系统设计应完成以下几个章节的内容:第一章矿井概况:要求交待清楚所设计矿井的井田概况、井田地质特征、矿井开拓方式、采区接替顺序及采煤方法等基础内容,在地质特征部分应着重对矿井瓦斯赋存规律进行说明,对本矿井和邻近矿井的瓦斯等级应进行说明。
《矿井瓦斯防治》课程设计指导书瓦斯抽采.

《矿井瓦斯防治》课程设计指导书一、设计目的和任务(1设计目的通过瓦斯抽放方案设计要达到下列目的:1、系统运用所学的理论知识;2、掌握矿井瓦斯抽放设计的步骤和方法;3、熟练掌握方案比较法在瓦斯抽放设计中的应用;4、提高和培养学生分析问题、解决问题的能力;5、提高和培养学生文字编写、计算和应用CAD绘图的能力。
(2设计任务根据如下采区煤田瓦斯地质、开拓与通风条件,对该工作面的顺层钻孔瓦斯抽放系统进行设计。
1、采区位置范围该采区位于某矿第一水平,西部为井田边界,东部为采区边界,采区走向长约1550米,倾斜长约890米,采区下部为第二水平大巷,采用上下山开采。
2、地质条件该采区主采煤层为1#煤层,煤层厚度为2.4~3.8米,平均厚度为3.0米,煤层赋存稳定,煤层平均倾角约3.5o,顶板为砂质泥岩,岩层致密,底板为粗粒砂岩。
在该采区内几乎无断层,总体来说,该采区内煤层地质构造简单。
3、工作面范围、巷道布置及开采方法该工作面为该采区的首采工作面,工作面设计走向长度为1530米,工作面倾斜长度为180米,煤层平均厚度3.0米,倾角为3.5 o,煤层无自然发火倾向,煤尘不具备爆炸性。
工作面的巷道布置如下图1所示:该采区设计为走向长壁开采及全部垮落顶板管理法,工作面采用后退式一次采全高综合机械化开采,工作面生产采用三八制,每日推进3.6米。
4、通风方式及瓦斯参数该工作面采用“一进一回”的“U”形通风方式,运输巷进风,回风巷辅助运料、排矸石。
采区布置三条上山,分别是轨道上山、回风上山和皮带上山,轨道上山和皮带上山进风,回风上山回风。
经过计算,工作面供风量为1000m3/min。
煤层瓦斯含量为9m3/t,煤体容重为1.4t/m3,有突出危险,经预测,工作面瓦斯绝对涌出量为25 m3/min。
煤层透气性系数为2.5m2/(MPa2.d,百米钻孔瓦斯流量衰减系数为0.02d-1。
7图1 工作面巷道布置图二、基本内容与要求(1课程设计基本内容1、设计题目为:某矿某采区某综采工作面本煤层瓦斯抽放设计。
矿井瓦斯抽放设计本科毕业设计[管理资料]
![矿井瓦斯抽放设计本科毕业设计[管理资料]](https://img.taocdn.com/s3/m/ac4b879527d3240c8547ef2a.png)
义安矿业有限公司矿井瓦斯抽放设计摘要:洛阳义安矿业有限公司位于河南省洛阳市新安县正村乡,是义马煤业集团所属的大型煤矿之一, Mt。
该矿为煤与瓦斯突出矿井,瓦斯涌出量大、瓦斯超限严重,并且自2003年筹建以来,多次发生瓦斯动力现象。
为了解决这些问题,并防止瓦斯灾害事故的发生,本设计介绍了该矿的基本情况,预测矿井瓦斯的涌出量是,对抽放瓦斯的必要性与可行性进行了论证。
通过对抽放方法的比较和抽放管路的计算和选择,设计了适合该矿的瓦斯抽放系统和抽放方法。
并计算了抽放系统的管道阻力和瓦斯泵的流量与压力,选择了合适的瓦斯泵型号,建立地面永久抽放泵站。
最后对抽出的瓦斯加以利用,达到使其变废为宝、减少环境污染的目的。
关键词:义安;煤与瓦斯突出;瓦斯涌出量;抽放系统;设备选型;利用Designation for gas drainage system in Yian mining co.,LTD Abstract:Luoyang YiAn mining co., LTD is located in Zhengcun township of Xinan country of luoyang city, and it is one of the Large coal mine of Yima Coal Industry Group whose Designed annual production capacity is Mt. YiAn Mine was identified as coal-methane outburst coal mine, it has a high gas gushing quantity and the problem of gas over limited is serious. And Since its establishment in 2003, the phenomenon of gas powered has happened many times. In order to solve these problems and prevent the gas disasters, this design introduced its basic situation , predicted the gas emission quantity, demonstrated the necessity and feasibility for the gas drainage system. By comparing the drainage methods, selecting and calculating the drainage pipelines, this design designed suitable gas drainage system and methods for the coal mine. In addition,it also calculated the pipeline resistance of the drainage system and the flow and pressure of the gas pump, then select the right gas pump model for the coal mine, established a permanent ground drainage pumping station. Finally,take advantage of the gas that drainaged from the mine, to achieve the purpose of waste and reducing environmental pollution.Key word: Yian、coal and gas outburst、gas gushing quantity、drainage system、equipment selection、utilize目录第一章绪论 (1) (1) (1) (2)第二章矿井概况 (1) (1) (1) (2) (2) (2) (2) (3) (4) (4) (4)、水源 (4) (5) (5) (5) (6)、自燃及爆炸倾向性 (8) (8)第三章矿井开拓开采方案及采区通风概况 (11) (11) (11) (11) (11) (11) (12)第四章矿井瓦斯赋存及抽采必要性和可行性论证 (13) (13).............................................. 错误!未定义书签。
毕业设计---瓦斯抽采系统设计[管理资料]
![毕业设计---瓦斯抽采系统设计[管理资料]](https://img.taocdn.com/s3/m/7f13a12049649b6649d74783.png)
河南禹州枣园煤业有限公司瓦斯抽采系统设计摘要:禹州枣园煤业有限公司位于河南省禹州市西部,属于煤与瓦斯突出矿井。
本文以煤层瓦斯基本参数和禹州枣园煤业有限公司实际地质条件和开采、开拓为基础,对二1瓦斯抽采的可行性和必要性进行了论证。
随着煤矿开采深度的增加,矿井瓦斯问题日益严重。
特别是对于高瓦斯矿井和突出矿井,日常生产过程中的最大安全隐患就是瓦斯事故。
瓦斯问题不仅直接威胁着矿井工作人员的生命安全,而且间接制约着煤矿企业经济效益的增长。
因此,如何能有效遏制瓦斯事故的频繁发生,现已成为制约国家煤炭行业可持续发展的一个关键性问题。
目前,在高瓦斯矿井中应用较为普遍的为瓦斯采抽采技术,根据《矿井抽采瓦斯工程设计规范》规定选择抽采瓦斯方法,采用本煤层预抽、边掘边抽和采空区抽采相结合的综合瓦斯抽采方法。
然后对整个瓦斯抽采系统进行了经济概算,制定了整个抽采系统的安全技术措施,论述了抽采瓦斯的综合利用和抽采泵站的配套设施。
关键词:瓦斯抽采;顺层平行钻孔;高位钻孔;上隅角抽放;设备选型;Henan Yuzhou Coal Industry Company Limited Gas DrainageSystem DesignAbstract: Yuzhou jujube industry limited company is located in Henan province Yuzhou city western, belong to coal and gas outburst in coal mine. Article two in1 coal seam gas basic parameters and Yuzhou coal industry limited company actual condition of Geology and mining, development based on gas drainage, the feasibility and necessity undertook argumentation.With the increase of mining depth, the increasingly serious problem of mine gas. Especially for high gassy and outburst mine, in the course of daily production is the biggest security risks of gas accident. Gas not only directly threaten the mine workers' life safety, but also directly restricts the increase of economic benefit of coal mine enterprise. Therefore, how to effectively contain the gas accidents occur frequently, which has become restricts the sustainable development of national coal industry one of the key problems.At present, in high gas mine, widely used in mining for gas drainage technology, according to the" mine gas drainage engineering design specifications" shall choose and gas drainage method, using the coal seam pre-drainage, driving while pumping and goaf drainage combined with comprehensive gas drainage method. Then the whole gas drainage system of economic estimates, making the whole drainage system of safety technical measures, discusses the gas drainage and comprehensive utilization of drainage pumping station facilities.Key words:gas drainage; bedding parallel drilling; drilling; the upper corner of drainage; equipment selection;目录前言 (1)设计依据 (1)设计的指导思想 (1)设计的主要内容 (1)第一章矿井概况 (3)井田概况 (3)位置与交通 (3)地形地貌及水系 (3)气象及地震 (4)生产矿井及老窑 (4)运输、水源及电源 (4)井田地质特征 (5)地质构造 (5)含煤地层及煤层 (6)煤层瓦斯、自燃及煤尘爆炸倾向性 (6)井田水文地质 (7)矿井开拓、开采概况 (7)矿井通风系统概况 (9)第二章矿井瓦斯赋存情况 (10)煤层瓦斯基本参数 (10)煤层瓦斯含量 (10)煤层透气性系数 (12)钻孔瓦斯流量和流量衰减系数 (12)矿井瓦斯储量 (12)矿井可抽瓦斯量 (13)矿井可抽瓦斯量 (13)瓦斯抽采率 (13)可抽期 (13)第三章瓦斯抽采的必要性和可行性论证 (14)瓦斯抽采的必要性 (14)规定 (14)通风处理瓦斯量核定 (15)瓦斯抽采的可行性 (15)第四章抽采方法 (16)规定 (16)矿井瓦斯来源分析 (17)抽采方法选择 (17)本煤层瓦斯抽采方法 (18)采空区瓦斯抽采方法 (18)钻孔及钻场布置 (19) (19)抽采设计 (21)封孔方法 (25)封孔材料 (25) (25)第五章瓦斯抽采管路系统及设备选型 (26)抽采管路选型及阻力计算 (26) (26)计算方法 (27)瓦斯抽采泵选型 (31)规定 (31)选型原则 (31)计算方法 (31)瓦斯泵类型 (32)辅助设备 (33)第六章经济概算 (36)编制依据 (36)费用概算范围 (36)第七章安全技术措施 (38)抽采系统及井下移动抽采瓦斯泵站安全措施 (38)地面抽采瓦斯站安全措施 (38)第八章瓦斯的综合利用与配套设施 (40)抽采瓦斯的综合利用及评价 (40)配套设施 (40)给排水、采暖及供热(地面抽采瓦斯时) (40)供电及通信 (41)监测监控系统 (42)地面建筑及环保 (42)第九章抽采瓦斯管理 (44)瓦斯抽采管理及规章制度 (44)瓦斯抽采人员配备 (45)瓦斯抽采技术资料 (45)致谢 (47)参考文献 (48)前言禹州枣园煤业有限公司位于河南省禹州市西25km,矿井始建于1973年1月,2005年通过矿井生产能力核定为45万吨/年。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矿井瓦斯抽采系统设计方向本科毕业设计指导书(2014年修订版)河南理工大学安全工程专业2014年01月06日目录第一篇设计大纲 (1)第二篇毕业设计资料收集 (1)第三篇毕业设计说明书具体指导 (1)第一章矿井概况 (1)1.1 井田概况 (1)1.2 井田地质特征 (1)第二章矿井开拓开采方案及采区通风设计 (14)第三章矿井瓦斯赋存及抽采必要性和可行性论证 (15)3.1 煤层瓦斯基本参数 (15)3.2 矿井瓦斯储量 (18)3.3 矿井可抽瓦斯量及可抽期 (19)3.4矿井瓦斯涌出量预测 (21)3.5 瓦斯抽放的必要性论证 (21)3.6 瓦斯抽放的可行性 (22)第四章瓦斯抽放方法选取 (23)4.1 规定 (23)4.2 矿井瓦斯来源分析 (24)4.3 抽放方法选择 (24)4.4 钻孔及钻场布置 (26)4.5 封孔方法 (27)第五章瓦斯抽放管路系统及设备选型 (28)5.1 抽放管路选型及阻力计算 (28)5.2 瓦斯抽放泵选型 (30)5.3 辅助设备 (33)第六章经济概算 (34)6.1 编制依据 (34)6.2 费用概算范围 (34)第七章安全技术措施 (35)7.1 抽放系统及井下移动抽放瓦斯泵站安全措施 (35)7.2 地面抽放瓦斯站安全措施 (35)第八章瓦斯的综合利用与配套设施 (36)8.1 抽放瓦斯的综合利用及评价 (36)8.2 配套设施 (37)8.3 监测监控系统 (37)8.4 地面建筑及环保 (37)第九章抽放瓦斯管理 (38)9.1 瓦斯抽放管理及规章制度 (38)9.2 瓦斯抽放人员配备 (38)9.3 瓦斯抽放技术资料 (38)第四篇建议设计参考文献 (39)第一篇设计大纲一、设计内容矿井瓦斯抽采系统设计是安全工程专业本科毕业设计的方向之一,根据《煤矿安全规程》、《防治煤与瓦斯突出规定》、《GB 50471-2008煤矿瓦斯抽采工程设计规范》、《GB50215-2005煤炭工业矿井设计规范》、《AQ1027-2006煤矿瓦斯抽放规范》、《AQ1026-2006煤矿瓦斯抽采基本指标》、《AQ1018-2006矿井瓦斯涌出量预测方法》等法规的要求,矿井瓦斯抽采系统设计应完成以下几个章节的内容:第一章矿井概况:要求交待清楚所设计矿井的井田概况、井田地质特征、矿井位置及交通、煤层赋存条件、煤质、计算井田内煤炭储量等基本内容,并对本矿及邻近矿井情况进行说明。
第二章矿井开拓开采方案及采区通风设计:提出矿井开拓方式或利用已有的矿井开拓方式,重点对首采区的开拓开采方案进行说明,交待采区接替顺序及采煤方法,重点要进行采区通风设计,计算矿井用风地点的供风量和风排瓦斯量。
第三章矿井瓦斯赋存及抽采必要性和可行性论证:要求全面收集瓦斯含量、瓦斯压力、煤层透气性系数、钻孔流量衰减系数及抽放钻孔影响半径等重要的瓦斯抽放基本参数;根据煤层瓦斯含量和赋存条件,计算矿井瓦斯储量和可抽瓦斯量。
按照《AQ1018-2006矿井瓦斯涌出量预测方法》对矿井开采时前、中、后期的瓦斯涌出量进行预测。
根据《GB 50471-2008煤矿瓦斯抽采工程设计规范》的要求,对矿井进行瓦斯抽放的必要性及可行性论证。
第四章瓦斯抽放方法选取:包括抽放方法选择及抽放钻孔布置方式设计,并绘制抽放钻孔布置平面图和剖面图。
分为突出煤层和非突出煤层两种情况,对于突出煤层瓦斯抽采要按照《防治煤与瓦斯突出规定》的要求考虑区域性防突要求的抽采方法,对于非突出煤层仅需要考虑工作面瓦斯防治的要求。
第五章瓦斯抽放管路系统及设备选型:确定各个抽放地点的抽放量,根据抽放量进行抽放管路选择计算,确定抽放管路及附属设施,计算管道阻力,绘制矿井瓦斯抽采系统图;进行瓦斯抽放泵选型,确定瓦斯泵型号、瓦斯泵房位置,并绘制地面泵房平面图。
第六章经济概算:要求概算出所设计的矿井抽放系统硬件设备(包括抽放泵、抽放管路及辅助设备)的总造价。
第七章安全技术措施:按指导老师要求,对所设计的瓦斯抽放系统,提出1~2项有针对性的安全技术措施。
二、设计要求所提交的毕业设计除了应满足校、院两级的基本要求外,对于瓦斯抽放系统设计方向的毕业论文还要符合以下要求:⑴独立完成一个矿井(或大型矿井的1个以上采区)的瓦斯抽放系统设计,抽放系统原则上应为地面固定式抽放系统,对本指导书第三篇第八章以后的内容不做硬性要求,供学有余力的学生选择;⑵设计完成后,应提供如下图纸:矿井采掘工程平面图(1:2000)1张;首采区开采时矿井通风系统图(1:2000)1张;矿井瓦斯抽采系统平面图(1:2000)1张;抽放钻孔布置平面图及剖面图(1:500)若干张;地面泵房设备布置平面图1张(1:200);需要特殊说明的是:由于《GB 50471-2008煤矿瓦斯抽采工程设计规范》已颁布,设计过程中应依照此标准。
设计指导书编制时主要参照的是《AQ1027-2006煤矿瓦斯抽放规范》,当两者有冲突时,应参照《GB 50471-2008煤矿瓦斯抽采工程设计规范》。
第二篇毕业设计资料收集⑴矿井概况⑵煤层瓦斯压力、瓦斯含量、透气性系数、百米钻孔流量及衰减系数等瓦斯基本参数的测定资料,矿井瓦斯等级鉴定资料,收集正常生产时期1个月的通风旬报、瓦斯日报、突出预测指标值、效检指标值及瓦斯抽放报表;⑶地质资料:摘录地质报告内地层、地质构造、含煤地层、地勘时期瓦斯含量测定资料(包括含量值、煤的工业分析及瓦斯气体成分)及水文地质等方面资料;⑷开拓开采方面资料:矿井初步设计说明书(着重收集矿井开采的前中后期开拓方案,采面、掘进面的布置方式及巷道断面大小),收集如下图纸:采掘工程平面图、通风系统图、瓦斯抽放系统图、井上下对照图(以上图纸最好为电子版);⑸瓦斯抽放系统设计说明书;⑹矿井其它与瓦斯抽放设计相关的资料第三篇毕业设计说明书具体指导对于瓦斯抽放系统设计,可分为新建、改(扩)建及生产矿井的瓦斯抽放工程设计。
根据矿井瓦斯抽采系统的设计要求,本方向的设计设计应完成如下几个章节的基本内容。
对于本科毕业设计来,应完成毕业设计大纲中规定的具体内容,对于学有余力的同学可以参照本篇内容进行全部章节的设计。
1 矿井概况1.1 井田概况任楼煤矿隶属于安徽恒源煤电股份有限公司,矿井位于安徽省北部临涣矿区,宿州市西南约30km的濉溪、蒙城两县交界处。
井田范围为:北起界沟断层与孙疃井田为界,南以F7断层与许疃井田相邻,东南以F23断层为界,东到31煤层-800m等高线的平面投影,西至11煤层露头线,东西宽4~7km,南北长8~11km,面积42.0705km2。
开采煤层为上、下石盒子组的31、51、52、72、73、82煤层及山西组的10、11煤层,开采深度为-315m~-800m。
井田内的矿区公路东接宿(县)~蒙(城)公路,北至淮北市;矿区铁路支线从井田中部向西约40km至阜(阳)~濉(溪)线的青疃车站可到全国各地,交通较为方便(如图1-1所示)。
图1-1 任楼煤矿交通位置图1.2 井田地质特征1.2.1地质构造任楼井田位于童亭背斜东南翼和南翼,F断层以北地区为向东倾斜的单斜3构造;F断层以西地区走向转为北西西,其中50线~54线一段为童庄向斜北翼3的东延部分,表现为不完整的向斜形态,如图1-2所示。
断层外侧,有1线以西则为一个大致向东开口的童庄向斜。
48线深部,F23断层内侧,显示一个向斜构造,为童亭背斜与王一个北北西的王大庄背斜。
F23大庄背斜之间的鞍部构造。
该井田地层产状比较平缓一般为13°~20°,尤其是1线以西童庄向斜部分地层倾角更缓,仅8°~15°。
在50~54线间,中深部地层倾角较大,局部可达25°~30°。
图1-2 任楼井田构造纲要图1.2.2褶曲构造任楼井田的褶皱构造主要有井田西南部的童庄向斜,48线深部鞍状构造及井田外围的王大庄背斜,在50线~54线间煤系地层沿走向及倾向具波状起伏的特征。
(1)童庄向斜轴向北西西—北西,1线~60线剖面控制,向斜内保留少量5、7、8、10及11煤层,58线以西仅保留10、11煤层。
向斜沿轴向向西北有翘起的趋势。
向斜两翼地层倾角8º~15º,较平缓,北翼相对更缓。
向斜北翼及南翼分别被北北西及北西西向张扭性断层所切。
向斜北翼还发育一组北西—北西西张扭性断层及逆冲断层(见图1-3)。
图1-3童庄向斜构造示意图(2)48线深部鞍状构造为47线及48线深部少数钻孔控制,物探资料证实,实际上是童亭背斜与王大庄背斜的过渡地带,南北两端地层向上翘起,东西两侧向下缓缓倾斜,地层平缓,倾角8°~15°(见图1-4。
图1-4 48线深部鞍状构造示意图(3)王大庄背斜该背斜隆起幅度不大。
轴部4812孔51煤层标高在-600m 左右。
北侧4810孔31煤层标高在-460m 左右。
由于老第三纪在该处相对上升,遭到剥蚀,上部煤系保留很少。
轴向北北西沿48线剖面地层倾角小于10°。
背斜东北侧有一近东西向压扭性断层,背斜西北侧有一南倾的张扭性断层,二者断距均为0~25m 。
前者为4810孔穿过,后者为物探控制(见图1-5)。
图1-5任楼井田王大庄背斜构造形态示意图1.2.3 断裂构造任楼井田在资源勘探阶段,共发现断距大于30m 的断层22条,在建井地质报告中,由于矿井设计及建井期间,对井田开采范围边界的重新认定,将F 8、F 17、F 18及F 19等四条断层划出矿井开采范围以外,开拓巷道否定了F 15断层,另据建井工程揭露和资料分析,新增F X1、F X2、F X3、F X4四条断层,确定落差大于5m 的各类断层21条。
在建井以来的补充勘探及井下巷道中发现大于5m 的断层13条包括,F 16、F 16′、F X6、F X7、F X10、F X12、F X13、F D50、DF 48、DF 47 、DF 10等断层,而建井地质报告中的F 3-1断层实际揭露证实不存在,F X2与DF 47断层为同一条断层,F X3断层也证实不存在,这样,截至到2006年12月任楼井田共发现落差大于5m 的大中型断层28条,其中断距大于100m 的断层4条,大于30m 小于或等于100m 断层6条,小于及等于30m 断层19条。
现将主要断层情况列表如下:484848表1-1任楼井田主要断层一览表1.3 煤层1.3.1 地层任楼井田揭露地层有奥陶系、石炭系、二迭系、老第三系、新第三系和第四系,其综合柱状图如图1-2所示,现自下而上叙述如下:图1-6 任楼井田地层综合柱状图1.3.1.1 奥陶系本井田揭露奥陶系的钻孔较少且都未完全揭露奥灰,揭露的奥陶系中下统阁庄—马家沟组灰岩,为浅灰色、灰棕色、深灰色厚层状灰岩,致密、性脆、质纯、坚硬、隐晶,具有浅红色斑块,呈虎皮状构造,揭露厚度 3.60~16.93m。