材料科学与工程导论

合集下载

材料科学与工程导论

材料科学与工程导论

材料科学与工程导论
材料科学与工程是一门研究材料的性能、结构、制备和应用的学科,它涉及到各种材料,包括金属、陶瓷、高分子材料和复合材料等。

材料科学与工程的发展对于现代工业、能源、医疗、环境等领域都具有重要意义。

首先,材料科学与工程的研究对象是各种材料的性能和结构。

通过对材料的组成、微观结构和宏观性能进行研究,可以揭示材料的内在规律,为材料的设计、制备和应用提供科学依据。

其次,材料科学与工程的研究内容包括材料的制备和加工技术。

材料的制备和加工技术直接影响到材料的性能和应用范围,因此对于材料的制备和加工技术的研究具有重要意义。

另外,材料科学与工程还涉及到材料的应用和性能调控。

通过对材料的应用和性能进行研究,可以开发出具有特定功能和性能的材料,满足不同领域的需求。

总的来说,材料科学与工程是一门重要的交叉学科,它涉及到多个领域,对于现代社会的发展具有重要意义。

随着科学技术的不断发展,材料科学与工程也在不断取得新的进展,为人类社会的发展做出了重要贡献。

在材料科学与工程领域,我们需要不断深化对材料的认识,推动材料科学与工程的发展,为人类社会的可持续发展做出更大的贡献。

希望通过我们的努力,能够推动材料科学与工程领域的发展,为人类社会的进步做出更大的贡献。

《材料科学与工程专业导论》课程大纲

《材料科学与工程专业导论》课程大纲

《材料科学与工程专业导论》课程大纲一、课程概述课程名称(中文):材料科学与工程专业导论(英文):Fundamentals of Materials Science and Engineering 课程编号:14241014课程学分:0.5 学分课程总学时:8学时课程性质:专业课二、课程内容简介(300字以内)本课程以四个讲座的形式主要介绍了材料科学与工程领域的基本专业知识。

主要内容包括材料概述、材料性质、材料的基本性能;生物质基工程材料种类、性能及其相关性质;生物质材料结构特点及其主要品质因子;生物质材料与生物质材料科学发展背景、基本内涵、研究重要意义和发展趋势。

三、教学目标与要求通过本课程的学习,让学生初步了解材料科学与工程专业的研究方向。

有一定的感性认识。

四、教学内容与学时安排第一讲绪论(2学时)1. 教学目的与要求:介绍材料科学与工程专业研究的对象和内容;简单了解生物质材料的性质、结构。

组成和应用。

2. 教学重点与难点:重点与难点:生物质材料的性质。

第一节《材料科学与工程》专业介绍(0.5学时)第二节材料的分类、性质(0.5学时)第三节生物质材料的概述(1学时)第二讲生物质基工程材料(2学时)1. 教学目的与要求:生物质基工程材料的种类、性能及其相关性质;生物质基工程材料在国民经济中应用。

2. 教学重点与难点:重点与难点:生物质基工程材料的性质及应用。

第一节生物质基工程材料的概述(0.5学时)第二节生物质基工程材料的性能(1学时)第三节不同生物质基工程材料的应用(0.5学时)第三讲生物质材料结构特点及其主要品质因子(2学时)1. 教学目的与要求:了解生物质资源的类别及其重要性、把握生物质材料结构特点与应用之间的关系,重点掌握影响生物质材料的品质因子及应用上的应对措施。

2. 教学重点与难点:重点在于理解生物质材料结构特点与应用之间的关系,难点是生物质材料主要品质因子确定、分析和应对措施的掌握。

材料科学与工程专业导论课程学生学习感悟

材料科学与工程专业导论课程学生学习感悟

材料科学与工程专业导论课程学生学习感悟第一篇:材料科学与工程专业导论课程学生学习感悟专业导论课程学生学习感悟--2011级材料科学与工程全体学生对于一名材料科学与工程专业的本科生来说,材料科学导论是学习材料专业的学生最先接触的一门专业知识课。

材料科学与工程导论不仅可以整体的向我们概述本专业所要学习的内容,而且还能在一定程度上激发我们对本专业的学习兴趣,它的关键在于课业比较系统的了解材料科学领域的研究方向和研究内容,同时,这门课还有着培养学生学习材料科学相关知识的兴趣的作用。

很显然,此门课的重要性不言而喻。

进入材料科学与工程专业导论的学习已经有一段时间了,经历这个阶段,有了对这个专业知之甚少到现在有所了解的转变。

通过杨文斌教授第一节专业导论课对于本专业的引入,更结合材料在于美国苹果公司手机上的运用,让我们颇为真实地感受了材料的魅力,引起我们的广泛兴趣。

最初,对于材料的学习、将来的就业方向等等问题,我很是疑惑。

杨教授就国内外材料领域发展的新动向切入主题,带领我们见识了当下国内外社会、经济发展为材料科学的发展所创造的机遇,这让我对于本专业的前景信心满满。

杨教授再对材料科学与工程“四要素”进行深入浅出的讲解,激发了我们学习的好奇心,对于本专业的课程学习也有了一定理解。

杨教授还带着我们观看了本学院在材料研究方面的一些科研成果,我们看得不亦乐乎。

紧接着,观看了在将来学习中要用的一些机器,再加之杨教授的讲解,对于这个专业有了更进一步的认识。

在听了邱仁辉副院长对材料科学与工程简介的解说之后,我更了解了材料在于生活中的广泛利用,对材料所起的作用想要更加深入的学习。

他所安排的课程学习让我们更加全面地认识了材料这个专业,并且就我们这个专业在国际领域的发展进行讲解,融入邱副院长自己所研究的科研内容,这都令我们耳目一新。

在谈到材料的研究应用时,邱副院长很是高兴,因为本专业开办以来我们学院取得了10多项国家科研基金,在科学研究方面也是硕果累累。

材料科学与工程导论第六版william

材料科学与工程导论第六版william

材料科学与工程导论第六版william摘要:一、材料科学与工程的概述1.材料科学与工程的定义2.材料科学与工程的学科体系二、材料科学与工程的历史发展1.古代材料的使用2.现代材料科学的发展3.我国材料科学与工程的发展三、材料的基本性能与分类1.材料的力学性能2.材料的物理性能3.材料的化学性能4.材料的分类四、材料制备与加工技术1.材料制备的基本过程2.常见材料加工技术五、材料的性能与应用1.结构材料2.功能材料3.复合材料4.超导材料六、材料科学与工程的展望1.新型材料的研发2.可持续发展与环保材料3.材料科学与工程的跨学科发展正文:材料科学与工程专业是一门研究材料的制备、性能、加工以及应用的基础理论与实践相结合的学科。

材料科学与工程专业涵盖了金属材料、无机非金属材料、高分子材料和复合材料等领域。

材料科学与工程专业有着悠久的历史,可以追溯到古代。

随着人类社会的发展,对材料的需求不断增加,推动了材料科学的发展。

在我国,材料科学与工程的发展始于上世纪50 年代,经过几十年的发展,已经在很多领域取得了显著的成果。

材料的基本性能主要包括力学性能、物理性能和化学性能。

力学性能主要包括强度、硬度、韧性等;物理性能主要包括导电性、导热性、磁性等;化学性能主要包括耐腐蚀性、抗氧化性等。

根据这些性能,材料可分为金属材料、无机非金属材料、高分子材料和复合材料等。

材料制备与加工技术是实现材料性能与应用的关键环节。

材料制备的基本过程包括原料选择、制备方法、成型与加工等。

常见的材料加工技术有冶炼、铸造、锻造、轧制、拉拔、焊接、切削等。

材料科学与工程专业的研究领域广泛,涉及结构材料、功能材料、复合材料和超导材料等。

结构材料主要包括金属材料、陶瓷材料和塑料等,用于承载和传递力的部件;功能材料主要包括磁性材料、导电材料、光学材料等,用于实现特定功能的部件;复合材料是由两种或多种材料组合而成,兼具各种材料的优点;超导材料是指在低温下具有超导性的材料,具有很高的科研价值和应用前景。

材料科学与工程学导论

材料科学与工程学导论
材料科学与工程学导论
复合材料的基本理论
复合原理
1。纤维增强复合材料的复合原理
外载荷与纤维方向垂直
σc= σf = σm。 εc = εfVf+εmVm。 1/Ec = Vf/Ef+Vm/Em。
材料科学与工程学导论
复合材料的基本理论
复合原理
2。颗粒增强复合材料的复合原理 ρc = ρpVp+ρmVm。
复合材料的基本理论
复合原理
1。纤维增强复合材料的复合原理
外载荷与纤维方向一致
Fc=σcAc = σfAf +σmAm。
σc = σfVf+σmVm。
Ec = EfVf+EmVm。
条件是复合材料中基体是连续的、均匀的,纤维的性质和 直径都是均匀的,且平行连续排列,同时纤维与基体间的 结合为理想结合,在界面上不产生滑移。
材料科学与工程学导论
复合材料的基本理论
颗粒增强复合材料的机理:
弥散分布在金属或合金中基体中的硬颗粒可以有效地阻止 位错运动,产生显著的强化作用。这种复合强化机制类似 与合金的析出强化机理,基体乃是承受载荷的主体。 不同的是,这些细小弥散的硬颗粒并非借助于相变产生的 硬颗粒,他们在温度升高时仍保持其原有尺寸,因而,增 强效果可在高温下持续较长时间,使复合材料的抗蠕变性 能明显优于金属或合金基体。
复合材料的基本理论
增强机理
颗粒增强
颗粒增强复合材料是指由高强度、高弹性模量的脆性颗粒 作增强体与韧性基体或脆性基体经一定工艺复合而成的多 相材料。 颗粒增强复合材料的种类: 纳米微细硬颗粒弥散增强,微米颗粒增强。
材料科学与工程学导论
复合材料的基本理论
弥散强化复合材料中弥散颗粒种类 金属氧化物 碳化物 硼化物
4。由被动复合向主动复合材料发展

材料科学与工程导论及总结

材料科学与工程导论及总结

材料科学与工程导论及总结内容:学习材料学的基本知识;主要涉及到各种材料的组成、结构、性能、应用以及它们之间的关系。

目的:材料类专业的入门课及专业基础课之一。

了解材料的基本知识,逐步扩大材料的专业知识面,培养分析和解决有关材料问题的初步能力。

1、材料的定义与分类材料是人类用来制造有用的构件、器件或物品的物质。

材料与物质的区别:①对材料而言,可采用“好”或“不好”等字眼加以评价,对物质则不能这样;②材料总是和一定的用途相的;③材料可由一种物质或若干种物质构成;④同一种物质,由于制备方法或加工方法的不同,可成为用途各异的不同类型的材料。

按化学组成和结构特点:金属材料、无机非金属材料、高分子材料、复合材料按材料性能:结构材料、功能材料按使用领域:建筑材料、电子材料、耐火材料、医用材料……2、材料的地位和作用材料是人类社会发展的基础和先导,是人类社会进步的里程碑和划时代的标志。

材料、能源、信息被称为人类社会的“三大支柱”。

纵观人类利用材料的历史,可以清楚地看到,每一种重要新材料的发现和应用,都把人类支配自然的能力提高到一个新的水平。

材料科学技术的每一次重大突破都会引起生产技术的重大变革,甚至引起一次世界性的技术革命,大大地加速社会发展的进程,从而把人类物质文明推向前进。

人类文明的发展史就是材料的发展史材料的发展史就是人类文明的发展史石器时代、青铜器时代、铁器时代、• • •、半导体时代新材料是高技术发展的基础,是工业革命和产业发展的先导3、材料的性质材料性质:是材料的功能特性和效应的描述,是材料对电.磁.光.热.机械载荷的反应。

材料性质描述:力学性质:强度、硬度、刚度、塑性、韧性材料在力的作用下所表现出的特性即为材料的力学性质。

(1)弹性模量弹性模量是指材料在弹性极限范围内,应力与应变(即与应力相对应的单位变形量)的比值,用E表示,即:(2)强度在外力作用下,材料抵抗变形和断裂的能力称为强度。

(有多种强度类型)材料在外力作用下发生塑性变形的最小应力叫屈服强度,用σs表示。

《材料科学与工程导论》考试大纲

《材料科学与工程导论》考试大纲

题号:923《材料科学与工程导论》考试大纲下面大纲是按专业方向列出的,考生可任选其中一个方向的大纲复习,考试按专业方向命题,学生选做其中一组即可。

1、金属材料及热处理内容要求:(1)金属固态相变的概论:金属固态相变的平衡转变和不平衡转变,固态相变的均匀形核和非均匀形核。

新相长大机制和新相长大速度。

(2)钢的热处理:钢的热处理的基本概念,钢的加热转变、冷却转变。

钢的退火与正火,钢的淬火和回火。

钢的表面热处理。

(3)钢铁中的合金元素:合金元素在钢中的作用,合金元素对铁碳相图的影响,合金元素对钢的相变和热处理的影响,合金元素对钢的性能的影响。

(4)合金结构钢:对结构钢的基本要求,结构钢的合金化,结构钢的含碳量与热处理,结构钢的淬透性,常用的合金结构钢:包括调质钢、超高强度钢、渗碳钢、弹簧钢和轴承钢。

(5)工具钢:碳素和低合金工具钢,高速工具钢,冷作摸具钢和热作摸具钢等,包括合金元素的作用、热处理特点。

(6)不锈钢:金属腐蚀的基本概念,合金元素在不锈钢中的作用,不锈钢的组织、不锈钢的腐蚀特性,不锈钢的强化与脆化。

(7)有色金属及其合金:铝及铝合金:铝合金中的合金元素,铝合金的热处理原理,时效过程中组织和性能变化,时效硬化的原因。

变形铝合金与铸造铝合金的成分、组织、热处理工艺和性能。

镁合金的基本特性、分类和编号。

镁合金中的合金元素,镁合金中的强化相,变形镁合金和铸造镁合金。

铜合金:铜的合金化二元黄铜组织和性能、多元黄铜。

青铜种类及其应用,白铜合电工白铜。

钛合金:钛的特性及钛的冶金基础,合金元素在钛合金中的作用,钛合金的分类、热处理和强韧化基础。

参考书目:(1) 吴承建等,金属材料学,北京:冶金工业出版社,2001年(2) 胡光立,钢的热处理原理与工艺,西安:西北工业大学出版社,1993年(3) 朱张校,工程材料(第三版),北京:清华大学出版社,2001年(4) 王晓敏,工程材料学,哈尔滨:哈尔滨工业大学出版社,1998年2、高分子材料内容要求:(1)高分子材料的合成原理及方法:聚合反应及其分类,单体的聚合选择性,自由基聚合反应、阳离子型聚合反应、阴离子型聚合反应和共聚反应。

材料科学与工程专业导论心得体会

材料科学与工程专业导论心得体会

材料科学与工程专业导论心得体会作为一名热爱学习和追求知识的大学生,我对【材料科学与工程】专业导论课程充满了期待。

在这门课程中,我对材料科学的基本概念、研究方法、应用领域以及未来发展方向有了更深入的了解。

以下是我在这门课程中获得的一些心得体会。

1. 材料科学的重要性与广泛应用材料是现代社会的基石,几乎涉及到我们生活中的方方面面。

从日常用品到高科技产业,材料的选择、性能和处理都对产品的品质和功能有着决定性影响。

在课程中,我了解到材料科学与工程的研究与应用涉及金属、陶瓷、高分子、半导体等各种材料类别,且在电子、航空航天、医疗、能源等领域都有广泛的应用。

对于我作为材料科学与工程专业的学生而言,我深感责任重大,将来的学习和研究将直接关系到社会进步与人民生活的改善。

2. 材料科学研究的方法与技术课程中,老师向我们介绍了一系列材料科学研究的方法与技术,包括材料成分分析、结构表征、性能测试等。

在实验室实践中,我有幸接触到了一些常用的材料分析仪器,例如扫描电子显微镜(SEM)、X射线衍射(XRD)和热分析仪器等。

通过这些实验操作,我深刻认识到科学研究的细致与耐心。

只有通过精确的实验与数据分析,我们才能真正了解材料的性质和行为规律,进而实现对材料的优化和改进。

3. 了解材料性能与结构之间的关系在课程中,我了解到材料的性能与其微观结构之间存在着密切的关联。

不同材料的微观结构决定了它们的性能表现,而我们通过调控材料的结构,可以实现对其性能的改善。

例如,通过合理的热处理,我们可以使金属材料获得更好的机械性能;通过控制高分子材料的聚合方式,可以改善其耐热性和耐腐蚀性。

这种深入了解材料结构与性能之间关系的能力,对于我们未来从事材料工程研究与应用工作非常重要。

4. 环保与可持续发展的挑战随着社会的发展和科技的进步,材料科学与工程也面临着更大的挑战。

其中之一便是环保与可持续发展。

我们必须面对资源日益稀缺的现实,通过循环利用、绿色合成等手段,开发环保型材料和工艺,以减少对自然环境的影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(16.15)
Ect=EmEf/(VmEf+VfEm)
=EmEf/[(1-Vf)Ef+VfEm] 例题16.2
(16.16)
假设例题16.1中,应力变为轴向加载,计 算复合材料轴向弹性模量
材料科学与工程导论
轴向拉伸强度:
连续、取向纤维-增强复合材料轴向加载, 强度是应力-应变曲线上最大应力(图 16.9b),对应于纤维断裂,而且标志着复 合材料失效的起始点。表17.1 列出了三种 普通纤维复合材料的轴向和横向拉伸强度 值。这种类型复合材料的失效是一个相对 复杂的过程,而且几种失效模式都有可能。 对一种具体的复合材料,起用那种模式由 纤维和基体的特性以及纤维-基体界面键 合的本质和强度决定。
材料科学与工程导论
图16.9 (a) 脆性纤维和延性基体材料的应力-应 变曲线;(b)取向排列增强复合材料的应力应变 曲线,单轴应力沿取材向料科学排与工程列导论方向施加。
当纤维开始断裂时,复合材料失效开始 启动,这对应于图16.9b 中应变大约为εf* 点。由于下面几个原因,复合材料失效 不是灾难性的。首先并不是所有的纤维 同时断裂,因为脆性纤维材料的断裂强 度总有差别。其次,即使纤维断裂后, 基体仍然完整,因为εf*<εm*(图16.9a)。 因此这些断裂的纤维比原来的长度短, 仍然镶嵌在完整的基体内,因而当基体 继续塑性变形时,能够承受减弱的载荷。
材料科学与工程导论
如果我们假设εf*<εm*图16.9a (这是通常的 情形),那么纤维先于基体失效。一旦纤
维断裂后,纤维承受的绝大部分载荷将传
递给基体,如果这种情形属实,可以将这
种类型复合材料的应力表达式16.7 改编成下
面的复合材料轴向强度表达式,σcl* :
σcl * =σ’m (1 −Vf ) +σf*Vf
构成的纤维增强复合材料将表现出图16.9b 所示的单轴应力-应变响应。
在起始阶段I 区,纤维和基体均为弹性形变。 正常情况下,这一部分的曲线是线性的。 这种复合材料,基体在εym 屈服发生塑性形 变(如图16.9b),而纤维继续弹性伸长。 这是因为纤维的拉伸强度比基体的屈服强 度要高的多。这一过程构成了第II 阶段, 如图所示,此区通常非常接近线性,但是 相对阶段I,斜率有所降低。此外,由第I 阶段到第II 阶段,纤维承受的载荷比例提 高了。
材料科学与工程导论
图17.8
材料科学与工程导论
轴向加载时的弹性行为:
考虑连续、取向纤维增强复合材料的弹性行
为,载荷沿纤维排列方向施加。首先假设纤 维-基体界面键合很好,因为基体和纤维的 形变相同(等应变状态)。在此条件下,复 合载材荷料Fm承和受纤的维总相的承载受荷的F载c 等荷于Ff基之体和相,承即受:的
(a)计算这种复合材料的轴向弹性模量。
(b)如果截面面积为250 mm2,轴向所加应力 为50 MPa,计算纤维和基体相所承受的载荷 的大小。
(c)当施加(b)中所述的应力时,确定每个相所
发生的应变。
材料科学与工程导论
横向加载弹性行为:
一个连续、取向排列纤维复合材料可以横 向加载,即加载方向与纤维排列方向成90°, 如图16.8a 所示。在这种情况下,复合材料 以及两个组成相的应力σ相同,即:
Fc = Fm + Ff
(16.4)
由f 应)力和的界定面义面,积F(=AσcA,,A用m,应A力f ()表c 示, m ,
载荷Fc, Fm和Ff ,16.4 式变为:
材料科学与工程导论
σcAc =σmAm +σf Af
(16.5)
公式的两边同时除以聚合物总的界面面积
Ac,得到:
σc =σmAm/Ac +σ f Af/Ac
σc =σm =σf =
(16.12)
这称为等应力状态。复合材料总的应变或
形变为:
εc =εm Vm +εf Vf
根据弹性模量公式= /E
材料科学与工程导论
(16.13)
得到:
/Ect=Vm/Em+Vf/Ef
(16.14)
其中Ect是轴向弹性模量。上式中约去应力 பைடு நூலகம்得到:
1/Ect=Vm/Em+Vf/Ef 进一步变为:
连续和取向纤维复合材料
轴向加载拉伸应力-应变行为:
力学响应与几个因子有关:纤维和基体相应 力-;各相体积分数以及加力方向。纤维取 向排列复合材料的特性是高度各向异性,即 特性与测量方向有关。
假设纤维和基体相的应力-应变行为如图 16.9a所示,纤维是完全脆性的,基体相具有 适当的延展性。图中分别标出了纤维和基体 相的拉伸断裂强度σf∗、σm ∗, 断裂时应变εf*、 εm *,而且假设εm*>材ε料f科*学与工程导论
(16.6)
其中,Am 和Af 分别是基体相和纤维相的
面积比例。如果复合材料、纤维相和基体
相的长度相同,那么Am/Ac 等于基体相的 体积分数Vm。同样,对于纤维相也有Vf
= Af/Ac 。因此公式(16.6 )变为:
σc =σmVm +σfVf
材料科学与工程导论
(16.7)
前面的等应变状态假设意味着:
εc =εm =εf
(16.8)
将16.7 式中的每一项除以各自的应变,得
到:
c c
mmVm
f f
Vf
(16.9)
材料科学与工程导论
如果基体、纤维和复合材料都只有弹性变 形,那么连续、取向纤维增强复合材料轴 向弹性模量公式为:
Ecl=EmVm+EfVf
(16.10a)
如果复合材料只有基体和增强纤维两相构
成,那么:
Ecl=Em(1-Vf)+EfVf
(16.10b)
材料科学与工程导论
复合材料的其它特性,例如密度对体积 分数有相同依赖关系。
同样可以证明,纤维相和基体相在轴向 承受的载荷比值为:
Ff/Fm=EfVf/EmVm
(16.11)
材料科学与工程导论
例题16.1
连续、取向排列玻璃纤维-增强复合材料含 有40 vol% 的玻璃纤维和60 vol% 聚合酯,玻 璃纤维的弹性模量为69 GPa,聚合酯的弹性 模量为3.4 GPa.
(16.17)
这里,σ’m是纤维断裂时基体中的应力(如 图16.9a 所示);同样σf*是纤维拉伸强度。
材料科学与工程导论
横向拉伸强度:
连续、单轴取向纤维复合材料是高度各 向异性的,这类复合材料通常设计成沿 高强度的轴向加载。然而,在服役应用 过程中,也存在横向拉伸载荷。在这种 情况下,因为横向强度通常极低——有 时低于基体的拉伸强度,有可能导致过 早失效。因此实际上,纤维的增强效应 是负的。表17.1 包含了三种典型的未取 向复合材料的横向拉伸强度。
相关文档
最新文档