双星模型

合集下载

双星系统

双星系统
一、双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统 ,我们称之为双星系统,如图所示.
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.

卫星变轨问题 双星模型-高考物理复习

卫星变轨问题 双星模型-高考物理复习

①G2Rm22+GRM2m=ma 向 ②GLm2 2×cos 30°×2=ma 向
常见的 四星模型
①GLm2 2×cos 45°×2+ G2mL22=ma 向
②GLm2 2×cos 30°×2+GLmM2=ma 向
3
例5 如图所示,“食双星”是两颗相距为d的恒星A、B,只在相互引力

作用下绕连线上O点做匀速圆周运动,彼此掩食(像月亮挡住太阳)而造成
例6 (多选)2019年人类天文史上首张黑洞图片正式公布.在宇宙中当一 颗恒星靠近黑洞时,黑洞和恒星可以相互绕行,从而组成双星系统.在相 互绕行的过程中,质量较大的恒星上的物质会逐渐被吸入到质量较小的 黑洞中,从而被吞噬掉,黑洞吞噬恒星的过程也被称为“潮汐瓦解事 件”.天鹅座X-1就是一个由黑洞和恒星组成的双星系统,它们以两者 连线上的某一点为圆心做匀速圆周运动,如图所示.在刚开始吞噬的较短 时间内,恒星和黑洞的距离不变,则在这段时间内,下列说法正确的是
A.34mv2+3G4mr地m C.58mv2+3G4mr地m
B.34mv2-3G4mr地m
√D.58mv2-3G4mr地m
当卫星在 r1=r 的圆轨道上运行时,有 Gmr地2m=mvr02,解 得在此圆轨道上运行时通过 A 点的速度为 v0= Gmr 地,
所以发动机在 A 点对卫星做的功为 W1=12mv2-21mv02=12mv2-Gm2r地m; 当卫星在 r2=2r 的圆轨道上运行时,有 Gm2地rm2=mv02′r 2,解得在此圆 轨道上运行时通过 B 点的速度为 v0′= G2mr地,
④两星到圆心的距离 r1、r2 与星体质量成反比,即mm12=rr21.
⑤双星的运动周期 T=2π
L3 Gm1+m2.

微专题4 双星系统和卫星变轨问题 教学设计

微专题4 双星系统和卫星变轨问题 教学设计

微专题4双星系统和卫星变轨问题类型一对双星系统的理解1.双星模型如图所示,宇宙中有相距较近、质量可以相比的两个星球,它们离其他星球都较远,因此其他星球对它们的万有引力可以忽略不计.在这种情况下,它们将围绕它们连线上的某一固定点做周期相同的匀速圆周运动,这种结构叫作“双星”.2.双星模型的特点(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某一点.(2)两星的向心力大小相等,由它们间的万有引力提供.(3)两星的运动周期、角速度都相同.(4)两星的运动轨道半径之和等于它们之间的距离,即r1+r2=L.【例1】(多选)图甲是一对相互环绕旋转的质量不等的双黑洞系统,其示意图如图乙所示.双黑洞A、B在相互之间的万有引力的作用下,绕其连线上的O点做匀速圆周运动,若双黑洞的质量之比m A∶m B=n∶1,则()A.黑洞A、B做圆周运动的角速度之比为1∶1B.黑洞A、B做圆周运动的向心力大小之比为n2∶1C.黑洞A、B做圆周运动的半径之比为1∶nD.黑洞A、B做圆周运动的线速度之比为1∶n2[解析]由于二者绕连线上同一点做匀速圆周运动,二者角速度相等,又由彼此间的万有引力提供向心力,二者做圆周运动的向心力之比为1∶1,故有m A r A ω2=m B r B ω2,解得r A r B =m B m A =1n ,故A 、C 正确,B 错误;由线速度与角速度的关系可知,当角速度相同时,二者做圆周运动的线速度与半径成正比,故二者线速度之比为1∶n ,故D 错误.[答案] AC【例2】 如图所示,质量分别为m 和M 的两个星球A和B 在引力作用下都绕O 点做匀速圆周运动,星球A 和B 两者中心之间距离为L .已知A 、B 的中心和O 三点始终共线,A和B 分别在O 的两侧,引力常量为G .(1)求A 星球做圆周运动的半径R 和B 星球做圆周运动的半径r ;(2)求两星球做圆周运动的周期;(3)如果把星球A 质量的12搬运到B 星球上,并保持A 和B 两者中心之间距离仍为L .则组成新的稳定双星后星球A 半径和周期如何变化?[解析] (1)令A 星的轨道半径为R ,B 星的轨道半径为r ,则由题意有L =r +R两星做圆周运动时的向心力由万有引力提供,则有G mM L 2=mR 4π2T 2G mM L 2=Mr 4π2T 2,可得R r =M m ,又因为L =R +r所以可以解得R =M M +m L ,r =m M +mL ; (2)根据(1)可以得到G mM L 2=m 4π2T 2R ,R =M M +mL 两式联立解得T =4π2L 3(M +m )G =2π L 3G (M +m ); (3)根据R =M M +m L ,知M 变大,R 变大 根据T = 4π2L 3(M +m )G =2π L 3G (m +M ),知周期不变. [答案] (1)M M +m L m M +mL(2)2πL3G(M+m)(3)半径变大周期不变[针对训练1]宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用互相绕转,称之为双星系统.设某双星系统中A、B两星绕其连线上的O点做匀速圆周运动,如图所示.若A星轨道半径较大,则() A.星球A的质量大于B的质量B.星球A的线速度大于B的线速度C.星球A的角速度大于B的角速度D.星球A的周期大于B的周期解析:选B.根据万有引力提供向心力有m Aω2r A=m Bω2r B,因为r A>r B,所以m A<m B,即A的质量一定小于B的质量,故A错误;双星角速度相等,则周期相等,根据v=ωr可知,v A>v B,故B正确,C、D错误.[针对训练2](多选)经长期观测,人们在宇宙中已经发现了“双星系统”,“双星系统”由两颗相距较近的恒星组成,每个恒星的大小远小于两个星体之间的距离,而且双星系统一般远离其他天体.两颗星球组成的双星A、B,A、B 的质量分别为m1、m2,在相互之间的万有引力作用下,绕连线上的O点做周期相同的匀速圆周运动.现测得两颗星之间的距离为L,质量之比为m1∶m2=3∶2.则可知()A.A与B做圆周运动的角速度之比为2∶3B.A与B做圆周运动的线速度之比为2∶3C.A做圆周运动的半径为2 5LD.B做圆周运动的半径为2 5L解析:选BC.双星靠相互间的万有引力提供向心力,相等的时间内转过相同的角度,则角速度相等,故A错误;向心力大小相等,有:m1ω2r1=m2ω2r2,即m1r1=m2r2,因为质量之比为m1∶m2=3∶2,则轨道半径之比r1∶r2=2∶3,所以A做圆周运动的半径为25L,B做圆周运动的半径为35L,故C正确,D错误;根据v=ωr,角速度相等,双星的线速度比等于半径比为2∶3,故B正确.类型二卫星变轨问题卫星在运动中的“变轨”有两种情况:离心运动和向心运动.当万有引力恰好提供卫星所需的向心力,即G Mm r 2=m v 2r 时,卫星做匀速圆周运动;当某时刻速度发生突变,所需的向心力也会发生突变,而突变瞬间万有引力不变.(1)制动变轨:卫星的速率变小时,使得万有引力大于所需向心力,即G Mm r 2>m v 2r ,卫星做近心运动,轨道半径将变小.所以要使卫星的轨道半径变小,需开动反冲发动机使卫星做减速运动.(2)加速变轨:卫星的速率变大时,使得万有引力小于所需向心力,即G Mm r 2<m v 2r,卫星做离心运动,轨道半径将变大.所以要使卫星的轨道半径变大,需开动反冲发动机使卫星做加速运动.【例3】 北京时间2022年5月10日01时56分,搭载天舟四号货运飞船的长征七号遥五运载火箭,在我国文昌航天发射场点火发射,约10 min 后,飞船与火箭成功分离,进入预定轨道.2时23分,飞船的太阳能帆板顺利展开工作,发射取得圆满成功.后续,天舟四号货运飞船与在轨运行的空间站组合体进行交会对接.若对接前两者在同一轨道上运动,下列说法正确的是( )A .对接前天舟四号的运行速率大于空间站组合体的运行速率B .对接前天舟四号的向心加速度小于空间站组合体的向心加速度C .天舟四号通过加速可实现与空间站组合体在原轨道上对接D .天舟四号先减速后加速可实现与空间站组合体在原轨道上对接[解析] 对接前两者在同一轨道上运动,由万有引力提供向心力可知G Mm r 2=m v 2r =ma ,解得v =G M r ,a =G M r 2 ,同一轨道,运行速率、向心加速度相等,A 、B 错误;飞船与空间站组合体在同一轨道上,此时飞船受到的万有引力等于向心力,若让飞船加速,则所需要的向心力变大,万有引力不变,所以飞船做离心运动,不能实现对接,C 错误;天舟四号先减速做近心运动,进入较低的轨道,后加速做离心运动,轨道半径变大,可以实现对接,D 正确.[答案] D【例4】 (多选)2022年3月23日,“天宫课堂”进行了第二次授课活动.授课过程中信号顺畅不卡顿,主要是利用天链系列地球同步轨道卫星进行数据中继来实现的.如图所示,天链卫星的发射过程可以简化如下:卫星先在近地圆形轨道Ⅰ上运动,到达轨道的A 点时点火变轨进入椭圆轨道Ⅱ,到达轨道的远地点B 时,再次点火进入圆形同步轨道Ⅲ绕地球做匀速圆周运动.设地球半径为R ,地球表面的重力加速度为g 0,卫星质量保持不变,则下列说法正确的是( )A .卫星在轨道Ⅰ和轨道Ⅲ运动的周期均与地球自转周期相同B .卫星在轨道Ⅱ和轨道Ⅲ运动经过B 点的加速度大小相同C .卫星在轨道Ⅲ上的运行速率小于g 0RD .卫星在轨道Ⅰ向轨道Ⅱ变轨时,火箭需在A 点点火向前喷气[解析] 同步轨道Ⅲ属于同步卫星轨道,与地球自转周期保持相同,轨道Ⅰ属于近地卫星轨道,与地球自转周期不相同,A 错误;根据万有引力充当合外力可知G Mm r 2 =ma ,所以卫星在轨道Ⅱ和轨道Ⅲ运动经过B 点的加速度相同,B正确;在地面上,则有G Mm R 2 =mg 0,对于轨道卫星,则有G Mm r 2 =m v 2r ,可解得v =g 0R 2r ,C 正确;卫星在轨道Ⅰ向轨道Ⅱ变轨时做离心运动,需要加速,故火箭需在A 点点火向后喷气,D 错误.[答案] BC[针对训练3] 一人造卫星绕地球做匀速圆周运动,假如该卫星变轨后仍做匀速圆周运动,速度大小减小为原来的12 ,则变轨前后卫星的( ) A .周期之比为1∶8B .角速度大小之比为2∶1C .向心加速度大小之比为4∶1D .轨道半径之比为1∶2解析:选A.根据万有引力充当卫星绕地球运动的向心力:G Mm r 2 =m v 2r ,卫星的线速度v = GM r ,由题知,速度大小减小为原来的12 ,则轨道半径增大到原来的4倍,即变轨前后轨道半径之比为1∶4;卫星的角速度ω=v r =GMr 3 ,可得变轨前后角速度大小之比为8∶1;卫星的向心加速度a =v 2r =GM r 2 ,可得变轨前后向心加速度大小之比为16∶1;卫星的周期T =2πω ,可得变轨前后周期之比为1∶8,故B 、C 、D 错误,A 正确.[针对训练4] 如图所示,一颗人造卫星原来在椭圆轨道1绕地球运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )A .不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同速度解析:选B.从轨道1变轨到轨道2,需要加速做离心运动,A 错误;根据公式G Mm R 2 =ma 可得a =G M R 2 ,故只要到地心距离相同,加速度大小就相同,由于卫星在椭圆轨道1运动,到地心距离、引力的方向均在变化,所以运行过程的加速度在变,B 正确,C 错误;卫星在轨道2做匀速圆周运动,过程中的速度方向时刻在变,所以不同位置处速度不同,D 错误.[A 级——合格考达标练]1.如图所示,一颗人造卫星原来在椭圆轨道1绕地球运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是( )A .不论在轨道1还是在轨道2运行,卫星在P 点的速度都相同B .不论在轨道1还是在轨道2运行,卫星在P 点的加速度都相同C .卫星在轨道1的任何位置都具有相同加速度D .卫星在轨道2的任何位置都具有相同速度解析:选B.从轨道1变轨到2,需要加速逃逸,A 错误;根据公式G Mm R 2=ma 可得a =G M R 2,故只要到地心距离相同,加速度则相同,由于卫星在轨道1做椭圆运动,到地心距离、引力的方向均在变化,所以运行过程的加速度在变,B 正确,C 错误;卫星在轨道2做匀速圆周运动,过程中的速度方向时刻在变,所以不同位置处速度不同,D 错误.2.如图所示,a 、b 、c 是在地球大气层外圆形轨道上运行的3颗人造卫星,下列说法正确的是( )A .b 、c 的线速度大小相等,且大于a 的线速度B .a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大C .c 加速可以追上同一轨道上的b ,b 减速可以等候同一轨道上的cD .b 、c 向心加速度相等,且大于a 的向心加速度解析:选 B.人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,设卫星的质量为m 、轨道半径为r 、地球质量为M ,有G Mm r 2=m v 2r =ma ,解得卫星线速度v =GMr ,由图可知,r a <r b =r c ,则b 、c 的线速度大小相等,且小于a 的线速度,故A 错误;由v =GMr 知,a 卫星由于某种原因,轨道半径缓慢减小,其线速度将变大,故B 正确;c 加速要做离心运动,不可以追上同一轨道上的b ;b 减速要做近心运动,不可以等候同一轨道上的c ,故C 错误;由向心加速度a =GM r 2知,b 、c 的向心加速度大小相等,且小于a 的向心加速度,故D 错误.3.(多选)图为两颗人造卫星绕地球运动的轨道示意图,Ⅰ为圆轨道,Ⅱ为椭圆轨道,AB 为椭圆的长轴,两轨道和地心都在同一平面内,C 、D 为两轨道交点.已知轨道Ⅱ上的卫星运动到C 点时速度方向与AB 平行,则下列说法正确的是( )A .两颗卫星的运动周期相同B .卫星在Ⅰ轨道的速率为v 0,卫星在Ⅱ轨道B 点的速率为v B ,则v 0<v BC .两个轨道上的卫星运动到C 点时的加速度相同D .两个轨道上的卫星运动到C 点时的向心加速度大小相等解析:选AC.由轨道Ⅱ上的卫星运动到C 点时速度方向与AB 平行可知CD 为椭圆短轴的两个端点,由于圆的圆心与椭圆的左焦点重合,则由几何关系可知圆的半径与椭圆的半长轴相等,故由开普勒第三定律可知两卫星运行周期相等,A 正确;设有一个与椭圆相切于B 点、以地球为圆心的圆轨道Ⅲ,卫星在轨道Ⅱ上从B 点进入该圆轨道Ⅲ则需要加速,而由v = GMr 可知卫星在轨道Ⅲ的速度必小于在轨道Ⅰ上的速度,故v 0>v B ,B 错误;卫星在C 点时的加速度(不是向心加速度)由牛顿第二定律有G Mm r 2=ma ,即加速度a =G M r 2与卫星质量无关、与轨道形状无关,C 正确;卫星在轨道Ⅰ上做匀速圆周运动,加速度即为向心加速度;卫星在椭圆轨道Ⅱ上运动,在C点,其加速度沿垂直于速度方向上的分量才是向心加速度,故卫星在轨道Ⅱ上C点的向心加速度小于卫星在轨道Ⅰ上C 点的向心加速度,D错误.4.如图所示,在赤道发射场发射地球同步卫星的过程中,卫星首先进入椭圆轨道Ⅰ,然后在Q点通过改变卫星速度,让卫星进入地球同步轨道Ⅱ,则()A.该卫星在P点的速度大于11.2 km/sB.卫星在轨道Ⅱ上的运行速度大于7.9 km/sC.卫星在Q点需要适当加速,才能够由轨道Ⅰ进入轨道ⅡD.卫星在轨道Ⅱ上经过Q点时的加速度大于在轨道Ⅰ上经过Q点时的加速度解析:选C.11.2 km/s是卫星脱离地球束缚的最小发射速度,由于同步卫星仍然绕地球运动,则在P点的速度小于11.2 km/s,故A错误;7.9 km/s是卫星在地球表面飞行的环绕速度,根据万有引力提供向心力,由GMmr2=mv2r可知v=GMr,卫星在轨道Ⅱ上,半径变大,则运行速度小于7.9 km/s,故B错误;卫星需要加速,让卫星做离心运动,才能由轨道Ⅰ进入轨道Ⅱ,故C正确;根据GMm r2=ma可知a=GMr2,则卫星在轨道Ⅱ上经过Q点时的加速度等于在轨道Ⅰ上经过Q点时的加速度,故D错误.5.宇宙中两颗相距较近的天体称为“双星”,它们以二者连线上的某一点为圆心做匀速圆周运动,而不至因为万有引力的作用而吸引到一起.如图所示,某双星系统中A、B两颗天体绕O点做匀速圆周运动,它们的轨道半径之比r A∶r B =1∶2,则两颗天体的()A .质量之比m A ∶mB =2∶1B .角速度之比ωA ∶ωB =1∶2C .线速度大小之比v A ∶v B =2∶1D .向心力大小之比F A ∶F B =2∶1解析:选 A.双星绕连线上的一点做匀速圆周运动,其角速度相同,周期相同,两者之间的万有引力提供向心力,有F =m A ω2r A =m B ω2r B ,所以m A ∶m B =2∶1,B 、D 错误,A 正确;由v =ωr 可知,线速度大小之比v A ∶v B =1∶2,C 错误.6.宇宙中,两颗靠得比较近的恒星,只受到彼此之间的万有引力作用而互相绕转,称之为双星系统.设某双星系统中的A 、B 两星球绕其连线上的某固定点O 做匀速圆周运动,如图所示.现测得两星球球心之间的距离为L ,运动周期为T ,已知引力常量为G ,若R A >R B ,则( )A .两星球的总质量等于4π2L 3GT 3B .星球A 的向心力大于星球B 的向心力C .星球A 的线速度一定小于星球B 的线速度D .双星的质量一定,双星之间的距离减小,其转动周期减小解析:选D.由题可知,双星的角速度相等,根据v =ωr ,且R A >R B ,则v A >v B ,C 错误;双星靠相互间的万有引力提供向心力,根据牛顿第三定律知它们的向心力大小相等,B 错误;根据万有引力提供向心力,对A 有G M A M B L 2=M A ⎝ ⎛⎭⎪⎫2πT 2R A ,对B 有G M A M B L 2=M B ⎝ ⎛⎭⎪⎫2πT 2R B ,其中L =R A +R B ,解得T =4π2L 3G ()M A +M B ,M A +M B =4π2L 3GT 2,故当双星的质量一定,双星之间的距离减小时,其转动周期减小,D 正确,A 错误.[B 级——等级考增分练]7.如图所示,半径为r 的圆形轨道Ⅰ为空间站运行轨道,半长轴为a 的椭圆轨道Ⅱ为载人飞船的运行轨道,飞船在两个轨道相切点A 与空间站交会对接,已知飞船与空间站均绕地球运动,引力常量为G ,地球质量为M ,下列说法中正确的是( )A.空间站的运行速度大于第一宇宙速度 B .在A 点对接时飞船应沿运行速度方向喷气 C .飞船与空间站运行周期之比为r 3a 3D .飞船在轨道Ⅱ经过A 点,喷气变轨前一刻的速度小于GM r解析:选 D.第一宇宙速度是物体绕地球做圆周运动的最大速度,所以空间站的运行速度不可能大于第一宇宙速度,故A 错误;载人飞船与空间站对接需向高轨道做离心运动,则需要向后点火加速,即飞船应沿运行速度相反方向喷气,故B 错误;设飞船的运行周期为T 1,空间站的运动周期为T 2,根据开普勒第三定律得a 3T 21 =r 3T 22 ,则T 1T 2=a 3r 3,故C 错误;以r 为半径做圆周运动的物体,根据万有引力提供向心力得G mMr 2 =m v 2r ,得以r 为半径做圆周运动的物体的速度为v =GMr ,飞船在轨道Ⅱ经过A 点后做近心运动,喷气变轨前一刻的速度小于GMr ,故D 正确.8.北斗导航系统又被称为“双星定位系统”,具有导航、定位等功能.“北斗”系统中两颗工作卫星均绕地心O 做匀速圆周运动,轨道半径为r ,某时刻两颗工作卫星分别位于轨道上的A 、B 两位置(如图所示).若卫星均顺时针运行,地球表面处的重力加速度为g ,地球半径为R .不计卫星间的相互作用力,则以下判断正确的是( )A.这两颗卫星的加速度大小相等,均为Rgr B .卫星1向后喷气就一定能追上卫星2C.卫星1由位置A 运动到位置B 所需的时间为πr3R r gD .卫星1中物体的速度为gr解析:选C.由GMm r 2 =ma 、GMm R 2 =mg ,得 a =gR 2r 2 ,A 错误;卫星1向后喷气时速度增大,所需的向心力增大,万有引力不足以提供其所需的向心力而做离心运动,与卫星2不处于同一轨道上了,B 错误;卫星1由位置A 运动到位置B 的过程,由t =θ360° T =16 T 、GMm r 2 =mr (2πT )2、GMm R 2 =mg 可得,t =πr 3R r g ,C 正确;由GMmr 2 =m v 2r 、GMm R 2 =mg 可得,卫星1中物体的速度v = gR 2r ,D 错误.9.(多选)双星的运动是产生引力波的来源之一,假设宇宙中有一双星系统由a 、b 两颗星体组成,这两颗星绕它们连线的某一点在万有引力作用下做匀速圆周运动,测得a 星的周期为T ,a 、b 两颗星的距离为l ,a 、b 两颗星的轨道半径之差为Δr (a 星的轨道半径大于b 星的),则( )A .b 星的周期为l -Δrl +ΔrT B .a 星的线速度大小为π(l +Δr )TC .a 、b 两颗星的轨道半径之比为l l +ΔrD .a 、b 两颗星的质量之比为l -Δrl +Δr解析:选BD.由于双星系统是在相互间万有引力作用下绕连线上同一点做圆周运动,故二者连线始终过圆心,则二者在任意相同时间内转过的圆心角相等,故二者的转动周期相同,A 错误;由r a +r b =l 及r a -r b =Δr 得r a =l +Δr2 ,r b =l -Δr 2 ,故a 星的线速度大小为v a =2πr aT =π(l +Δr )T ,B 正确;a 、b 两颗星的轨道半径之比为r a r b =l +Δr l -Δr ,C 错误;由F 引=m a r a ⎝ ⎛⎭⎪⎫2πT 2 =m b r b ⎝ ⎛⎭⎪⎫2πT 2 有m a m b=r b r a =l -Δrl +Δr,D 正确.。

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

二、变轨问题
卫 星 的 发 射 过 程 动 画
二、卫星的变轨问题
1.变轨原理及过程 人造卫星的发射过程要经过多
次变轨方可到达预定轨道,如图所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆 轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
期相等,角速度也相等。由 v=rω 得线速度与 两子星圆周运动的半径是成正比的。因为两子 星圆周运动的向心力由两子星间的万有引力提 供,向心力大小相等,
由G
M1M 2 L2
M1r12 , G
M1M 2 L2
M 2r22
可知: M1r1 2 M 2r2 2 ,所以它们的轨道半径
与它们的质量是成反比的。而线速度又与轨 道半径成正比,所以线速度与它们的质量也 是成反比的。正确答案为:BD。
【解析】这两颗星必须各自以一定的速度绕某一中心转 动才不至于因万有引力作用而吸引在一起,从而保持两 星间距离L不变,且两者做匀速圆周运动的角速度ω必 须相同。如图所示,两者轨迹圆的圆心为O,圆半径分 别为R1和R2。由万有引力提供向心力,有
处理方法:
对m1来说:
G
m1m2 L2
=m1ω2R1
对m2来说:
A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度 B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经 过M的速度 C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运 动的周期 D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上 经过M的加速度
反思总结 1.变轨的两种情况
2.相关物理量的比较
(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ>vⅡB,vⅡA>vⅠ。 (2)同一个椭圆轨道上近地点和远地点线速度大小不相等,vⅡA>vⅡB, (3)两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。 (4)卫星在同一点的不管是椭圆还是圆,加速度一定相等。

双星模型知识点总结

双星模型知识点总结

双星模型知识点总结双星模型(Dual Star Model)是一种用于研究宇宙中双星系统的模型,这是一种包括一颗恒星和另一颗天体(通常是另一个恒星)的天体系统。

在宇宙中,双星系统是非常普遍的一种天体系统。

在这种系统中,两颗天体围绕着彼此运转,并由于引力相互作用而产生一系列复杂的现象。

因此,研究双星系统可以帮助我们更深入地了解宇宙的一些基本物理规律,例如引力相互作用、恒星演化、宇宙起源等。

双星系统的构成双星系统通常由两种类型的天体组成,分别为主要成员(Primary)和次要成员(Secondary)。

主要成员通常是一颗恒星,而次要成员则可以是其他类型的天体,例如行星、白矮星或中子星。

在一些情况下,双星系统的两颗天体都是恒星,这样的系统被称为双星。

双星的形成双星系统的形成有多种机制。

一种常见的形成机制是原始星团或星云中的恒星形成,这些恒星在形成过程中可能由于相互间的引力相互作用而形成双星系统。

另一种形成机制是两颗恒星在宇宙中产生的碰撞或者合并。

除此之外,还有一种形成机制是一颗恒星向另一颗恒星捕获而形成。

双星系统分类根据双星系统的性质和构成,我们可以根据多种分类方法对双星系统进行分类。

其中一个常见的分类方法是根据双星系统的物理间距来分类。

按照这种分类方法,双星系统可以被分为紧密双星系统和松散双星系统。

紧密双星系统是指两颗天体之间距离很近,它们之间的引力相互作用非常显著,造成一系列复杂的演化过程和现象。

而松散双星系统的两颗天体之间间距较大,它们之间引力相互作用较小。

另一个常见的分类方法是根据双星系统的构成类别来分类。

按照这种分类方法,我们可以将双星系统分为天体-恒星双星系统、恒星-恒星双星系统、行星-行星双星系统等等。

双星的运动规律双星系统的运动规律是由两颗天体间的引力相互作用决定的。

在双星系统中,两颗天体围绕着彼此运转。

根据牛顿引力定律,两颗天体之间的引力与它们之间的质量和距离成反比。

因此,双星系统中的天体将沿着椭圆轨道相互运转。

9教案-双星问题PPT课件

9教案-双星问题PPT课件
“二绕一”模型和“三角形”模型。 二、 两种模型下的处理方法:
1、画出运动示意图 2、某一星体做圆周运动的向心力是由 其它星体对该星体万有引力的合力提供 3、根据几何关系,找准半径,问题迎刃而解。
22
2.四星系统 例5.质量相等的四颗星组成的四星系统,四 星系统离其他恒星较远,可忽略其他星体对四 星系统的引力作用.已观测到边长为a的正方形 的四个顶点上,各星均围绕正方形对角线的交 点做匀速圆周运动,运动周期为T1。
3.5ms
所以 n 6 12
3.5
n
显然,该式中n有大于2的解,故暗星B有可能是黑洞.
15
4、一种特殊天体—黑洞
GM 天体的第一宇宙速度 v1 R
天体的第二宇宙速度 v2 2v1
2GM R
当天体的第二宇宙速度大于或等于光速c 时,该天 体就成为黑洞。
由v2≥c得:
这是判断普通天体是否变成黑洞的根据之一
r1=0,r2=L 物理含义是什么?
双星系统中,若质量差别很大,则质量较大的天 体,可认为是不转的,只有小质量的天体转动。 例如:月球绕地球,地球绕太阳运动,都可以看 成是双星模型的近似。
4
4、双星运动的角速度、周期、速度
Gm1 m2
L3
T 2
L3
Gm1 m2
v1
Gm
2 2
m1 m2 L
向心力由万有引力提供。
双星模型示意图
2
2、确定双星的旋转半径
已知双星的质量m1、m2和距离L,求双星的半径r1 =? r2 =? 解:对双星分别利用向心力公式
规律:半径与质量成反比
3
3、圆周运动与双星运动的关系
说出双星半径表达式?
拓展: 当m1>>m2时, m1 +m2→ m1 , m2/m1 →0 你能得出什么结论?

双星三星四星问题说课讲解

双星三星四星问题说课讲解

双星三星四星问题双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

.
双星模型、三星模型、四星模型
天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。

双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。

双??FF,作用力的方向在双星间的连线上,角速度星系统的引力作用遵循牛顿第三定律:?????。

相等,21【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T,两颗恒星之间的距离为r,试推算这个双星系统的总质量。

(引力常量为G)
】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案2【例题天文学家观测河外星系大麦哲伦云时,发现了.之一是观测双星系统的运动规律不考两星视为质点,B构成,LMCX3双星系统,它由可见星A和不可见的暗星点做匀速圆周运动,它们之间的OB围绕两者连线上的虑其他天体的影响.A、v的速率由观测能够得到可见星A.引力常量为G,距离保持不变,如图4-2所示T.
和运行周期视为质(m′的星体F可等效为位于O点处质量为(1)可见星A所受暗星B的引力a). m表示m′(用m、A和B的质量分别为m、m,试求点)对它的引力,设2121 m之间的关系式;v、运行周期T和质量求暗星B的质量m与可见星A的速率(2)12A.若可见星2倍,它将有可能成为黑洞(3)恒星演化到末期,如果其质量大于太阳质量m的s45有B,试通过估算来判断暗星,质量m m/s,运行周期T=4.7π×10=6m s的速率v=2.7×10s1可能是黑洞吗?302-112 10)/kg kg,m
(G=6.67×10=2.0×N·m s】天体运动中,将两颗彼此相距较近的行星称为双星,它们在万有引力作用下间距3【例题、ML,质量分别为始终保持不变,并沿半径不同的同心轨道作匀速园周运动,设双星间距为1)双星运动的周期。

)双星的轨道半径(2M,试计算(12S和某双星由质量不等的星体S【例题4】我们的银河系的恒星中大约四分之一是双星.21由.C做匀速圆周运动构成,两星在相互之间的万有引力作用下绕两者连线上某一定点已知引力常量为r,S和S的距离为S
天文观察测得其运动周期为T,到C点的距离为r,2111)的质量为(G.由此可求出S222323222π4π4π4rrrr)r(r?r4π111 . .A C B. . D
2222GTGTGTGT点做匀速周在引力作用下都绕BO和M的两个星球A和】如
右图,质量分别为【例题5m分和BAB。

已知A、的中心和O三点始终共线,LBA运动,星球和
两者中心之间距离为
G。

的两侧。

引力常数为别在O ⑴求两星球做圆周运动的周期。

1 / 2
.
,和B在地月系统中,若忽略其它星球的影响,可以将月球和地球看成上述星球A⑵。

但在近似处理问题时,常常认为月球是绕地心做月球绕其轨道中心运行为的周期记为T1247.35 和5.98×10 kg 圆周运动的,这样算得的运行周期T。

已知地球和月球的质量分别为222位小数)T两者平方之比。

(结果保留3×10与kg 。

求T12 >m,M>M(M>> c2012?江西联考】如右图,三个质点a、b、质量分别为m、m、6【例题】【121沿逆时针方向做匀cb在同一平面内绕)。

在c的万有引力
作用下,a、m2
运动一;从图示位置开始,在bT=1∶k速圆周运动,它们的周期之比T∶ba)周的过程中,则(次、b距离最近的次数为kA.a次b距离最近的次数为k+1、B.a2k 共线的次数为b、cC.a、2k-2
、c共线的次数为D.a、b通常7】宇宙中存在一些离其他恒星较远的、由质量相等的三颗星组成的三星系统,【例题:.已观测到稳定的三星系统存在两种基本的构成形式可忽略其他星体对它们的引力作用另的圆轨道上运行;一种是三颗星位于同一直线上,两颗星围绕中央星在同一半径为R并沿外接于等边三角形的圆形轨道运一种形式是三颗星位于等边三角形的三个顶点上,.
m设每个星体的质量均为行.试求第一种形式下,星体运动的线
速度和周期.(1),第二种形式下星体之间的距离应为多少?(2)假设两种形式下星体的运动周期相同?湖北百校联考)宇宙中存在由质量相等的四颗星组成的四星
系统,四星2012【例题8】(已观测到稳定的四星系.系统离其他恒星较远,通常可忽略其他星体对四星系统的引力作用的正方形的四个顶点上,一种是四颗星稳定地分布在边
长为a:统存在两种基本的构成形式;另一种形式是有三颗星位均围绕正方形对角线的交点做匀速圆周运动,其运动周期为其运动周并沿外接于等边三角形的圆形轨道
运行,于边长为a的等边三角形的三个项点上,试求两种形式下,星体运动的周期之比.,而第四颗星刚好位于三角形的中心不动期为T1. T22 / 2。

相关文档
最新文档