古今中外位数学家的生平简介
盘点我国古今伟大的数学家

盘点我国古今伟大的数学家1、祖冲之,字文远[公元429-500年]祖籍范阳郡道县[今河北省涞水县北]人。
他生活在南北朝时代,出身于天文、历算世家,是刘宋王朝奉朝请祖朔之的儿子。
他历任徐州从事吏、公府参军、娄县令、竭者仆射、长水校尉等职。
祖日桓,祖冲之的儿子,字景烁,生卒年代无可考。
祖冲之的杰出成就主要在数学、天文历法和机械三方面,他研究过《九章算术》及刘徽注。
在天文历法方面,祖之创制了《大明历》,最早把岁差引进历法。
后经其子祖日桓向梁武帝两次提出修改历法,说可以纠正何承天元嘉历法的疏远,政府终于公元510年起,用大明历法推算历书。
祖冲之父子的数学成就十分丰富,《缀术》是他们的代表作,唐初被列入《算经十书》之一,可惜,现在已失传。
在其它的著作中,我们可知他们的数学成就有圆周率、球体积和开带从立方等三个方面。
祖之提出了3.1415926<π<3.1415927,更得出了圆周率的密率——355/113[现称祖率]比西方早1000年。
祖日桓亦解决了魏晋时期刘徽未解决的问题——计算球体的体积,其中运用到「幂势既同,则积不容异」的原理[现称刘祖原理或祖日桓原理]该原理在西方直到十七世纪才由意大利数学家卡瓦列利[bonaventuracavalieri 公元1598-1647年]发现,比祖日桓晚一千一百多年。
祖冲之亦曾造指南车、欹器、千里船、水碓磨等机械,经过试验都有成效。
2、张衡[公元78-139年]字平子,东汉南阳西鄂[今河南南召]人。
历任郎中、太史令、尚书郎。
富文采、善机巧、尤精天文历算。
创制水运浑象和地动仪,着有《灵宪》、《算罔论》等。
在他的《灵宪》中取用π=730/232[3.1466],又在他的球体积公式中取用π= [3.162],又曾应用重差术于他的宇宙模型之中。
3、刘徽[约公元3世纪]刘徽注《九章算术》,同时又撰有《重差》一卷,《重差》后来印成单行本改称为《海岛算经》,在注文中,刘徽用语言来讲清道理,用图形来解释问题[析理以辞,解体用图]。
数学发展中的历史人物与成就

数学发展中的历史人物与成就数学是一门古老而重要的学科,它的发展历程中涌现出了许多杰出的历史人物,他们的贡献对数学学科的发展起到了重要作用。
本文将介绍几位数学史上的重要人物及其成就,带领读者一起回顾数学的演进历程。
1. 毕达哥拉斯毕达哥拉斯(公元前570年-公元前495年)是古希腊数学史上的重要人物之一。
他提出了著名的毕达哥拉斯定理,即直角三角形斜边的平方等于两直角边的平方和。
这个定理为几何学和三角学的发展奠定了基础。
他还发现了整数的奇偶性与平方数的关系,为数论的研究做出了重要贡献。
2. 欧几里得欧几里得(公元前330年-公元前275年)是古希腊数学家,《几何原本》的作者。
他以其几何学的成就而闻名于世。
欧几里得的《几何原本》是一部系统而完整的几何学教科书,内容包括了平面几何和立体几何的基本定理与推论。
这部作品对后世的几何学研究产生了深远的影响,直到现代仍然被广泛应用。
3. 阿基米德阿基米德(公元前287年-公元前212年)是古希腊科学家和数学家,被誉为科学史上最有天赋的人之一。
他在数学、物理学和工程学等领域都有重要贡献。
阿基米德在几何学中使用了方法论和证明技巧,提出了许多关于测量和计算的理论和方法。
他发明了杠杆原理、浮力定律,并计算了圆周率的上限和下限,为解析几何学的发展奠定了基础。
4. 卡尔·弗里德里希·高斯卡尔·弗里德里希·高斯(1777年-1855年)是德国著名数学家、物理学家和天文学家。
他是现代数学的奠基人之一,对数学的发展做出了深远的贡献。
高斯的贡献涵盖了数论、代数学、几何学和物理学等多个领域。
他提出了高斯消元法,并发现了正多边形的构造方法。
他的研究对数学分析和数论的发展产生了重要影响,并被广泛应用于科学和工程领域。
5. 埃米尔·勒雅维尔埃米尔·勒雅维尔(1882年-1968年)是法国著名数学家,被誉为20世纪最伟大的数学家之一。
数学学习的故事数学家的生平与贡献

数学学习的故事数学家的生平与贡献数学学习的故事——数学家的生平与贡献数学是一门智慧的艺术,也是一门服务于人类社会发展的重要学科。
在数学的历史长河中,出现了许多杰出的数学家,他们的生平与贡献不仅是数学学科的宝贵财富,更是对人类智慧的独特贡献。
今天,我们就来讲述几位伟大数学家的故事,探究他们的学术成就以及对数学世界的深远影响。
1. 亚里士多德(Aristotle)伟大的亚里士多德是古希腊哲学家、数学家、逻辑学家,被誉为西方哲学的奠基人之一。
他的学说在欧洲影响了几十个世纪。
在数学方面,亚里士多德提出了逻辑学理论,并形成了重要的推理法则。
他的逻辑思维方法对于后来数学推理的发展起到了重要的推动作用。
2. 毕达哥拉斯(Pythagoras)毕达哥拉斯是古希腊的一个哲学家和数学家,他创建了毕达哥拉斯学派,并发现了著名的毕达哥拉斯定理。
这个定理被广泛应用于几何学和物理学中,对于测量和计算直角三角形的边长和斜边长度非常有用。
毕达哥拉斯的发现推动了几何学的发展,开辟了新的数学领域。
3. 牛顿(Isaac Newton)伟大的物理学家和数学家牛顿对数学的贡献是不可忽视的。
牛顿发明了微积分学和万有引力定律,这些成就使他成为了现代数学和物理学的奠基人之一。
他的微积分学理论影响了许多科学领域,奠定了力学和天体力学的基础。
牛顿的研究对于整个数学学科的发展产生了深远的影响。
4. 欧拉(Leonhard Euler)欧拉是18世纪最著名的数学家之一,被誉为数学和物理学的巨星。
他以其丰富的作品和深入的数学研究而闻名,不仅在微积分学、几何学、代数学等方面有突出贡献,还在图论以及复变函数领域作出了卓越的成就。
欧拉的数学成果极大地推动了数学知识的发展,为后代的数学家提供了重要的研究方向和思路。
5. 高斯(Carl Friedrich Gauss)高斯是19世纪最重要的数学家之一,对数学学科的发展有着巨大的贡献。
他的数学工作涵盖了几乎所有领域,从代数学到几何学,从数论到统计学。
数学名人介绍

数学名人介绍数学是一门极具挑战性和深度的学科,它不仅能够解决日常生活中的实际问题,更能够推动科学技术的发展和人类文明的进步。
在这样的背景下,有很多杰出的数学家通过他们的贡献和成就成为了数学界的名人,他们的思想和成果被广泛地应用于各个领域,影响了无数人的学术研究和实践工作。
本文将介绍一些著名的数学家及其主要贡献,以期能够让读者更好地了解数学领域的发展历程和现状。
一、欧几里德欧几里德(Euclid),古希腊数学家,是欧几里德几何学的创始人和代表人物。
他的代表作是《几何原本》,这是一部关于几何学的基础理论和方法的经典著作,对后世的数学研究和教育产生了深远的影响。
欧几里德的主要贡献在于他对几何学的逻辑推理和证明方法的创新,他用严密的逻辑推理和准确的证明方法,建立了几何学的基本理论和公理体系,为后来的数学研究奠定了坚实的基础。
二、阿基米德阿基米德(Archimedes),古希腊数学家、物理学家和工程师,是古代科学史上最杰出的数学家之一。
他的主要贡献在于他对数学和物理学的研究和应用,他发明了许多测量和计算的方法,例如杠杆原理、浮力定律、圆周率的计算等,这些方法和定理在现代科学和工程学中仍然具有重要的应用价值。
阿基米德的思想和成果对后世的科学研究和技术发展产生了深远的影响,他被誉为“古代科学之王”。
三、牛顿牛顿(Isaac Newton),英国著名的数学家、物理学家和天文学家,是现代科学史上最伟大的人物之一。
他的代表作是《自然哲学的数学原理》,这是一部关于力学和万有引力定律的经典著作,对现代物理学和数学的发展产生了深刻的影响。
牛顿的主要贡献在于他对力学和数学的创新和发展,他发明了微积分学和微积分的应用方法,建立了力学的基本理论和公式,为后来的科学研究和技术应用奠定了基础。
四、高斯高斯(Carl Friedrich Gauss),德国著名的数学家、物理学家和天文学家,是现代数学史上最伟大的数学家之一。
他的代表作是《数学原理》,这是一部关于数学基础理论和方法的经典著作,对现代数学的发展产生了深刻的影响。
世界著名数学家简介

汇报人:
CONTENTS
添加目录标题 数学家介绍
数学家的工作
数学家的教育 背景
数学家的思想 和观点
数学家的生活 和人格魅力
PRT ONE
PRT TWO
牛顿:英国数学家、物理学家、 天文学家被誉为“现代科学之 父”
阿基米德:古希腊数学家、物 理学家、工程师被誉为“力学 之父”
欧几里得:古希腊数学家被 誉为“几何之父”
汇报人:
数学家: 牛顿
生平:英 国物理学 家、数学 家、天文 学家、自 然哲学家
成就:提 出了万有 引力定律、 光学理论 等被誉为 “现代科 学之父”
欧拉:创立了微积分、拓扑学等数 学分支解决了许多数学难题
牛顿:创立了微积分、牛顿力学等 重要理论对物理学、天文学等领域 产生了深远影响
添加标题
添加标题
添加标题
拉马努金奖:颁发给在数学领域做出杰出贡 献的数学家
国际数学家大会菲尔兹奖:颁发给在数学领 域做出杰出贡献的数学家
PRT FIVE
牛顿:物理学家提出了万有 引力定律和运动定律
阿基米德:物理学家提出了 浮力定律和杠杆原理
欧几里得:几何学之父创立 了欧几里得几何学
莱布尼茨:哲学家提出了微 积分和二进制
牛顿:创立了微积分、万有引力定律等重要科学理论对数学和物理学的发展产生了重 要影响
莱布尼茨:创立了微积分、二进制等重要数学概念对现代数学和计算机科学产生了重 要影响
PRT THREE
代数:研究代数结构、代数方程等 几何:研究几何形状、几何性质等 分析:研究函数、极限、微积分等
概率论与数理统计:研究随机现象、概率分 布等
等
莱布尼茨: 《微积分》、 《形而上学》
介绍古今中外的数学家的小卡片

介绍古今中外的数学家的小卡片摘要:1.古今中外数学家的介绍2.数学家对数学发展的贡献3.数学家的研究领域和成就正文:古今中外的数学家在数学领域中做出了巨大的贡献,他们的研究成果和理论为数学的发展奠定了基础。
本文将介绍一些著名的数学家,包括古代的祖冲之、欧几里得,近代的高斯、欧拉,以及现代的陈省身、庞加莱等。
首先,我们来了解祖冲之。
祖冲之是我国南北朝时期的一位著名数学家,他在数学、天文历法、机械制造等方面都有突出成就。
他创制了《大明历》,发现了当时世界上最接近的圆周率,是世界历史上卓越的数学家。
其次,欧几里得是古希腊时期的一位著名数学家。
他的著作《几何原本》是欧洲数学的基础,对后世产生了深远的影响。
欧几里得在几何学、数论等领域均有重要贡献。
再来看看近代的数学家高斯。
高斯被誉为“数学王子”,他的研究领域涉及数学、物理、天文等多个领域。
他发现了正多边形可作规等重要定理,对数学的发展产生了重要影响。
欧拉是另一位近代著名的数学家。
他在几何学、微积分、数论等多个领域都有重要贡献。
欧拉的数学成就极为丰富,他发现了欧拉公式和欧拉恒等式等。
现代数学家中,陈省身是一位杰出的代表。
他是20 世纪最著名的几何学家之一,对现代几何学的发展产生了重要影响。
陈省身的研究成果包括陈省身公式、陈省身- 高斯定理等。
最后,我们来介绍一下法国数学家庞加莱。
他是20 世纪最杰出的数学家之一,对拓扑学、微分方程等领域的发展做出了巨大贡献。
庞加莱创立了庞加莱猜想,这是数学领域尚未解决的著名难题之一。
总之,这些古今中外的数学家在数学领域中取得了举世瞩目的成就,他们的研究成果和理论为数学的发展奠定了基础。
数学史上的杰出数学家从一到无穷大的数学传记

数学史上的杰出数学家从一到无穷大的数学传记数学作为一门古老而精妙的学科,经历了数百年的发展与演变。
在这个漫长的历程中,有许多杰出的数学家为数学的进展做出了巨大的贡献。
本文将介绍从一到无穷大的数学史上的一些杰出数学家,分享他们的传奇故事和杰出成就。
1.欧几里得(Euclid,公元前325年-公元前265年)欧几里得,古代希腊的数学家和几何学家,被誉为几何学之父。
他的代表作品《几何原本》对后世产生了深远影响。
这本著作集结了他对平面几何、立体几何和数论等领域的研究成果,系统地总结了欧氏几何学的基础理论和命题证明方法。
2.阿基米德(Archimedes,公元前287年-公元前212年)阿基米德是古希腊的科学家与数学家,他对数学和物理学都做出了突出的贡献。
阿基米德以其对浮力的研究和以“欲动一物,需以更大的力推动它”出名。
他的代表作品《浮力》介绍了浮力、杠杆等基本物理原理,并借助几何学方法解决了许多实际问题。
3.牛顿(Isaac Newton,1642年-1727年)牛顿是英国伟大的数学家和物理学家,被认为是现代科学的奠基人之一。
他在微积分、力学、光学和天文学等领域都有重要贡献。
牛顿以发现万有引力定律而闻名,这一定律为其后的天体运动学和力学的研究提供了基础。
4.莱布尼茨(Gottfried Wilhelm Leibniz,1646年-1716年)莱布尼茨是德国数学家和哲学家,在数学和哲学领域都有重要贡献。
他与牛顿同时独立发现了微积分学,提出了不少重要的数学概念和符号表示法,其中最著名的是“微积分学之父”的美誉。
莱布尼茨的工作对数学和物理学的发展产生了深远的影响。
5.费马(Pierre de Fermat,1601年-1665年)费马是法国数学家,他是概率论和数论的重要奠基人之一。
费马定理以他的名字命名,表明了数学中著名的费马猜想。
尽管费马猜想在他生前没有得到证明,但它促使了后来数学家们在数论领域的深入研究,并为许多重要数学发展奠定了基础。
数学之美:从古至今的数学家与他们的贡献

数学之美:从古至今的数学家与他们的贡献自古以来,数学家们一直在探索数学的奥秘,为人类文明的发展做出了巨大贡献。
他们的智慧和创造力为我们揭示了数学之美,让我们一起来回顾这些伟大的数学家及其贡献。
1. 毕达哥拉斯(Pythagoras,约公元前570年-公元前495年):他是古希腊哲学家和数学家,毕达哥拉斯定理的发现者,即直角三角形的斜边的平方等于两直角边的平方和。
2. 欧几里得(Euclid,约公元前330年-公元前275年):他被誉为几何学之父,撰写了《几何原本》,系统地阐述了平面几何的五大公设和许多定理,对后世几何学的发展产生了深远影响。
3. 阿基米德(Archimedes,约公元前287年-公元前212年):古希腊数学家、物理学家和工程师,他发现了浮力原理、提出了杠杆原理以及螺旋桨原理,并发现了圆周率的近似值。
4. 高斯(Carl Friedrich Gauss,1777年-1855年):德国数学家、天文学家和物理学家,被誉为数学王子。
他对数论、代数、统计学、微分几何等领域都做出了重要贡献。
高斯消去法是线性代数中求解线性方程组的一种重要方法。
5. 牛顿(Isaac Newton,1642年-1727年):英国物理学家、数学家和天文学家,他提出了三大运动定律和万有引力定律,并发展了微积分。
牛顿-莱布尼茨公式是微积分中的基本定理。
6. 莱布尼茨(Gottfried Wilhelm Leibniz,1646年-1716年):德国数学家、哲学家和法律学家,他独立发现了微积分并与牛顿几乎同时发表了成果。
莱布尼茨发明了二进制记数法,对计算机科学的发展产生了重要影响。
7. 康托尔(Georg Cantor,1845年-1918年):德国数学家,集合论的创始人之一。
他提出了一一对应原理、超限数、无穷集的分类等概念,为拓扑学、概率论等领域的发展奠定了基础。
8. 希尔伯特(David Hilbert,1862年-1943年):德国数学家,他提出了23个数学问题,被称为希尔伯特二十三个问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
祖冲之公元429年生于建康(今江苏南京)。祖家历代都对天文历法素有研究,祖冲之从小就有机会接触天文、数学知识。在青年时代祖冲之就博得了博学多才的名声,宋孝武帝听说后,派他到“华林学省”做研究工作。公元461年,他在南徐州(今江苏镇江)刺史府里从事,先后任南徐州从事史、公府参军。公元464年他调至娄县(今江苏昆山东北)任县令。在此期间他编制了《大明历》,计算了圆周率。宋朝末年,祖冲之回到建康任谒者仆射,此后直到宋灭亡一段时间后,他花了较大精力来研究机械制造。公元494年到498年之间,他在南齐朝廷担任长水校尉一职,受四品俸禄。鉴于当时战火连绵,他写有《安边论》一文,建议朝廷开垦荒地,发展农业,安定民生,巩固国防。公元500年祖冲之在他72岁时去世。
生平:
欧几里得将公元前 7世纪以来希腊几何积累起来的丰富成果整理在严密的逻辑系统之中,使几何学成为一门独立的、演绎的科学。除了《几何原本》之外,他还有不少着作,可惜大都失传。《已知数》是除《原本》之外惟一保存下来的他的希腊文纯粹几何着作,体例和《原本》前6卷相近,包括94个命题,指出若图形中某些元素已知,则另外一些元素也可以确定。《图形的分割》现存拉丁文本与阿拉伯文本,论述用直线将已知图形分为相等的部分或成比例的部分。《光学》是早期几何光学着作之一,研究透视问题,叙述光的入射角等于反射角,认为视觉是眼睛发出光线到达物体的结果。还有一些着作未能确定是否属于欧几里得,而且已经散失。
贡献:
祖冲之推算出圆周率的真值应该介于3.1415926和3.1415927之间,和儿子祖暅一起求得了球体体积公式,写了一本数学着作《缀术》。
故事:
公元462年,祖冲之请求宋孝武帝颁布新历,孝武帝召集大臣商议。那时候,有一个皇帝宠幸的大臣戴法兴出来反对,认为祖冲之擅自改变古历,是离经叛道的行为。祖冲之当场用他研究的数据回驳了戴法兴。戴法兴依仗皇帝宠幸他,蛮横地说:“历法是古人制定的,后代的人不应该改动。”祖冲之一点也不害怕。他严肃地说:“你如果有事实根据,就只管拿出来辩论。不要拿空话吓唬人嘛。”宋孝武帝想帮助戴法兴,找了一些懂得历法的人跟祖冲之辩论,也一个个被祖冲之驳倒了。但是宋孝武帝还是不肯颁布新历。直到祖冲之死了十年之后,他创制的大明历才得到推行。
祖冲之(429-500),字文远, 祖籍范阳郡遒县(今河北涞源县),南北朝时期杰出的数学家、天文学家和机械制造家。
祖冲之是世界上第一个把圆周率的数字计算到小数点后第七位数字的第一人。他测算一年的时间,与现代天文科学测得的结果比较,只相差50秒,他造出日行百里的“千里船”。他设计能同时舂米、磨面的水碓磨。祖冲之写了一本数学着作《缀术》。创制出大明历,造指南车。并和儿子祖暅一起求得了球体体积公式
故事:
一天,一群年轻人来到位于雅典城郊外林荫中的“柏拉图学园”。只见学园的大门紧闭着,门口挂着一块木牌,上面写着:“不懂数学者,不得入内! ”这是当年柏拉图亲自立下的规矩,为的是让学生们知道他对数学的重视,然而却把前来求教的年轻人给闹糊涂了。有人在想,正是因为我不懂数学,才要来这儿求教的呀,如果懂了,还来这儿做什么?正在人们面面相觑,不知是退、是进的时候,欧几里得从人群中走了出来,只见他整了整衣冠,看了看那块牌子,然后果断地推开了学园大门,头也没有回地走了进去。
生平:
欧拉1707年4月15日出生于瑞士,在那里受教育。欧拉是一位数学神童。他作为数学教授,先后任教于圣彼得堡和柏林,尔后再返圣彼得堡。欧拉是有史以来最多遗产的数学家,他的全集共计75卷。欧拉实际上支配了18世纪的数学,对于当时的新发明微积分,他推导出了很多结果。在他生命的最后7年中,欧拉的双目完全失明,尽管如此,他还是以惊人的速度产出了生平一半的着作。 欧拉的一生很虔诚。然而,那个广泛流传的传说却不是真的。传说中说到,欧拉在叶卡捷琳娜二世的宫廷里,挑战德尼?狄德罗:“先生,因为(a+b^n)/n = x;所以上帝存在,请回答!” 欧拉的离世也很特别:在朋友的派对中他中途退场去工作,最后伏在书桌上安静的去了。
3、欧拉
莱昂哈德?欧拉(Leonhard Euler ,1707年4月5日~1783年9月18日)是瑞士数学家和物理学家。他被一些数学史学者称为历史上最伟大的两位数学家之一(另一位是卡尔?弗里德里克?高斯)。欧拉是第一个使用“函数”一词来描述包含各种参数的表达式的人,例如:y = F(x) (函数的定义由莱布尼兹在1694年给出)。他是把微积分应用于物理学的先驱者之一。
生平:
阿基米德(Archimedes,约前287—212),诞生于希腊叙拉古附近的一个小村庄。他出生于贵族,与叙拉古的赫农王(King Hieron)有亲戚关系,家庭十分富有。阿基米德的父亲是天文学家兼数学家,学识渊博,为人谦逊。阿基米德受家庭的影响,从小就对数学、天文学特别是古希腊的几何学产生了浓厚的兴趣。当他刚满十一岁时,借助与王室的关系,被送到埃及的亚历山大里亚城去学习。亚历山大位于尼罗河口,是当时文化贸易的中心之一。这里有雄伟的博物馆、图书馆,而且人才荟萃,被世人誉为“智慧之都”。阿基米德在这里学习和生活了许多年,曾跟很多学者密切交往。他兼收并蓄了东方和古希腊的优秀文化遗产,在其后的科学生涯中作出了重大的贡献。公元前二一二年,古罗马军队入侵叙拉古,阿基米德被罗马士兵杀死,终年七十五岁。阿基米德的遗体葬在西西里岛,墓碑上刻着一个圆柱内切球的图形,以纪念他在几何学上的卓越贡献。
4、欧几里德
亚历山大里亚的欧几里得(希腊文:Ευκλειδη?,约公元前330年—前275年),古希腊数学家,被称为“几何之父”。他活跃于托勒密一世(公元前323年-前283年)时期的亚历山大里亚,他最着名的着作《几何原本》是欧洲数学的基础,提出五大公设,发展欧几里得几何,被广泛的认为是历史上最成功的教科书。欧几里得也写了一些关于透视、圆锥曲线、球面几何学及数论的作品,是几何学的奠基人
2、刘徽
刘徽(约公元225年—295年),汉族,山东临淄人,魏晋期间伟大的数学家,中国古典数学 理论的奠基者之一。是中国数学史上一个非常伟大的数学家,他的杰作《九章算术注》和《海岛算经》,是中国最宝贵的数学遗产刘徽思想敏捷,方法灵活,既提倡推理又主张直观.他是中国最早明确主张用逻辑推理的方式来论证数学命题的人.刘徽的一生是为数学刻苦探求的一生.他虽然地位低下,但人格高尚.他不是沽名钓誉的庸人,而是学而不厌的伟人,他给我们中华民族留下了宝贵的财富。
故事:
赫农王让金匠替他做了一顶纯金的王冠,做好后,国王疑心工匠在金冠中掺了银子,但这顶金冠确与当初交给金匠的纯金一样重,到底工匠有没有捣鬼呢?既想检验真假,又不能破坏王冠,这个问题不仅难倒了国王,也使诸大臣们面面相觑。后来,国王将它交给了阿基米德。阿基米德冥思苦想出很多方法,但都失败了。有一天,他去澡堂洗澡,他一边坐进澡盆里,一边看到水往外溢,同时感到身体被轻轻拖起。他突然恍然大悟,跳出澡盆,连衣服都顾不得穿就直向王宫奔去,一路大声很着“尤里卡”, “尤里卡”(Eureka,我知道了,我找到了)原来他想到,如果王冠放入水中后,排出的水量不等于同等重量的金子排出的水量,那肯定是掺了别的金属。这就是有名的浮力定律,既浸在液体中的物体受到向上的浮力,其大小等于物体所排出液体的重量。后来,该定律就被命名为阿基米德定律。
关于他的生平,现在知道的很少。早年大概就学于雅典,深知柏拉图的学说。公元前300年左右,在托勒密王(公元前364~前283)的邀请下,来到亚历山大,长期在那里工作。他是一位温良敦厚的教育家,对有志数学之士,总是循循善诱。但反对不肯刻苦钻研、投机取巧的作风,也反对狭隘实用观点。据普罗克洛斯(约410~485)记载,托勒密王曾经问欧几里得,除了他的《几何原本》之外,还有没有其他学习几何的捷径。欧几里得回答说: “ 在几何里,没有专为国王铺设的大道。 ” 这句话后来成为传诵千古的学习箴言。斯托贝乌斯(约 500)记述了另一则故事,说一个学生才开始学第一个命题,就问欧几里得学了几何学之后将得到些什么。欧几里得说:三个钱币,因为他想在学习中获取实利。
而且在他的注释中提出了很多独到的见例如他创造了用割圆术来计算圆周率的方法从而开创了我国数学发展中圆周率研究的新纪元他从圆的内接正六边形算起依次将边数加倍一直算到内接正192边形的面积从而得到圆周率的近似值为314后人为了纪念刘徽称这个数值为徽率3072边形的面积得到圆周率的近似值为31416
1、祖冲之
贡献:Байду номын сангаас
提出函数的概念,创立分析力学,解决了柯尼斯堡七桥问题,给出欧拉公式
故事:
受叶卡捷琳娜二世女皇邀请访问宫廷的狄德罗靠着向朝臣们宣传无神论过日子。叶卡捷琳娜感到厌烦了,便叫欧拉封住这个夸夸其谈的哲学家的嘴。这很容易,因为整个数学对于狄德罗那是天外玄机。德.摩根(DeMorgan)讲到这件事的经过(在他的名着(悖论汇编)中,1872):有人告诉狄德罗,一个博学的数学家有上帝存在的代数证明。如果他想听,那个数学家将当着整个宫廷公布出来。狄德罗高兴地同意了。……欧拉来到狄德罗跟前,以深信不疑的语调庄重地说: "先生,因为,所以上帝存在。请回答!" 这让狄德罗听起来像满有道理似的。这个可怜的人由于难堪的沉默而受到无情嘲笑的羞辱,只好向叶卡捷琳娜请求立即回法国。女皇宽厚地答应了他。
生平:
(生于公元250年左右),三国后期魏国人,是中国古代杰出的数学家,也是中国古典数学理论的奠基者之一.其生卒年月、生平事迹,史书上很少记载。据有限史料推测,他是魏晋时代山东临淄或淄川一带人。终生未做官。
贡献:
为《九章算术》做了注释,书名叫《九章算术注》,此书于魏景元4年(公元263年)成书,共9卷,现在有传本可据,是我国最可贵的数学遗产之一.刘徽的《九章算术注》整理了《九章算术》中各种解题方法的思想体系,旁征博引,纠正了其中某些错误,提高了《九章算术》的学术水平;他善于用文字讲清道理,用图形说明问题,便于读者学习、理解、掌握;而且,在他的注释中提出了很多独到的见解.例如,他创造了用“割圆术”来计算圆周率的方法,从而开创了我国数学发展中圆周率研究的新纪元.他从圆的内接正六边形算起,依次将边数加倍,一直算到内接正192边形的面积,从而得到圆周率的近似值为3.14,后人为了纪念刘徽,称这个数值为“徽率”.以后他又算到圆内接正3072边形的面积,得到圆周率的近似值为3.1416.