宇宙双星模型

合集下载

2023届高三物理复习重难点突破33双星多星模型 卫星的变轨及能量问题 拉格朗日点(解析版)

2023届高三物理复习重难点突破33双星多星模型  卫星的变轨及能量问题  拉格朗日点(解析版)

专题33 双星多星模型卫星的变轨及能量问题拉格朗日点考点一双星模型双星系统:绕公共圆心转动的两个星体组成的系统,而且两颗星与该中心点总在同一直线上,如图,1.两个星体各自所需的向心力由彼此间的万有引力相互提供,即Gm1m2L2=m1ω21r1,Gm1m2L2=m2ω22r22.两颗星的周期及角速度都相同,即T1=T2,ω1=ω23.两颗星的半径与它们之间的距离关系为:r1+r2=L4.由m1ω21r1=m2ω22r2 得:两颗星到圆心的距离r1、r2与星体质量成反比,即m1m2=r2r15.双星的总质量公式m1+m2=4π2L3T2G推论:L3T2=kM总6.双星的运动周期T=2π)(213mmGL1.(多选)我国天文学家通过“天眼”(FAST,500米口径球面射电望远镜)在武仙座球状星团M13中发现一个脉冲双星系统,如图所示,由恒星A与恒星B组成的双星系统绕其连线上的O点做匀速圆周运动,若恒星A的质量为3m,恒星B的质量为5m,恒星A和恒星B之间的距离为L,引力常量为G。

下列说法正确的是()A.恒星A运行的角速度大于恒星B运行的角速度 B.恒星A与恒星B的线速度之比为5:3C.恒星A到O点的距离为35L D.恒星B的运行周期为π√L32Gm【答案】BD【解析】A.由于双星系统在相等时间内转过的圆心角相同,则双星的角速度一定相等,A错误;C.对恒星A有G5m×3mL2=3mω2rA对恒星B有G3m×5mL2=5mω2rB解得rArB=53又由于rA +rB=L解得rA=58L,rB=38L C错误;B.根据v=ωr解得vAvB=53B正确;D.恒星B的运行周期为T=2πω=π√L32GmD正确。

2.(2022·全国·高三课时练习)(多选)天文学家通过观测两个黑洞并合的事件,间接验证了引力波的存在。

该事件中甲、乙两个黑洞的质量分别为太阳质量的36倍和29倍,假设这两个黑洞绕它们连线上的某点做圆周运动,且两个黑洞的间距缓慢减小。

双星系统

双星系统
一、双星模型 (1)定义:绕公共圆心转动的两个星体组成的系统 ,我们称之为双星系统,如图所示.
(2)特点: ①各自所需的向心力由彼此间的万有引力相互提供 ②两颗星的周期及角速度都相同 ③两颗星的半径与它们之间的距离关系为 (3)两颗星到圆心的距离与星体质量成反比,与星体 运动的线速度成反比.
拓展: 1.若在双星模型中,图中L、m1、m2、G为已知量, 双星运动的周期如何表示? 2.若双星运动的周期为T,双星之间的距离为L,G 已知,双星的总质量如何表示?
球的影响,可以将月球和地球看成 上述星球A和B,月球绕其轨道中 心运行的周期记为T1ቤተ መጻሕፍቲ ባይዱ但在近似处 理问题时,常常认为月球是绕地心
做圆周运动的,这样算得的运行周 期为T2。已知地球和月球的质量分 别为5.98×1024 kg和7.35×1022 kg 。求T2与T1两者的平方之比。(结果 保留3位小数)
[典例2] (多选)宇宙间存在一些离其他恒星较远的三星 系统,其中有一种三星系统如图所示,三颗质量均为m 的星位于等边三角形的三个顶点,三角形边长为R,忽略
其他星体对它们的引力作用,三星在同一平面内绕三角 形中心O做匀速圆周运动,万有引力常量为G,则
(1)每颗星做圆周运动的线速度? (2)每颗星做圆周运动的角速度? (3)每颗星做圆周运动的周期?
(二)宇宙三星模型 (1)定义:所研究星体的万有引力的合力提供做圆周运 动的向心力,除中央星体外,各星体的角速度或周期 相同. (2)三星模型: ①三颗星位于同一直线上,两颗环绕
星围绕中央星在同一半径 为R的圆形轨道上运行 ②三颗质量均为m的星体位 于等边三角形的三个顶点 上(如图乙所示).
(三)宇宙四星模型
万有引力的合力提供做圆周运动的向心力,除中央 星体外,各星体的角速度或周期相同.

双星模型三星模型四星模型

双星模型三星模型四星模型

双星模型、三星模型、四星模型天体物理中的双星,三星,四星,多星系统是自然的天文现象,天体之间的相互作用遵循万有引力的规律,他们的运动规律也同样遵循开普勒行星运动的三条基本规律。

双星、三星系统的等效质量的计算,运行周期的计算等都是以万有引力提供向心力为出发点的。

双星系统的引力作用遵循牛顿第三定律:F F =',作用力的方向在双星间的连线上,角速度相等,ωωω==21。

【例题1】天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星。

双星系统在银河系中很普遍。

利用双星系统中两颗恒星的运动特征可推算出它们的总质量。

已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量。

(引力常量为G )【解析】:设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为ω1、ω2。

根据题意有21ωω=①r r r =+21②根据万有引力定律和牛顿定律,有G1211221r w m rm m = ③G1221221r w m rm m =④联立以上各式解得2121m m rm r +=⑤根据解速度与周期的关系知Tπωω221== ⑥联立③⑤⑥式解得322214r GT m m π=+【例题2】神奇的黑洞是近代引力理论所预言的一种特殊天体,探寻黑洞的方案之一是观测双星系统的运动规律.天文学家观测河外星系大麦哲伦云时,发现了LMCX3双星系统,它由可见星A 和不可见的暗星B 构成,两星视为质点,不考虑其他天体的影响.A 、B 围绕两者连线上的O 点做匀速圆周运动,它们之间的距离保持不变,如图4-2所示.引力常量为G ,由观测能够得到可见星A 的速率v 和运行周期T.(1)可见星A 所受暗星B 的引力F a 可等效为位于O 点处质量为m ′的星体(视为质点)对它的引力,设A 和B 的质量分别为m 1、m 2,试求m ′(用m 1、m 2表示).(2)求暗星B 的质量m 2与可见星A 的速率v 、运行周期T 和质量m 1之间的关系式;(3)恒星演化到末期,如果其质量大于太阳质量m s 的2倍,它将有可能成为黑洞.若可见星A的速率v=2.7×105 m/s ,运行周期T=4.7π×104s ,质量m 1=6m s ,试通过估算来判断暗星B 有可能是黑洞吗?(G=6.67×10-11 N ·m 2/kg 2,m s =2.0×1030kg )解析:设A 、B 的圆轨道半径分别为,由题意知,A 、B 做匀速圆周运动的角速度相同,设其为。

2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

2021学年高中物理微专题四双星三星模型课件人教版必修2.ppt

(1)对第一种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有
GRm12 2+G2Rm122=mR1(2Tπ)2. (2)对第二种形式中 A 而言,B、C 对 A 的万有引力的合力提
供 A 做圆周运动的向心力,则有Gm2 r2源自cos30°+Grm2 2
cos 30°=mR22Tπ2
答案:BD
练 2 月球与地球质量之比约为 1:80,有研究者认为月球和
地球可视为一个双星系统,它们都围绕地月连线上某点 O 做匀
速圆周运动.据此观点,可知月球与地球绕 O 点运动线速度大
小之比约为( )
A.1:6 400 B.1:80
C.80:1
D.6 400:1
解析:月球和地球绕 O 点做匀速圆周运动,它们之间的万有引 力提供各自的向心力,则地球和月球的向心力相等.且月球、地球 和 O 点始终共线,说明月球和地球有相同的角速度和周期.因此有 mω2r=Mω2R,所以vv′=Rr =Mm,线速度和质量成反比.故选 C.
微专题(四) 双星、三星模型
模型建构
模型一 双星模型
1.模型构建 在天体运动中,将两颗彼此相距较近,且在相互之间万有引 力作用下绕两者连线上的某点做周期相同的匀速圆周运动的星 球称为双星.
2.模型特点:它们间的距离为 L.此双星问题的特点是:
(1)两星的运行轨道为同心圆,圆心是它们之间连线上的某 一点.
【解析】 双星系统周期相同(角速度相同),所受万有引力作 为向心力相同,所以 B 项错误,D 项正确;由 F=mω2r,m1r1ω2= m2r2ω2,得 m1v1=m2v2,vv12=mm21=23,A 项错误;rr12=mm21又 r1+r2=L,

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三物理:巧解双星问题

【2018新课标 高考必考知识点 教学计划 教学安排 教案设计】高三物理:巧解双星问题


2(L-r)
得G
M +m L2
= 4 2 T2
L,即
T2=
4 2L3 G(M +m)
则当总质量为 k(M+m),间距为 L′=nL 时,T′= 答案:B
n3 T,选项 B 正确。 k
例题 2 (北京二模)如图所示,质量分别为 m 和 M 的两个星球 A 和 B 在引力作用下 都绕 O 点做匀速圆周运动,星球 A 和 B 两者中心之间的距离为 L,已知 A、B 的中心和 O 三点始终共线,A 和 B 分别在 O 的两侧,引力常量为 G。
所以
r=
(12)1 3来自R5答案:(1) 5GmR 2R
4π R3
(2)
( 12
)
1 3
R
5Gm
5
(答题时间:30 分钟)
1. 天文学家如果观察到一个星球独自做圆周运动,那么就想到在这个星球附近存在着一 个看不见的星体黑洞。星球与黑洞由万有引力的作用组成双星,以两者连线上某点为圆心做 匀速圆周运动,那么( )
例题 1 (山东卷)双星系统由两颗恒星组成,两恒星在相互引力的作用下,分别围绕 其连线上的某一点做周期相同的匀速圆周运动。研究发现,双星系统演化过程中,两星的总
质量、距离和周期均可能发生变化,若某双星系统中两星做圆周运动的周期为 T,经过一段 时间演化后,两星总质量变为原来的 k 倍,两星之间的距离变为原来的 n 倍,则此时圆周运 动的周期为( )
周期为
T,则有
T=
2 πR v
5GmR 2R
R3
T=4π
5Gm
(2)设第二种形式星体之间的距离为 r,则三个星体做圆周运动的半径为
r
R′= 2 cos 30

(完整版)双星三星四星问题

(完整版)双星三星四星问题

双星模型、三星模型、四星模型一、双星问题1.模型构建:在天体运动中,将两颗彼此相距较近,且在相互之间万有引力作用下绕两者连线上的某点做角速度、周期相同的匀速圆周运动的恒星称为双星。

2.模型条件: (1)两颗星彼此相距较近。

(2)两颗星靠相互之间的万有引力提供向心力做匀速圆周运动。

(3)两颗星绕同一圆心做圆周运动。

3.模型特点: (1)“向心力等大反向”——两颗星做匀速圆周运动的向心力由它们之间的万有引力提供。

(2)“周期、角速度相同”——两颗恒星做匀速圆周运动的周期、角速度相等。

(3)三个反比关系:m1r1=m2r2;m1v1=m2v2;m1a1=m2a2推导:根据两球的向心力大小相等可得,m1ω2r1=m2ω2r2,即m1r1=m2r2;等式m1r1=m2r2两边同乘以角速度ω,得m1r1ω=m2r2ω,即m1v1=m2v2;由m1ω2r1=m2ω2r2直接可得,m1a1=m2a2。

(4)巧妙求质量和:Gm1m2L2=m1ω2r1①Gm1m2L2=m2ω2r2②由①+②得:G m1+m2L2=ω2L ∴m1+m2=ω2L3G4. 解答双星问题应注意“两等”“两不等”(1)“两等”: ①它们的角速度相等。

②双星做匀速圆周运动向心力由它们之间的万有引力提供,即它们受到的向心力大小总是相等。

(2)“两不等”:①双星做匀速圆周运动的圆心是它们连线上的一点,所以双星做匀速圆周运动的半径与双星间的距离是不相等的,它们的轨道半径之和才等于它们间的距离。

②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与r2一般也不相等。

二、多星模型(1)定义:所研究星体的万有引力的合力提供做圆周运动的向心力,除中央星体外,各星体的角速度或周期相同.(2)三星模型:①三颗星位于同一直线上,两颗环绕星围绕中央星在同一半径为R的圆形轨道上运行(如图甲所示).②三颗质量均为m的星体位于等边三角形的三个顶点上(如图乙所示).(3)四星模型:①其中一种是四颗质量相等的恒星位于正方形的四个顶点上,沿着外接于正方形的圆形轨道做匀速圆周运动(如图丙).②另一种是三颗恒星始终位于正三角形的三个顶点上,另一颗位于中心O,外围三颗星绕O做匀速圆周运动(如图丁所示).三、卫星的追及相遇问题1、某星体的两颗卫星从相距最近到再次相距最近遵从的规律:内轨道卫星所转过的圆心角与外轨道卫星所转过的圆心角之差为2π的整数倍。

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

万有引力与航天专题:双星模型、变轨问题和地球表面物体的运动

二、变轨问题
卫 星 的 发 射 过 程 动 画
二、卫星的变轨问题
1.变轨原理及过程 人造卫星的发射过程要经过多
次变轨方可到达预定轨道,如图所示。
(1)为了节省能量 ,在赤道上顺着地球自转方向发射卫星到圆 轨道Ⅰ上。 (2)在A点点火加速,由于速度变大,进入椭圆轨道Ⅱ。 (3)在B点(远地点)再次点火加速进入圆形轨道Ⅲ。
期相等,角速度也相等。由 v=rω 得线速度与 两子星圆周运动的半径是成正比的。因为两子 星圆周运动的向心力由两子星间的万有引力提 供,向心力大小相等,
由G
M1M 2 L2
M1r12 , G
M1M 2 L2
M 2r22
可知: M1r1 2 M 2r2 2 ,所以它们的轨道半径
与它们的质量是成反比的。而线速度又与轨 道半径成正比,所以线速度与它们的质量也 是成反比的。正确答案为:BD。
【解析】这两颗星必须各自以一定的速度绕某一中心转 动才不至于因万有引力作用而吸引在一起,从而保持两 星间距离L不变,且两者做匀速圆周运动的角速度ω必 须相同。如图所示,两者轨迹圆的圆心为O,圆半径分 别为R1和R2。由万有引力提供向心力,有
处理方法:
对m1来说:
G
m1m2 L2
=m1ω2R1
对m2来说:
A.飞船在轨道Ⅱ上经过P的速度小于经过Q的速度 B.飞船在轨道Ⅱ上经过P的速度小于在轨道Ⅰ上经 过M的速度 C.飞船在轨道Ⅱ上运动的周期大于在轨道Ⅰ上运 动的周期 D.飞船在轨道Ⅱ上经过P的加速度小于在轨道Ⅰ上 经过M的加速度
反思总结 1.变轨的两种情况
2.相关物理量的比较
(1)两个不同轨道的“切点”处线速度v不相等,图中vⅢ>vⅡB,vⅡA>vⅠ。 (2)同一个椭圆轨道上近地点和远地点线速度大小不相等,vⅡA>vⅡB, (3)两个不同圆轨道上的线速度v不相等,轨道半径越大,v越小,图中vⅠ>vⅢ。 (4)卫星在同一点的不管是椭圆还是圆,加速度一定相等。

双星模型知识点总结

双星模型知识点总结

双星模型知识点总结双星模型(Dual Star Model)是一种用于研究宇宙中双星系统的模型,这是一种包括一颗恒星和另一颗天体(通常是另一个恒星)的天体系统。

在宇宙中,双星系统是非常普遍的一种天体系统。

在这种系统中,两颗天体围绕着彼此运转,并由于引力相互作用而产生一系列复杂的现象。

因此,研究双星系统可以帮助我们更深入地了解宇宙的一些基本物理规律,例如引力相互作用、恒星演化、宇宙起源等。

双星系统的构成双星系统通常由两种类型的天体组成,分别为主要成员(Primary)和次要成员(Secondary)。

主要成员通常是一颗恒星,而次要成员则可以是其他类型的天体,例如行星、白矮星或中子星。

在一些情况下,双星系统的两颗天体都是恒星,这样的系统被称为双星。

双星的形成双星系统的形成有多种机制。

一种常见的形成机制是原始星团或星云中的恒星形成,这些恒星在形成过程中可能由于相互间的引力相互作用而形成双星系统。

另一种形成机制是两颗恒星在宇宙中产生的碰撞或者合并。

除此之外,还有一种形成机制是一颗恒星向另一颗恒星捕获而形成。

双星系统分类根据双星系统的性质和构成,我们可以根据多种分类方法对双星系统进行分类。

其中一个常见的分类方法是根据双星系统的物理间距来分类。

按照这种分类方法,双星系统可以被分为紧密双星系统和松散双星系统。

紧密双星系统是指两颗天体之间距离很近,它们之间的引力相互作用非常显著,造成一系列复杂的演化过程和现象。

而松散双星系统的两颗天体之间间距较大,它们之间引力相互作用较小。

另一个常见的分类方法是根据双星系统的构成类别来分类。

按照这种分类方法,我们可以将双星系统分为天体-恒星双星系统、恒星-恒星双星系统、行星-行星双星系统等等。

双星的运动规律双星系统的运动规律是由两颗天体间的引力相互作用决定的。

在双星系统中,两颗天体围绕着彼此运转。

根据牛顿引力定律,两颗天体之间的引力与它们之间的质量和距离成反比。

因此,双星系统中的天体将沿着椭圆轨道相互运转。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

由此可求出 S2 的质量为( )
4π2r2(r-r1)
A.
GT2
B.
4πr21 GT2
4π2r2 C. GT2
D.
4π2r2r1 GT2
解析:取 S1 为研究对象,S1 做匀速圆周运动,由牛顿第二定律得
Gmr1m2 2=m12Tπ2r1,得 m2=4πG2Tr22r1,所以选项 D 正确.
答案:D
解析显隐
的k倍,两星之间的距离变为原来的n倍,则此时圆周运动的周
期为( ).
n3
n3
n2
n 区分开星体间距与
A. k2T B. k T C. k T D. kT 轨道半径的不同
审题 1、此双星满足什么 设疑 物理规律?
2、双星质量改变后,原表 达式要进行哪些修改?
对 m 恒星:GMLm2 =m2Tπ2·r 对 M 恒星:GMLm2 =M2Tπ2(L-r)
转解析
.
三、规律方法
➢3.规律方法
.
规律方法 双星问题的“两等”“两不等”
(1)双星问题的“两等”: ①它们的角速度相等. ②双星受到的向心力大小总相等. (2)“两不等”: ①双星做匀速圆周运动的圆心是它们连线上的一点,它 们的轨道半径之和等于它们之间的距离. ②由m1ω2r1=m2ω2r2知由于m1与m2一般不相等,故r1与 r2一般也不相等.
星,一颗行星位于中心位置不动,另外两颗
行星围绕它做圆周运动。这三颗行星始终位 于同一直线上,中心行星受力平衡。运转的行 图 4-5-8
星由其余两颗行星的引力提供向心力:Grm2 2+G2mr22=ma
两行星转动的方向相同,周期、角速度、线速度的大小
相等。
.
(2)如图 4-5-9 所示,三颗质量相等的行
L r2
运动的周期、角速度相等,即ω1=ω2,T1=T2 (3) “半径反比”--两星体绕同一圆心做圆周运动,圆心在两颗行
星的连线上,且r1+r2=L,两颗行星做匀速圆周运动的半径与行 星的质量成反比.
.
【例4】 2015年4月,科学家通过欧航局天文望远镜在一个河外星系中, 发现了一对相互环绕旋转的超大质量双黑洞系统,如图所示。这也是天 文学家首次在正常星系中发现超大质量双黑洞。这对验证宇宙学与星 系演化模型、广义相对论在极端条件下的适应性等都具有十分重要的 意义。我国今年底也将发射全球功能最强的暗物质探测卫星。若图中 双黑洞的质量分别为M1和M2,它们以两者连线上的某一点为圆心做 匀速圆周运动。根据所学知识,下列选项 正确的是( ) A.双黑洞的角速度之比ω1∶ω2=M2∶M1 B.双黑洞的轨道半径之比r1∶r2=M2∶M1 C.双黑洞的线速度之比v1∶v2=M1∶M2 D.双黑洞的向心加速度之比a1∶a2=M1∶M2
由万有引力提供向心力得 GML1M2 2=M1(2Tπ)2r1=M2(2Tπ)2r2,
得 M2=G4πT22r1L2,M1=G4πT22r2L2,
总质量 M1+M2=4GπT2L23,选项 C 正确。
答案 C
解析显隐
.
物理建模
(二)宇宙三星模型
宇宙三星模型
(1)如图 4-5-8 所示,三颗质量相等的行
.
【变式训练4】宇宙中,两颗靠得比较近的恒星,只受到彼此之间的 万有引力作用相互绕转,称之为双星系统。在浩瀚的银河系中,多数 恒星都是双星系统。设某双星系统A、B绕其连线上的O点做匀速圆周 运动,如图5所示。若AO>OB,则( ) A.星球A的质量一定大于星球B的质量 B.星球A的线速度一定大于星球B的线速度 C.双星间距离一定,双星的质量越大,其转动周期越大 D.双星的质量一定,双星之间的距离越大,其转动周期越大
双星问题提示: 两星间的万有引力分别给两星提 供做圆周运动的向心力,且两星
的角速度相等.
.
转解析
.
【跟踪训练】宇宙中两颗相距较近的天体 称为“双星”,它们以二者连线上的某一 点为圆心做匀速圆周运动而不至因万有引 力的作用吸引到一起. (1)试证明它们的轨道半径之比、线速度之 比都等于质量的反比; (2)设两者的质量分别为m1和m2,两者相距 L,试写出它们角速度的表达式.
点评:在我们通常研究的卫星绕地球或行星绕太阳运行问题中,
图5
(1)A星体所受合力大小FA; (2)B星体所受合力大小FB; (3)C星体的轨道半径RC; (4)三星体做圆周运动的周期T。
解析 (1)由万有引力定律,A 星体所受 B、C 星体引力大小 为 FBA=GmArm2 B=G2am22=FCA① 方向如图所示
则合力大小为 FA=FBAcos 30°+FCAcos 30°=2 3Gma22② (2)同上,B 星体所受 A、C 星体引力大小分别为 FAB=GmArm2 B=G2am22③ FCB=Gmacm2 B=Gma22④ 方向如图所示 由余弦定理得合力 FB= F2AB+F2CB-2FABFCBcos 120°= 7Gma22⑤ (3)由于 mA=2m,mB=mC=m 通过分析可知,圆心 O 在 BC 的中垂线 AD 的中点
等的行星位于正方形的四个顶点上,
沿外接于正方形的圆轨道做匀速圆周
运动,GLm2 2×2×cos 45°+ G2mL22=
ma,其中r=
2 2
L。
图4-5-11
四颗行星转动的方向相同,周期、角速度、线速度的
大小相等。
.
(2)如图4-5-12所示:三颗质量相等 的行星位于正三角形的三个顶点,另一 颗恒星位于正三角形的中心O点,三颗 行星以O点为圆心。
第四章 曲线运动 万有引力与航天
物理建模: 宇宙多星模型
.
一、模型特点
➢1.模型特点
.
解题模板
.
物理建模 宇宙双星模型
模型特点
绕公共圆心转动的两个星体称为“双星”
(1) “向心力等大反向”--向心力由它们间的
r1
万有引力提供,大小为F向= GMm/L2,方向相反
(2) “周期、角速度相同”--两星体做匀速圆周
用。设四星系统中每个星体的质量均为 m,半径均为 R,四颗
星稳定分布在边长为 a 的正方形的四个顶点上。已知引力常量
为 G。关于宇宙四星系统,下列说法错误的是
()
A.四颗星围绕正方形对角线的交点做匀速圆周运动
B.四颗星的轨道半径均为a2
C.四颗星表面的重力加速度均为GRm2
D.四颗星的周期均为 2πa
绕正三角形的外接圆做匀速圆周运动。 图4-5-12 GLm2 2×2×cos 30°+GMr2m=ma。 其中L=2rcos 30°。 外围三颗行星转动的方向相同,周期、角速度、线速 度的大小均相等。
.
[典例 3] 宇宙中存在一些质量相等且离其他恒星较远的
四颗星组成的四、跟踪训练
➢4.跟踪训练
.
【跟踪训练】 银河系的恒星中大约14是双星,某双星由质量不等
的星体 S1 和 S2 构成,两星在相互之间的万有引力作用下绕两者连 线上某一定点 C 做匀速圆周运动.由天文观察测得其运动周期为
T,S1 到 C 点的距离为 r1,S1 和 S2 的距离为 r.已知引力常量为 G,
根据双星模型的特点分析 本题各物理量的比值
.
转解析
【拓展延伸】在【例 4】中若双黑洞间的距离为 L,其运动周期为
T,引力常量为 G,则双黑洞总质量为( )
GL3
4π2L3 4π2L3 4π2T3
A.4π2T2 B.3GT2 C. GT2 D. GL2
解析 设双黑洞质量分别为 M1 和 M2,绕连线上 O 点做匀速圆周 运动的半径分别为 r1、r2, 则有 r1+r2=L。
则 RC=
43a2+12a2=
47a⑥
(4)三星体运动周期相同,对 C 星体,由
FC=FB= 7Gma22=m(2Tπ)2RC⑦
可得 T=π 6am3 ⑧
答案
m2 (1)2 3G a2
m2 (2) 7G a2
7 (3) 4 a
(4)π
a3 6m
物理建模 宇宙四星模型
(三)宇宙四星模型
(1)如图4-5-11所示,四颗质量相
星位于一正三角形的顶点处,
都绕三角形的中心做圆周运动。每颗行
星运行所需向心力都由其余两颗行星对其万 有引力的合力来提供。
图 4-5-9
GLm2 2×2×cos 30°=ma
其中 L=2rcos 30°。
三颗行星转动的方向相同,周期、角速度、线速度的
大小相等。
.
5.[三星模型](2015·安徽理综,24)由三颗星体构成的系统,忽略其 它星体对它们的作用,存在着一种运动形式;三颗星体在相互之 间的万有引力作用下,分别位于等边三角形的三个顶点上,绕某 一共同的圆心O在三角形所在的平面内做相同角速度的圆周运动 (图示为A、B、C三颗星体质量不相同时的一般情况)。若A星体 质量为2m、B、C两星体的质量均为m,三角形的边长为a,求:
2a 4+ 2Gm
解析
.
【备选】 (2013·山东卷,20)双星系统由两颗恒星组成,两恒星
在相互引力的作用下,分别围绕其连线上的某一点做周期相同
的匀速圆周运动.研究发现,双星系统演化过程中,两星的总
质量、距离和周期均可能发生变化.若某双星系统中两星做圆
周运动的周期为T,经过一段时间演化后,两星总质量变为原来
卫星到地球中心或行星到太阳中心间距与它们的轨道半径大小是
相等的,但在宇宙双星问题中,行星间距与轨道半径是不同的,
这点要引起重视.
转解析
.
➢5.真题演练
.
【真题】(2012·重庆卷,18)冥王星与其附近的另一星 体卡戎可视为双星系统,质量比约为7∶1,同时绕它 们连线上某点O做匀速圆周运动.由此可知,冥王星 绕O点运动的( ). A.轨道半径约为卡戎的1/7 B.角速度大小约为卡戎的1/7 C.线速度大小约为卡戎的7倍 D.向心力大小约为卡戎的7倍
相关文档
最新文档