1不等式与线性规划-拔高难度-讲义

合集下载

高三数学 专题35 不等式与线性规划课件 理

高三数学 专题35 不等式与线性规划课件 理

解析 由已知条件 0<10x<12p,pt精解选 得 x<lg12=-lg 2.
11
(2)已知函数f(x)=(x-2)(ax+b)为偶函数,且在(0,
+∞)单调递增,则f(2-x)>0的解集为( )
A.{x|x>2或x<-2}
B.{x|-2<x<2} C.{x|x<0或x>4}
思维启迪 利 用 f(x) 是 偶 函 数
a+b (3) 2 ≥ ab(a>0,b>0).
(4)ab≤(a+2 b)2(a,b∈R).
(5)
a2+b2 a+b ≥≥
22
apbp≥t精选a2+abb(a>0,b>0).
7
3.二元一次不等式(组)和简单的线性规划 (1)线性规划问题的有关概念:线性约束条件、线 性目标函数、可行域、最优解等. (2)解不含实际背景的线性规划问题的一般步骤: ①画出可行域;②根据线性目标函数的几何意义确 定最优解;③求出目标函数的最大值或者最小值.
ppt精选
5
(4)简单对数不等式的解法 ①当a>1时,logaf(x)>logag(x)⇔f(x)>g(x)且f(x)>0, g(x)>0; ②当0<a<1时,logaf(x)>logag(x)⇔f(x)<g(x)且f(x)>0, g(x)>0.
ppt精选
6
2.五个重要不等式 (1)|a|≥0,a2≥0(a∈R). (2)a2+b2≥2ab(a、b∈R).
ppt精选4Biblioteka (2)简单分式不等式的解法
①变形⇒ fx >0(<0)⇔f(x)g(x)>0(<0); gx

高考数学文(二轮复习)课件《不等式与线性规划》

高考数学文(二轮复习)课件《不等式与线性规划》

2.解不等式的四种策略 (1) 解一元二次不等式的策略:先化为一般形式 ax2 + bx + c>0(a>0),再结合相应二次方程的根及二次函数图象确定一元二 次不等式的解集. (2)解简单的分式不等式的策略:将不等式一边化为 0,再将 不等式等价转化为整式不等式(组)求解. (3)解含指、对数不等式的策略:利用指、对数函数的单调性 将其转化为整式不等式求解. (4)解含参数不等式的策略:根据题意确定参数分类的标准, 依次讨论求解.
2.(2014· 全国新课标Ⅱ)设集合 M={0,1,2},N={x|x2-3x+ 2≤0},则 M∩N=( A.{1} C.{0,1} ) B.{2} D.{1,2}
答案:D
解析:N={x|x2-3x+2≤0}={x|1≤x≤2},又 M={0,1,2}, 所以 M∩N={1,2}.故选 D.
基础记忆
试做真题
基础要记牢,真题须做熟
基础知识不“背死” ,就不能“用活” ! 1.牢记四类不等式的解法 (1)一元二次不等式的解法. 先化为一般形式 ax2+bx+c>0(a≠0),再求相应一元二次方 程 ax2+bx+c=0(a≠0)的根, 最后根据相应二次函数图象与 x 轴 的位置关系,确定一元二次不等式的解集. (2)简单分式不等式的解法.
a+b 2 (4)ab≤ 2 (a,b∈R).
(5)
a2+b2 a+b ≥ ≥ ab(a>0,b>0). 2 2
3.快速判断二元一次不等式表示的平面区域
不等式 B>0 Ax+By+ C>0 Ax+By+ C<0
区域 B<0
直线 Ax+By 直线 Ax+By+ +C=0 上方 C=0 下方
不等式与线性规划

不等式与线性规划

不等式与线性规划

条件, 条件,原函数中有一个因式 之和为定值,需以( )之和为定值,需以( 与( 拆成 解: ,这时就有
当且仅当
,即
时,
评注:一般说, 评注:一般说,凑“和”为定值较难,它需要一定的技 为定值较难, 巧。当然这种技巧来源于对均值定理的真正理解和基 本的恒等变形能力。 本的恒等变形能力。
(三)、找等号 三、 例4 求函数
1+ y2 2x2 2
并非“定值” 并非“定值”,故不能直接运用 拆(添)项重组。 项重组。
均值不等式, 均值不等式,为此需对原式按 解:原函数化为

因为 当且仅当 即x=1,x=-1时, , - 时
例3 求函数 分析: 分析:因
的最大值。 的最大值。 定值,故需拆凑使其满足定值 ,为使其余因式 )为准将 定值。 定值。
d - >0(其 其 b
作为条件,余下的一个不等式作为结论组成 作为条件 余下的一个不等式作为结论组成
c d >0, 由ab>0,bc-ad>0可得出 可得出 a b c d bc-ad>0两边同除以 得 - >0. 两边同除以ab,得 两边同除以 a b c0,ab>0,可得 可得bc-ad>0. 可得
返回
利用均值不等式求最值 均值不等式(定理)具有将“和式” 均值不等式(定理)具有将“和式”与“积式” 积式” 相 互转化的功能,应用比较广泛, 互转化的功能,应用比较广泛,这里仅就其在 求函数最值中的应用述其管见。 求函数最值中的应用述其管见。为了用好该不 等式, 等式,首先要正确理解该不等式中的三个条件 三要素): (三要素): 各项或各因式均为正值)、 正(各项或各因式均为正值)、 和或积为定值)、 定(和或积为定值)、 各项或各因式都能取得相等的值, 等(各项或各因式都能取得相等的值, 即具备等号成立的条件), 即具备等号成立的条件), 简称“一正、二定、三相等” 这三条缺一不可, 简称“一正、二定、三相等”,这三条缺一不可, 当然还要牢记结论:积定→和最小 和定→积最 和最小, 当然还要牢记结论:积定 和最小,和定 积最

不等式解法及线性规划

不等式解法及线性规划

不等式的解法一元二次不等式解法步骤:1) 化简(将不等式化为不等号右边为0,左边x 的最高次项系数为正);2) 首先考虑分解因式;不易分解则判断∆,当0∆≥时解方程(利用求根公式) 3) 画图写解集(能取的根打实心点,不能去的打空心) 含绝对值不等式的解法(关键是去掉绝对值) 利用绝对值的定义:(零点分段法)利用绝对值的几何意义:||x 表示x 到原点的距离||(0){|}x a a x x a =>=±的解集为 }|{)0(||a x a x a a x <<-><的解集为 }|{)0(||a x a x x a a x -<>>>或的解集为公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法. 分式不等式的解法1)标准化:移项通分化为()0()f x g x >(或()0()f x g x <);()0()f x g x ≥(或()0()f xg x ≤)的形式, 2)转化为整式不等式(组)()()0()()0()()00()0()()f x g x f x f x f x g x g x g x g x ≥⎧>⇔>≥⇔⎨≠⎩;考向一 一元二次不等式的解法【例1】►已知函数f (x )=⎩⎪⎨⎪⎧x 2+2x ,x ≥0,-x 2+2x ,x <0,解不等式f (x )>3.[审题视点] 对x 分x ≥0、x <0进行讨论从而把f (x )>3变成两个不等式组.解 由题意知⎩⎪⎨⎪⎧ x ≥0,x 2+2x >3或⎩⎪⎨⎪⎧x <0,-x 2+2x >3,解得:x >1. 故原不等式的解集为{x |x >1}.解一元二次不等式的一般步骤是:(1)化为标准形式;(2)确定判别式Δ的符号;(3)若Δ≥0,则求出该不等式对应的二次方程的根,若Δ<0,则对应的二次方程无根;(4)结合二次函数的图象得出不等式的解集.特别地,若一元二次不等式的左边的二次三项式能分解因式,则可立即写出不等式的解集.【训练1】 函数f (x )=2x 2+x -3+log 3(3+2x -x 2)的定义域为________.解析 依题意知⎩⎪⎨⎪⎧2x 2+x -3≥0,3+2x -x 2>0,解得⎩⎪⎨⎪⎧x ≤-32或x ≥1,-1<x <3.∴1≤x <3 答案 [1,3)考向二 含参数的一元二次不等式的解法【例2】►求不等式12x 2-ax >a 2(a ∈R )的解集.[审题视点] 先求方程12x 2-ax =a 2的根,讨论根的大小,确定不等式的解集.解 ∵12x 2-ax >a 2,∴12x 2-ax -a 2>0,即(4x +a )(3x -a )>0,令(4x +a )(3x -a )=0,得:x 1=-a 4,x 2=a 3.①a >0时,-a 4<a3,解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3; ②a =0时,x 2>0,解集为{x |x ∈R 且x ≠0};③a <0时,-a 4>a 3,解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.x =0x x ≥0x x -<综上所述:当a >0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <-a 4或x >a 3;当a =0时,不等式的解集为{x |x∈R 且x ≠0};当a <0时,不等式的解集为⎩⎨⎧⎭⎬⎫x |x <a 3或x >-a 4.解含参数的一元二次不等式的一般步骤:(1)二次项若含有参数应讨论是等于0,小于0,还是大于0,然后将不等式转化为二次项系数为正的形式.(2)判断方程的根的个数,讨论判别式Δ与0的关系.(3)确定无根时可直接写出解集,确定方程有两个根时,要讨论两根的大小关系,从而确定解集形式.【训练2】 解关于x 的不等式(1-ax )2<1.解 由(1-ax )2<1,得a 2x 2-2ax <0,即ax (ax -2)<0,当a =0时,x ∈∅.当a >0时,由ax (ax -2)<0,得a 2x ⎝ ⎛⎭⎪⎫x -2a <0,即0<x <2a.当a <0时,2a<x <0.综上所述:当a =0时,不等式解集为空集;当a >0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪0<x <2a ;当a <0时,不等式解集为⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪2a<x <0.考向三 不等式恒成立问题【例3】►已知不等式ax 2+4x +a >1-2x 2对一切实数x 恒成立,求实数a 的取值范围.[审题视点] 化为标准形式ax 2+bx +c >0后分a =0与a ≠0讨论.当a ≠0时,有⎩⎪⎨⎪⎧a >0,Δ=b 2-4ac <0. 解 原不等式等价于(a +2)x 2+4x +a -1>0对一切实数恒成立,显然a =-2时,解集不是R ,因此a ≠-2,从而有⎩⎪⎨⎪⎧a +2>0,Δ=42-4a +2a -1<0,整理,得⎩⎪⎨⎪⎧a >-2,a -2a +3>0,所以⎩⎪⎨⎪⎧a >-2,a <-3或a >2,所以a >2. 故a 的取值范围是(2,+∞).不等式ax 2+bx +c >0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c>0;当a ≠0时,⎩⎪⎨⎪⎧a >0,Δ<0;不等式ax 2+bx +c <0的解是全体实数(或恒成立)的条件是当a =0时,b =0,c <0;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ<0.【训练3】 已知f (x )=x 2-2ax +2(a ∈R ),当x ∈[-1,+∞)时,f (x )≥a 恒成立,求a的取值范围.解 法一 f (x )=(x -a )2+2-a 2,此二次函数图象的对称轴为x =a . ①当a ∈(-∞,-1)时,f (x )在[-1,+∞)上单调递增,f (x )min =f (-1)=2a +3.要使f (x )≥a 恒成立,只需f (x )min ≥a ,即2a +3≥a ,解得-3≤a <-1;②当a ∈[-1,+∞)时,f (x )min =f (a )=2-a 2,由2-a 2≥a ,解得-1≤a ≤1. 综上所述,所求a 的取值范围为[-3,1]. 练习1.(人教A 版教材习题改编)不等式x 2-3x +2<0的解集为( ). A .(-∞,-2)∪(-1,+∞) B .(-2,-1) C .(-∞,1)∪(2,+∞) D .(1,2)解析 ∵(x -1)(x -2)<0,∴1<x <2.故原不等式的解集为(1,2).答案 D2.(2011·广东)不等式2x 2-x -1>0的解集是( ).A.⎝ ⎛⎭⎪⎫-12,1 B .(1,+∞)C .(-∞,1)∪(2,+∞)D.⎝⎛⎭⎪⎫-∞,-12∪(1,+∞) 解析 ∵2x 2-x -1=(x -1)(2x +1)>0,∴x >1或x <-12.故原不等式的解集为⎝⎛⎭⎪⎫-∞,-12∪(1,+∞).答案 D 3.不等式9x 2+6x +1≤0的解集是( ). A.⎩⎨⎧⎭⎬⎫x |x ≠-13 B.⎩⎨⎧⎭⎬⎫-13C.⎩⎨⎧⎭⎬⎫x |-13≤x ≤13 D .R解析 ∵9x 2+6x +1=(3x +1)2≥0,∴9x 2+6x +1≤0的解集为⎩⎨⎧⎭⎬⎫x |x =-13.答案 B4.(2012·许昌模拟)若不等式ax 2+bx -2<0的解集为⎩⎨⎧⎭⎬⎫x |-2<x <14,则ab =( ).A .-28B .-26C .28D .26解析 ∵x =-2,14是方程ax 2+bx -2=0的两根,∴⎩⎪⎨⎪⎧-2a =-2×14=-12,-b a =-74,∴a =4,b =7.∴ab =28.答案 C5.不等式ax 2+2ax +1≥0对一切x ∈R 恒成立,则实数a 的取值范围为________. 解析 当a =0时,不等式为1≥0恒成立;当a ≠0时,须⎩⎪⎨⎪⎧ a >0,Δ≤0,即⎩⎪⎨⎪⎧a >0,4a 2-4a ≤0.∴0<a ≤1,综上0≤a ≤1.答案 [0,1]考向二 绝对值不等式1.对任意x ∈R ,|2-x |+|3+x |≥a 2-4a 恒成立,则a 的取值范围是( ) A .-1≤a ≤5 B .-1<a ≤5 C .-1≤a <5D .-1<a <5[答案] A11.(2010·南京调研)设函数f (x )=|x -1|+|x -2|,则不等式f (x )>3的解集为________.[答案] (-∞,0)∪(3,+∞)[解析] 当x <1时,有f (x )=1-x +2-x =3-2x .由f (x )>3得3-2x >3,解得x <0; 当1≤x ≤2时,有f (x )=x -1+2-x =1.此时,不等式f (x )>3无解; 当x >2时,有f (x )=x -1+x -2=2x -3.由f (x )>3得2x -3>3,解得x >3. 故不等式f (x )>3的解集为(-∞,0)∪(3,+∞).[点评] 可画出数轴如图,∵|AB |=1,∴|PB |>1,|QA |>1,故由图可得x >3或x <0.13.(2010·福建南平一中)若函数f (x )=2|x +7|-|3x -4|的最小值为2,则自变量x 的取值范围是________.[答案] [-12,5][解析] 依题意知,2|x +7|-|3x -4|≥2,∴|x +7|-|3x -4|≥1,当x >43时,不等式化为x +7-(3x -4)≥1.解得x ≤5,即43<x ≤5;当-7≤x ≤43时,不等式化为x +7+(3x -4)≥1,解得x ≥-12,即-12≤x ≤43;当x <-7时,不等式化为-x -7+(3x -4)≥1,解得x ≥6,与x <-7矛盾.∴自变量x 的取值范围为-12≤x ≤5.15.(2010·福建理)已知函数f (x )=|x -a |.(1)若不等式f (x )≤3的解集为{x |-1≤x ≤5},求实数a 的值; (2)在(1)的条件下,若f (x )+f (x +5)≥m 对一切实数x 恒成立,求实数m 的取值范围. [解析] 解法一:(1)由f (x )≤3得|x -a |≤3,解得a -3≤x ≤a +3.又已知不等式f (x )≤3的解集为{x |-1≤x ≤5},所以⎩⎪⎨⎪⎧a -3=-1,a +3=5,解得a =2.(2)当a =2时,f (x )=|x -2|.设g (x )=f (x )+f (x +5),于是g (x )=|x -2|+|x +3|=⎩⎪⎨⎪⎧-2x -1,x <-3;5,-3≤x ≤2;2x +1,x >2.所以当x <-3时,g (x )>5;当-3≤x≤2时,g (x )=5;当x >2时,g (x )>5. 综上可得,g (x )的最小值为5.若f (x )+f (x +5)≥m ,即g (x )≥m 对一切实数x 恒成立,则m 的取值范围为(-∞,5]. 考向三 分式不等式例1 解不等式 <0.分析:这是一个分式不等式,其左边是两个关于x 的二次三项式的商,根据商的符号法则,它可以化成两个不等式组:因此,原不等式的解集就是上面两个不等式组的解集的并集,此种解法从课本可以看到.另解:根据积的符号法则,可以将原不等式等价变形为(x 2-3x +2)(x 2-2x -3)<0 即(x +1)(x -1)(x -2)(x -3)<0 令(x +1)(x -1)(x -2)(x -3)=0 可得零点x =-1或1,或2或3,将数轴分成五部分(如图).由数轴标根法可得所求不等式解集为:{x |-1<x <1或2<x <3}说明:(1)让学生注意数轴标根法适用条件;(2)让学生思考≤0的等价变形.例2 解不等式>1分析:首先转化成右端为0的分式不等式,然后再等价变形为整式不等式求解.解:原不等式等价变形为:-1>0通分整理得:>0等价变形为:(x2-2x+3)(x2-3x+2)>0即:(x+1)(x-1)(x-2)(x-3)>0由数轴标根法可得所求不等式解集为:{x|x<-1或1<x<2或x>3}说明:此题要求学生掌握较为一般的分式不等式的转化与求解.练习:1. 不等式22231372x xx x++>-+的解集是 2. 不等式3113xx+>--的解集是3. 不等式2223712x xx x+-≥--的解集是 4. 不等式1111x xx x-+<+-的解集是5. 不等式229152x xx--<+的解集是 6. 不等式2232712x xx x-+>-+的解集是7. 不等式2121x xx+≤+的解集是 8. 不等式2112xx->-+的解集是9. 不等式23234xx-≤-的解集是 10. 不等式2212(1)(1)xx x-<+-的解集是答案1. 2. (-2,3) 3.4.5. 6.7.8. (1,2)9. 10.线性规划求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题. 满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域(类似函数的定义域);使目标函数取得最大值或最小值的可行解叫做最优解.生产实际中有许多问题都可以归结为线性规划问题.线性规划问题一般用图解法,其步骤如下: (1)根据题意,设出变量x 、y ; (2)找出线性约束条件;(3)确定线性目标函数z =f (x ,y );(4)画出可行域(即各约束条件所示区域的公共区域);(5)利用线性目标函数作平行直线系f (x ,y )=t (t 为参数);(6)观察图形,找到直线f (x ,y )=t 在可行域上使t 取得欲求最值的位置,以确定最优解,给出答案.1.(2008全国高考卷Ⅰ,13)若x,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+≥+3,x 00,3y -x 0,y x 则z =2x-y 的最大值为_____________.2.(文)(2010·西安中学)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤x x +y ≥2y ≥3x -6,则目标函数z =2x +y 的最小值为( )A .2B .3C .5D .73.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0x +y ≤1x +2y ≥1,则目标函数z =2x +y 的最大值为________.4.(文)(09·安徽)不等式组⎩⎪⎨⎪⎧x ≥0x +3y ≥43x +y ≤4所表示的平面区域的面积等于( )A.32 B.23 C.43D.345(2010·重庆市南开中学)不等式组⎩⎪⎨⎪⎧x +y ≥22x -y ≤4x -y ≥0所围成的平面区域的面积为( )A .3 2B .6 2C .6D .36.(文)(2010·山东省实验中学)已知实数x ,y 满足⎩⎪⎨⎪⎧x -y +6≥0x +y ≥0x ≤3,若z =ax +y 的最大值为3a +9,最小值为3a -3,则实数a 的取值范围为( )A .a ≥1B .a ≤-1C .-1≤a ≤1D .a ≥1或a ≤-17.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧ y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .18.(文)(2010·厦门一中)已知x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥x x +y ≤2x ≥a,且z =2x +y 的最大值是最小值的3倍,则a =( )A .0 B.13 C.23D .1。

不等式及线性规划课件

不等式及线性规划课件

生产计划问题
企业需要根据市场需求、生产能力、成本等因素制定生产计划。通过整数 线性规划,可以优化生产资源的配置,实现成本最小化或利润最大化。
物流配送问题
在物流配送领域,需要解决如何合理安排车辆、路线和配送时间等问题。利用 整数线性规划,可以制定高效的配送计划,降低运输成本并提高服务质量。
投资组合优化
大规模问题,计算效率高。
内点法
内点法是一种求解线性规划问题 的数值方法,通过在可行域内部 搜索最优解。适用于某些特定类 型的问题,如具有大量等式约束
的问题。
05
单纯形法求解线性规划问题
单纯形法基本原理
线性规划问题的标准形式
单纯形表
通过引入松弛变量和剩余变量,将一 般形式的线性规划问题转化为标准形 式。
定的整数组合决定。
分支定界法求解整数线性规划
分支策略
通过将问题分解为两个或多个子问题来缩小搜索范围,每个子问题对应原问题的 一个子集。
定界策略
利用线性规划松弛问题的解来估计整数线性规划问题的最优解,从而排除不可能 产生最优解的子问题。
分支定界法求解整数线性规划
分支定界法步骤 1. 求解原问题的线性规划松弛问题,得到最优解。
不等式及线性规划课件
目录
• 不等式基本概念与性质 • 一元一次不等式及其解法 • 一元二次不等式及其解法 • 线性规划基本概念与原理 • 单纯形法求解线性规划问题 • 整数线性规划及其应用
01
不等式基本概念与性质
不等式定义及表示方法
不等式的定义
表示两个量之间大小关系的数学表 达式,常用符号有“<”、“>”、 “≤”、“≥”等。
一元二次不等式解法
判别式法
通过计算判别式 $Delta = b^2 - 4ac$ 的值,判断一 元二次不等式的解的情况。

不等式与线性规划重点

不等式与线性规划重点

不等式与线性规划重点、难点、易错点分析一、不等式的概念与性质1、由基本性质比较大小、证明不等式(1)作差(2)作商(3)分析比较(4)取平方(5)分子或分母有理化(6)图像(7)单调性2、根据均值不等式比较大小、证明不等式二、范围问题1、解方程法2、待定系数法3、确定平面区域法三、利用均值不等式求值域与最值1、凑项法2、凑系数法3、分离系数4、换元法5、双勾曲线6、整体代换7、取平方四、解不等式1、一元二次不等式2、含参不等式(分类讨论)3、分式不等式(分式化整式)4、高次不等式(穿根法)5、绝对值不等式(1)分段讨论(2)数形结合(3)取平方五、不等式成立问题1、恒成立问题2、能成立问题3、恰成立问题六、不等式的实际应用1、基本不等式在实际应用题中的应用2、二次不等式解集的简单应用3、一元二次不等式在实际中的应用4、均值不等式的应用七、二元一次方程组与线性规划1、求线性目标函数的取值范围2、已知线性约束条件,探求线性目标关系最值问题3、已知线性约束条件,探求分式目标关系最值问题4、已知线性约束条件,探求区域面积与周长问题5、求线性目标函数中所含参数的取值范围6、已知最优解,探求目标函数参数问题7、已知最优解,探求约束条件函数参数问题 8、求可行域中整点个数 (1)平移找解法 (2)整点调整法 (3)逐一检验法9、求非线性目标函数的最值 10、比值问题八、线性规划实际应用题型:一、不等式的概念与性质 1、比较大小 (1)作差法例1:已知-1<a<0,A=1+a 2, B=1-a 2,C=a11+,是比较A,B,C 的大小 (2)作商法例1:比较a a b b 与a b b a (a ,b 为不相等的正数)的大小 (3)均值不等式法例1:已知a ,b ∈R ,则ab ,2b a +,2b a 22+,b a 2ab +的大小顺序是例2:已知a ,b ∈R ,a ≠b ,且a+b=2,则( )A.ab ≤2b a 22+≤1B. 1<ab<2b a 22+C. ab ≤1<2b a 22+D. ab<1<2b a 22+2、证明不等式(1)利用性质证明不等式例1:已知a ,b 是正实数,求证:abb a+≥b a +例2:已知a ,b ,x ,y 是正整数,且b 1a 1〉,x>y ,求证:by yx +>+a x(2)利用均值不等式证明不等式例1.已知c b a ,,为两两不相等的实数,求证:ca bc ab c b a++>++222例2. 正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc例3. 已知a 、b 、c R +∈,且1a b c ++=。

不等式及线性规划

不等式及线性规划

不等式及线性规划本部分内容在备考时应注意以下几个方面:(1)掌握不等关系与不等式解法、基本不等式的应用.(2)熟练掌握求解线性规划问题的方法,给出线性不等式组可以熟练找出其对应的可行域.(3)关注目标函数的几何意义和参数问题,掌握求目标函数最值的方法.预测2019年命题热点为:(1)不等式的性质、不等关系及不等式解法;利用基本不等式求函数最值.(2)求目标函数的最大值或最小值及求解含有参数的线性规划问题.Z知识整合hi shi zheng he1.不等式的四个性质注意不等式的乘法、乘方与开方对符号的要求,如(1)a>b,c>0⇒ac>bc,a>b,c<0⇒ac<bc.(2)a>b>0,c>d>0⇒ac>bd.(3)a>b>0⇒a n>b n(n∈N,n≥1).(4)a>b>0⇒na>nb(n∈N,n≥2).2.四类不等式的解法(1)一元二次不等式的解法先化为一般形式ax2+bx+c>0(a≠0),再求相应一元二次方程ax2+bx+c=0(a≠0)的根,最后根据相应二次函数图象与x轴的位置关系,确定一元二次不等式的解集.(2)简单分式不等式的解法 f (x )g (x )>0(<0)⇔f (x )g (x )>0(<0). f (x )g (x )≥0(≤0)⇔f (x )g (x )≥0(≤0)且g (x )≠0. (3)简单指数不等式的解法 当a >1时,a f (x )>a g (x )⇔f (x )>g (x ); 当0<a <1时,a f (x )>a g (x )⇔f (x )<g (x ). (4)简单对数不等式的解法当a >1时,log a f (x )>log a g (x )⇔f (x )>g (x )>0; 当0<a <1时,log a f (x )>log a g (x )⇔g (x )>f (x )>0. 3.基本不等式(1)基本不等式的常用变形①a +b ≥2ab (a >0,b >0),当且仅当a =b 时,等号成立.②a 2+b 2≥2ab ,ab ≤(a +b 2)2(a ,b ∈R ),当且仅当a =b 时,等号成立.③b a +ab≥2(a ,b 同号且均不为零),当且仅当a =b 时,等号成立. ④a +1a ≥2(a >0),当且仅当a =1时,等号成立;a +1a ≤-2(a <0),当且仅当a =-1时,等号成立.⑤a >0,b >0,则a 2+b 22≥a +b 2≥≥21a +1b,当且仅当a =b 时取等号. (2)利用基本不等式求最值已知a ,b ∈R ,则①若a +b =S (S 为定值),则ab ≤(a +b 2)2=S 24,当且仅当a =b 时,ab取得最大值S 24.②若ab =T (T 为定值,且T >0),则a +b 2T ,当且仅当a =b 时,a +b 取得最小值2T .4.求目标函数的最优解问题(1)“斜率型”目标函数z =y -bx -a (a ,b 为常数),最优解为点(a ,b )与可行域上点的连线的斜率取最值时的可行解.(2)“两点间距离型”目标函数z =(x -a )2+(y -b )2(a ,b 为常数),最优解为点(a ,b )与可行域上点之间的距离取最值时的可行解.5.线性规划中的参数问题的注意点(1)当最值已知时,目标函数中的参数往往与直线斜率有关,解题时应充分利用斜率这一特征加以转化.(2)当目标函数与最值都已知,且约束条件中含有参数时,因为平面区域是变动的,所以要抓住目标函数及最值已知这一突破口,先确定最优解,然后变动参数范围,使得这样的最优解在该区域内即可.6.重要性质及结论(1)ax 2+bx +c >0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧ a >0,Δ<0.(2)ax 2+bx +c <0(a ≠0)恒成立的条件是⎩⎪⎨⎪⎧a <0,Δ<0.Y 易错警示i cuo jing shi1.忽略条件应用基本不等式求最值时,要注意“一正、二定、三相等”,三个条件缺一不可,否则会导致结论错误.2.忽视分母不等于零求解分式不等式时应注意正确进行同解变形,不能把f (x )g (x )≥0直接转化为f (x )·g (x )≥0,而忽略g (x )≠0.3.忽略等号成立的条件在连续使用基本不等式求最值时,应特别注意检查等号是否同时成立.1.(2018·天津卷,2)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≤5,2x -y ≤4,-x +y ≤1,y ≥0,则目标函数z =3x +5y的最大值为( C )A .6B .19C .21D .45[解析]画出可行域如图中阴影部分所示,由z =3x +5y 得y =-35x +z5.设直线l 0为y =-35x ,平移直线l 0,当直线y =-35x +z5过点P (2,3)时,z 取得最大值,z max=3×2+5×3=21.故选C .2.(2017·全国卷Ⅰ,7)设x ,y 满足约束条件⎩⎪⎨⎪⎧x +3y ≤3,x -y ≥1,y ≥0,则z =x +y 的最大值为( D )A .0B .1C .2D .3[解析] 根据题意作出可行域,如图阴影部分所示,由z =x +y 得y =-x +z .作出直线y =-x ,并平移该直线,当直线y =-x +z 过点A 时,目标函数取最大值. 由图知A (3,0), 故z max =3+0=3. 故选D .3.(2017·全国卷Ⅱ,5)设x ,y 满足约束条件⎩⎪⎨⎪⎧2x +3y -3≤0,2x -3y +3≥0,y +3≥0,则z =2x +y 的最小值是( A )A .-15B .-9C .1D .9[解析] 不等式组表示的可行域如图中阴影部分所示.将目标函数z =2x +y 化为y =-2x +z ,作出直线y =-2x ,并平移该直线,知当直线y =-2x +z 经过点A (-6,-3)时,z 有最小值,且z min =2×(-6)-3=-15.故选A .4.(2018·全国卷Ⅰ,13)若x ,y 满足约束条件⎩⎪⎨⎪⎧x -2y -2≤0,x -y +1≥0,y ≤0,则z=3x +2y 的最大值为6.[解析] 作出满足约束条件的可行域如图阴影部分所示.由z =3x +2y 得y =-32x +z2.作直线l 0:y =-32x .平移直线l 0,当直线y =-32x +z2过点(2,0)时,z 取最大值,z max =3×2+2×0=6.5.(2018·全国卷Ⅱ,14)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +2y -5≥0,x -2y +3≥0,x -5≤0,则z =x +y 的最大值为9.[解析] 由不等式组画出可行域,如图(阴影部分).x +y 取得最大值⇔斜率为-1的直线x +y =z (z 看做常数)的横截距最大,由图可得直线x +y =z 过点C 时z 取得最大值.由⎩⎪⎨⎪⎧x =5,x -2y +3=0得点C (5,4),∴ z max =5+4=9.6.(2018·天津卷,13)已知a ,b ∈R ,且a -3b +6=0,则2a +18b 的最小值为14.[解析] ∵ a -3b +6=0,∴ a -3b =-6,∴ 2a +18b =2a +2-3b ≥22a ·2-3b =22a -3b =22-6=2×2-3=14,当且仅当⎩⎪⎨⎪⎧ a =-3b ,a -3b +6=0时等号成立,即⎩⎪⎨⎪⎧a =-3,b =1时取到等号.7.(2018·江苏卷,13)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠ABC =120°,∠ABC 的平分线交AC 于点D ,且BD =1,则4a +c 的最小值为9.[解析] 方法一:如图(1), ∵ S △ABC =S △ABD +S △BCD , ∴12ac ·sin120°=12c ×1×sin60°+12a ×1×sin60°,∴ ac =a +c . ∴ 1a +1c=1. ∴ 4a +c =(4a +c )⎝⎛⎭⎫1a +1c =c a +4ac +5 ≥2c a ·4ac+5=9. 当且仅当c a =4ac,即c =2a 时取等号.方法二:如图(2),以B 为原点,BD 为x 轴建立平面直角坐标系,则D (1,0), A ⎝⎛⎭⎫c 2,-32c ,C ⎝⎛⎭⎫a 2,32a .又A ,D ,C 三点共线, ∴ c 2-1-32c =a 2-132a ,∴ ac =a +c . 以下同方法一.命题方向1 不等式的性质及解不等式例1 (1)(2018·保定一模)下列三个不等式:①x +1x ≥2(x ≠0);②c a <cb (a >b >c >0);③a +m b +m >a b(a ,b ,m >0且a <b ),恒成立的个数为( B )A .3B .2C .1D .0[解析] 当x <0时,①不成立;由a >b >c >0得1a <1b ,所以c a <cb 成立,所以②恒成立;a +mb +m -a b =m (b -a )b (b +m ),由a ,b ,m >0且a <b 知a +m b +m -a b>0恒成立,故③恒成立. (2)(2018·衡阳一模)已知一元二次不等式f (x )≤9的解集为{x |x ≤12或x ≥3},则f (e x )>0的解集为( D )A .{x |x <-ln 2或x >ln 3}B .{x |ln2<x <ln3}C .{x |x <ln3}D .{x |-ln2<x <ln3}[解析] 由题意可知,一元二次不等式所对应的二次函数的图象开口向下,故f (x )>0的解集为{x |12<x <3},又因为f (e x )>0,所以12<e x <3,解得-ln2<x <ln3.『规律总结』解不等式的策略(1)一元二次不等式:先化为一般形式ax 2+bx +c >0(a >0),再结合相应二次方程的根及二次函数图象确定一元二次不等式的解集.(2)含指数、对数的不等式:利用指数、对数函数的单调性将其转化为整式不等式求解. (3)有函数背景的不等式:灵活利用函数的性质(单调性、奇偶性、对称性等)与图象求解.G 跟踪训练en zong xun lian1.已知x ,y ∈R ,且x >y >0,则( C ) A .1x -1y >0B .sin x -sin y >0C .(12)x -(12)y <0D .ln x +ln y >0[解析] 因为x >y >0,选项A ,取x =1,y =12,则1x -1y =1-2=-1<0,排除A ;选项B ,取x =π,y =π2,则sin x -sin y =sin π-sin π2=-1<0,排除B ;选项D ,取x =2,y =12,则ln x+ln y =ln(x +y )=ln1=0,排除D .故选C .2.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( D ) A .1x 2+1>1y 2+1B .ln(x 2+1)>ln(y 2+1)C .sin x >sin yD .x 3>y 3[解析] 根据指数函数的性质得x >y ,此时x 2,y 2的大小不确定,故选项A ,B 中的不等式不恒成立;根据三角函数性质,选项C 中的不等式也不恒成立;根据不等式的性质知选项D 中的不等式恒成立.3.设函数f (x )=⎩⎪⎨⎪⎧x 2+x ,x <0,-x 2,x ≥0,若f (f (a ))≤2,则实数a 的取值范围是[解析] 由题意⎩⎪⎨⎪⎧f (a )<0,f 2(a )+f (a )≤2或⎩⎪⎨⎪⎧f (a )≥0,-f 2(a )≤2 解得f (a )≥-2,所以⎩⎪⎨⎪⎧ a <0,a 2+a ≥-2或⎩⎪⎨⎪⎧a ≥0,-a 2≥-2解得a ≤ 2.命题方向2 基本不等式及其应用例2 (2018·徐州质检)设a 、b 、c 都是正实数,且a 、b 满足1a +9b=1,则使a +b ≥c 恒成立的c 的范围是( D )A .(0,8]B .(0,10]C .(0,12]D .(0,16][分析] c ≤a +b 恒成立,设a +b 的最小值为m ,则c ≤m .∵a 、b 为正实数,且1a +9b =1,故可用“1的代换”求a +b 的最小值.[解析] ∵a 、b 为正实数,1a +9b =1,∴a +b =(a +b )(1a +9b )=10+b a +9ab≥10+2b a ·9a b =16,当且仅当b a =9ab,即a =4,b =12时等号成立,∴(a +b )min =16,要使c ≤a +b 恒成立,∵c 为正实数,∴0<c ≤16.『规律总结』1.用基本不等式a +b2≥ab 求最值时,要注意“一正、二定、三相等”,一定要明确什么时候等号成立,要注意“代入消元”、“拆、拼、凑”、“1的代换”等技巧的应用.2.不等式恒成立问题一般用分离参数法转化为函数最值求解或用赋值法讨论求解.G 跟踪训练en zong xun lian1.若点A (m ,n )在第一象限,且在直线x 3+y4=1上,则mn 的最大值为3.[解析] 因为点A (m ,n )在第一象限,且在直线x 3+y 4=1上,所以m ,n >0,且m 3+n4=1.所以m 3·n 4≤(m 3+n42)2(当且仅当m 3=n 4=12,即m =32,n =2时,取等号).所以m 3·n 4≤14,即mn ≤3,所以mn 的最大值为3.2.已知关于x 的不等式2x +2x -a ≥7在x ∈(a ,+∞)上恒成立,则实数a 的最小值为( B )A .1B .32C .2D .52[解析] 2x +2x -a =2(x -a )+2x -a +2a ≥2·2(x -a )·2x -a+2a =4+2a ,由题意可知4+2a ≥7,得a ≥32,即实数a 的最小值为32,故选B .命题方向3 线性规划问题例3 (1)设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0,则目标函数z =2x +5y 的最小值为( B )A .-4B .6C .10D .17[解析] 如图,已知约束条件⎩⎪⎨⎪⎧x -y +2≥0,2x +3y -6≥0,3x +2y -9≤0所表示的平面区域为图中所示的三角形区域ABC (包含边界),其中A (0,2),B (3,0),C (1,3).根据目标函数的几何意义,可知当直线y =-25x +z5过点B (3,0)时,z 取得最小值2×3+5×0=6.(2)若x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥1x -y ≥-12x -y ≤2,且目标函数z =ax +2y 仅在点(1,0)处取得最小值,则a 的取值范围是( B )A .[-4,2]B .(-4,2)C .[-4,1]D .(-4,1)[解析] 本题主要考查线性规划.作出不等式组表示的区域如图中阴影部分所示,直线z =ax +2y 的斜率为k =-a2,从图中可看出,当-1<-a2<2,即-4<a <2时,仅在点(1,0)处取得最小值.故选B .『规律总结』1.线性规划问题一般有三种题型:一是求最值;二是求区域面积;三是由最优解确定目标函数中参数的取值范围.2.解决线性规划问题首先要画出可行域,再注意目标函数所表示的几何意义,数形结合找到目标函数达到最值时可行域的顶点(或边界上的点),但要注意作图一定要准确,整点问题可通过验证解决.3.确定二元一次不等式组表示的平面区域:①画线,②定侧,③确定公共部分;解线性规划问题的步骤:①作图,②平移目标函数线,③解有关方程组求值,确定最优解(或最值等).G 跟踪训练en zong xun lian1.设x 、y 满足约束条件⎩⎪⎨⎪⎧x +y -7≤0x -3y +1≤03x -y -5≥0,则z =2x -y 的最大值为( B )A .10B .8C .3D .2[解析] 作出可行域如图,作直线l :y =2x ,平移直线l ,当经过可行域内的点A 时,-z 取最小值,z 取最大值,由⎩⎪⎨⎪⎧ x -3y +1=0,x +y -7=0,解得⎩⎪⎨⎪⎧x =5,y =2.∴A (5,2),∴z max =2×5-2=8,故选B .2.设z =2x +y ,其中变量x ,y 满足条件⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25x ≥m .若z 的最小值为3,则m 的值为( A )A .1B .2C .3D .4[解析] 作出不等式组⎩⎪⎨⎪⎧x -4y ≤-33x +5y ≤25,表示的平面区域,由于z =2x +y 的最小值为3,作直线l 0:x =m 平移l 0可知m =1符合题意.A 组1.若a >b >0,c <d <0,则一定有( D ) A .a c >bdB .a c <b dC .a d >b cD .a d <b c[解析] 令a =3,b =2,c =-3,d =-2, 则a c =-1,bd =-1, 所以A ,B 错误; a d =-32,b c =-23, 所以a d <b c,所以C 错误.故选D .2.下列不等式一定成立的是( C )A .lg(x 2+14)>lg x (x >0)B .sin x +1sin x ≥2(x ≠k π,k ∈Z )C .x 2+1≥2|x |(x ∈R )D .1x 2+1>1(x ∈R )[解析] 应用基本不等式:x ,y >0,x +y2≥xy (当且仅当x =y 时取等号)逐个分析,注意基本不等式的应用条件及取等号的条件.当x >0时,x 2+14≥2·x ·12=x ,所以lg(x 2+14)≥lg x (x >0),故选项A 不正确;运用基本不等式时需保证一正二定三相等,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故选项B 不正确; 由基本不等式可知,选项C 正确;当x =0时,有1x 2+1=1,故选项D 不正确.3.关于x 的不等式x 2-2ax -8a 2<0(a >0)的解集为(x 1, x 2),且x 2-x 1=15,则a 等于( A ) A .52B .72C .154D .152[解析] 由x 2-2ax -8a 2<0,得(x +2a )(x -4a )<0,因a >0,所以不等式的解集为(-2a,4a ),即x 2=4a ,x 1=-2a ,由x 2-x 1=15,得4a -(-2a )=15,解得a =52.4.(2017·长春一模)已知一元二次不等式f (x )<0的解集为{x |x <-1或x >13},则f (e x )>0的解集为( D )A .{x |x <-1或x >-ln3}B .{x |-1<x 或x >-ln3}C .{x |x >-ln3}D .{x |x <-ln3}[解析] f (x )>0的解集为{x |-1<x <13},则由f (e x )>0得-1<e x <13,解得x <-ln3,即f (e x )>0的解集为{x |x <-ln3}. 5.若变量x ,y 满足⎩⎪⎨⎪⎧x +y ≤2,2x -3y ≤9,x ≥0,则x 2+y 2的最大值是( C )A .4B .9C .10D .12[解析] 作出不等式组所表示的平面区域如图中阴影部分所示,设P (x ,y )为平面区域内任意一点,则x 2+y 2表示|OP |2.显然,当点P 与点A 重合时,|OP |2取得最大值.由⎩⎪⎨⎪⎧x +y =22x -3y =9,解得⎩⎪⎨⎪⎧x =3y =-1,故A (3,-1).所以x 2+y 2的最大值为32+(-1)2=10.故选C .6.(文)若实数x 、y 满足不等式组⎩⎪⎨⎪⎧y ≥0,x -y ≥0,2x -y -2≥0,则w =y -1x +1的取值范围是( D )A .[-1,13]B .[-12,13]C .[-12,+∞)D .[-12,1)[解析] 作出不等式组表示的平面区域如图所示.据题意,即求点M (x ,y )与点P (-1,1)连线斜率的取值范围.由图可知w min =1-0-1-1=-12,w max <1,∴w ∈[-12,1).(理)已知O 是坐标原点,点A (-1,2),若点M (x ,y )为平面区域⎩⎪⎨⎪⎧x +y ≥2x ≤1y ≤2上的一个动点,则OA →·OM →的取值范围是( D )A .[-1,0]B .[0,1]C .[1,3]D .[1,4][解析] 作出点M (x ,y )满足的平面区域,如图阴影部分所示,易知当点M 为点C (0,2)时,OA →·OM →取得最大值,即为(-1)×0+2×2=4,当点M 为点B (1,1)时,OA →·OM →取得最小值,即为(-1)×1+2×1=1,所以OA →·OM →的取值范围为[1,4],故选D .7.某企业生产甲、乙两种新产品均需用A ,B 两种原料.已知生产1吨每种产品所需原料及每天原料的可用限额如表所示.如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )A .12万元D .18万元[解析] 设企业每天生产甲产品x 吨、乙产品y 吨,每天获得的利润为z 万元,则有z =3x +4y ,由题意得x ,y 满足:⎩⎪⎨⎪⎧3x +2y ≤12,x +2y ≤8,x ≥0,y ≥0,不等式组表示的可行域是以O (0,0),A (4,0),B (2,3),C (0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x +4y -z =0过点B (2,3)时,z 取最大值18,故该企业每天可获得最大利润为18万元.8.已知函数f (x )是定义在R 上的偶函数,且在区间[0,+∞)上单调递增,若实数a 满足f (log 2a )+f (log 12a )≤2f (1),则a 的取值范围是( C )A .[1,2]B .(0,12]C .[12,2]D .(0,2][解析] 因为log 12a =-log 2a ,所以f (log 2a )+f (log 12a )=f (log 2a )+f (-log 2a )=2f (log 2a ),原不等式变为2f (log 2a )≤2f (1),即f (log 2a )≤f (1),又因为f (x )是定义在R 上的偶函数,且在[0,+∞)上递增,所以|log 2a |≤1,即-1≤log 2a ≤1,解得12≤a ≤2,故选C .9.已知a >0,x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y ≤3,y ≥a (x -3),若z =2x +y 的最小值为1,则a =( B )A .14B .12C .1D .2[解析] 画出可行域,如图所示,由⎩⎪⎨⎪⎧x =1,y =a (x -3), 得A (1,-2a ),则直线y =z -2x 过点A (1,-2a )时,z =2x +y 取最小值1,故2×1-2a =1,解得a =12.10.已知x ∈(0,+∞)时,不等式9x -m ·3x +m +1>0恒成立,则m 的取值范围是( C ) A .2-22<m <2+2 2 B .m <2 C .m <2+2 2D .m ≥2+22[解析] 令t =3x (t >1),则由已知得函数f (t )=t 2-mt +m +1的图象在t ∈(1,+∞)上恒在x 轴的上方,则对于方程f (t )=0,有Δ=(-m )2-4(m +1)<0或⎩⎪⎨⎪⎧Δ≥0,m2≤1,f (1)=1-m +m +1≥0,解得m <2+2 2.11.已知AC ,BD 为圆O :x 2+y 2=4的两条互相垂直的弦,且垂足为M (1,2),则四边形ABCD 面积的最大值为( A )A .5B .10C .15D .20[解析] 如图,作OP ⊥AC 于P ,OQ ⊥BD 于Q ,则OP 2+OQ 2=OM 2=3,∴AC 2+BD 2=4(4-OP 2)+4(4-OQ 2)=20.又AC 2+BD 2≥2AC ·BD ,则AC ·BD ≤10,∴S 四边形ABCD =12AC ·BD ≤12×10=5,当且仅当AC =BD =10时等号成立.12.函数f (x )=⎩⎪⎨⎪⎧2x ,x ∈[0,1),4-2x ,x ∈[1,2],若f (x 0)≤32,则x 0的取值范围是( C )A .(log 232,54)B .(0,log 232]∪[54,+∞)C .[0,log 232]∪[54,2]D .(log 232,1)∪[54,2][解析] ①当0≤x 0<1时,2x 0≤32,x 0≤log 232,∴0≤x 0≤log 232.②当1≤x 0≤2时,4-2x 0≤32,x 0≥54,∴54≤x 0≤2,故选C . 13.(2018·衡水中学高三调研)已知f (x )是R 上的减函数,A (3,-1),B (0,1)是其图象上两点,则不等式|f (1+ln x )|<1的解集是(1e,e 2).[解析] ∵|f (1+ln x )|<1,∴-1<f (1+ln x )<1, ∴f (3)<f (1+ln x )<f (0), 又∵f (x )在R 上为减函数, ∴0<1+ln x <3,∴-1<ln x <2,∴1e<x <e 2. 14.若x ,y 满足条件⎩⎪⎨⎪⎧x -y ≤0,x +y ≥0,y ≤a ,且z =2x +3y 的最大值是5,则实数a 的值为1.[解析] 画出满足条件的可行域如图阴影部分所示,则当直线z =2x +3y 过点A (a ,a )时,z =2x +3y 取得最大值5,所以5=2a +3a ,解得a =1.15.(2018·赣州六校高三期末联考)若点A (1,1)在直线2mx +ny -2=0上,其中mn >0,则1m +1n 的最小值为2[解析] ∵点A (1,1)在直线2mx +ny -2=0上, ∴2m +n =2,∵1m +1n =(1m +1n )2m +n 2=12(2+2m n +n m +1)≥12(3+22m n ·n m )=32+2, 当且仅当2m n =nm ,即n =2m 时取等号,∴1m +1n 的最小值为32+ 2. 16.已知函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,若对任意的x ∈R ,不等式f (x )≤m 2-34m 恒成立,则实数m 的取值范围是(-∞,-14)∪[1,+∞).[解析] 对于函数f (x )=⎩⎪⎨⎪⎧-x 2+x ,x ≤1,log 13x ,x >1,当x ≤1时,f (x )=-(x -12)2+14≤14;当x >1时,f (x )=log 13x <0.则函数f (x )的最大值为14.则要使不等式f (x )≤m 2-34m 恒成立,则m 2-34m ≥14恒成立,即m ≤-14或m ≥1.B 组1.(2018·山东菏泽一模)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c的最小值是( A )A .9B .8C .4D .2[解析] 圆x 2+y 2-2y -5=0化成标准方程,得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +b c +5.因为b ,c >0, 所以4c b +b c≥24c b ·b c=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c取得最小值9. 2.(2018·天津二模)已知函数f (x )=⎩⎪⎨⎪⎧2,x >1(x -1)2+2,x ≤1,则不等式f (1-x 2)>f (2x )的解集是( D )A .{x |-1<x <-1+2}B .{x |x <-1或x >-1+2}C .{x |-1-2<x <1}D .{x |x <-1-2或x >2-1}[解析] 由f (x )=⎩⎪⎨⎪⎧2,x >1(x -1)2+2,x ≥1,可得当x ≤1时,函数f (x )为减函数,则由f (1-x 2)>f (2x )可得⎩⎪⎨⎪⎧ 1-x 2<2x ,2x ≤1,或⎩⎪⎨⎪⎧1-x 2<1,2x >1,解得x <-1-2或2-1<x ≤12或x >12,所以不等式f (1-x 2)>f (2x )的解集是{x |x <-1-2或x >2-1}.3.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -y ≥0,x +y ≤2,y ≥0. 若z =ax +y 的最大值为4,则a =( B )A . 3B . 2C . -2D . -3[解析] 由约束条件可画可行域如图,解得A (2,0),B (1,1).若过点A (2,0)时取最大值4,则a =2,验证符合条件;若过点B (1,1)时取最大值4,则a =3,而若a =3,则z =3x +y 最大值为6(此时A (2,0)是最大值点),不符合题意. (也可直接代入排除)4.(2018·德州模拟)若a =ln 22,b =ln 33,c =ln 55,则( C )A .a <b <cB .c <b <aC .c <a <bD .b <a <c[解析] 易知a ,b ,c 均为正数, b a =2ln 33ln 2=ln 9ln 8=log 89>1,所以b >a , a c =5ln 22ln 5=ln 32ln 25=log 2532>1,所以a >c , 故b >a >c .5.已知正项等比数列{a n }满足:a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为( A ) A .32B .53C .256D .不存在[解析] 由a n >0,a 7=a 6+2a 5,设{a n }的公比为q , 则a 6q =a 6+2a 6q ,所以q 2-q -2=0.因为q >0,所以q =2,因为a m a n =4a 1,所以a 21·qm+n -2=16a 21,所以m +n -2=4, 所以m +n =6,所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n )≥16(5+2n m ·4m n )=32,等号在n m =4mn,即n =2m =4时成立.6.若变量x ,y 满足⎩⎪⎨⎪⎧x -2y +1≤0,2x -y ≥0,x ≤1,则点P (2x -y ,x +y )表示区域的面积为( D )A .34B .43C .12D .1[解析] 令2x -y =a ,x +y =b ,解得⎩⎨⎧x =a +b 3,y =2b -a3,代入x ,y 的关系式得⎩⎪⎨⎪⎧a -b +1≤0,a ≥0,a +b -3≤0,画出不等式组表示的平面区域如图.易得阴影区域面积S =12×2×1=1.7.(2018·临沂模拟)若不等式组⎩⎪⎨⎪⎧x -y ≥0,2x +y ≤2,y ≥0,x +y ≤a 表示的平面区域是一个三角形,则a 的取值范围是( D )A .[43,+∞)B .(0,1]C .[1,43)D .(0,1]∪[43,+∞)[解析] 不等式组表示区域如图.由图可知,0<a ≤1或a ≥43.8.(2018·青岛一模)已知x ∈(0,π2),且函数f (x )=1+2sin 2x sin2x的最小值为b ,若函数g (x )=⎩⎨⎧8x 2-6bx +4,0<x ≤π4,-1,π4<x <π2,则不等式g (x )≤1的解集为( B )A .(π4,π2)B .[34,π2) C .[34,32] D .(π4,32][解析] 依题意知,当x ∈(0,π2)时,f (x )=3sin 2x +cos 2x 2sin x cos x =12(3tan x +1tan x )≥3tan x ·1tan x=3,当且仅当3tan x =1tan x ,即tan x =33,x =π6时取等号,因此b =3,不等式g (x )≤1等价于⎩⎪⎨⎪⎧0<x ≤π48x 2-63x +4≤1①,或π4<x <π2解①得34≤x ≤π4,因此不等式g (x )≤1的解集是[34,π4]∪(π4,π2)=[34,π2). 9.已知一元二次不等式f (x )<0的解集为{x |x <-1或x >12},则f (10x )>0的解集为{x |x <-lg_2}.[解析] 由题意知,一元二次不等式f (x )<0的解集为{x |x <-1或x >12},因为f (10x )>0,所以-1<10x <12,即x <lg 12=-lg 2.10.设f (x )=⎩⎪⎨⎪⎧-x +a ,x ≤0,x +1x ,x >0.若f (0)是f (x )的最小值,则a 的取值范围为(-∞,2].[解题提示] 根据分段函数的定义找出f (0)的表达形式,再利用f (0)是f (x )的最小值,求出a 的取值范围.[解析] 当x >0时,f (x )=x +1x≥2,若f (0)是f (x )的最小值,则f (0)=a ≤2.11.已知f (x )是定义在[-1,1]上的奇函数且f (1)=2,当x 1、x 2∈[-1,1],且x 1+x 2≠0时,有f (x 1)+f (x 2)x 1+x 2>0,若f (x )≥m 2-2am -5对所有x ∈[-1,1]、a ∈[-1,1]恒成立,则实数m的取值范围是[-1,1].[解析] ∵f (x )是定义在[-1,1]上的奇函数,∴当x 1、x 2∈[-1,1]且x 1+x 2≠0时, f (x 1)+f (x 2)x 1+x 2>0等价于f (x 1)-f (-x 2)x 1-(-x 2)>0,∴f (x )在[-1,1]上单调递增.∵f (1)=2,∴f (x )min =f (-1)=-f (1)=-2.要使f (x )≥m 2-2am -5对所有x ∈[-1,1],a ∈[-1,1]恒成立, 即-2≥m 2-2am -5对所有a ∈[-1,1]恒成立, ∴m 2-2am -3≤0,设g (a )=m 2-2am -3,则⎩⎪⎨⎪⎧ g (-1)≤0,g (1)≤0,即⎩⎪⎨⎪⎧-3≤m ≤1,-1≤m ≤3.∴-1≤m ≤1. ∴实数m 的取值范围是[-1,1].12.(2017·天津卷,16)电视台播放甲、乙两套连续剧,每次播放连续剧时,需要播放广告.已知每次播放甲、乙两套连续剧时,连续剧播放时长、广告播放时长、收视人次如下表所示:不少于30分钟,且甲连续剧播放的次数不多于乙连续剧播放次数的2倍.分别用x ,y 表示每周计划播出的甲、乙两套连续剧的次数.(1)用x ,y 列出满足题目条件的数学关系式,并画出相应的平面区域; (2)问电视台每周播出甲、乙两套连续剧各多少次,才能使总收视人次最多? [解析] (1)由已知x ,y 满足的数学关系式为⎩⎪⎨⎪⎧70x +60y ≤600,5x +5y ≥30,x ≤2y ,x ≥0,x ∈N ,y ≥0,y ∈N ,即⎩⎪⎨⎪⎧7x +6y ≤60,x +y ≥6,x -2y ≤0,x ≥0,x ∈N ,y ≥0,y ∈N ,该二元一次不等式组所表示的平面区域为图①中的阴影部分中的整数点.(2)设总收视人次为z 万,则目标函数为z =60x +25y .考虑z =60x +25y ,将它变形为y =-125x +z 25,这是斜率为-125,随z 变化的一族平行直线.z25为直线在y 轴上的截距,当z25取得最大值时,z 的值就最大. 又因为x ,y 满足约束条件,所以由图②可知,当直线z =60x +25y 经过可行域上的点M 时,截距z25最大,即z 最大.解方程组⎩⎪⎨⎪⎧7x +6y =60,x -2y =0,得⎩⎪⎨⎪⎧x =6,y =3, 则点M 的坐标为(6,3).所以,电视台每周播出甲连续剧6次、乙连续剧3次时,才能使总收视人次最多.。

不等式及线性规划问题(讲义)

不等式及线性规划问题(讲义)

不等式及线性规划问题(讲义)知识点睛一、 不等式的基本性质 性质1:a b b a >⇔< 性质2:a b b c a c >>⇒>, 性质3:a b a c b c >⇒+>+性质4:a b >,0c >ac bc ⇒>;a b >,0c <ac bc ⇒< 性质5:a b c d a c b d >>⇒+>+, 性质6:00a b c d ac bd >>>>⇒>,性质7:0(2)n n a b a b n n >>⇒>∈≥,N 性质8:0(2)a b n n >>⇒>∈≥,N 二、 一元二次不等式及其解法一般地,对于解一元二次不等式20(0)ax bx c a ++>≠,通常步骤如下: (1)解方程20(0)ax bx c a ++=≠常用方法:直接开平方法、配方法、公式法、分解因式法. (2)解不等式 考虑两种解法:函数法:借助函数图象求解①画出对应函数2y ax bx c =++的图象; ②依据图象得出不等式的解集.代数法:借助实数乘法法则,解不等式组. 三、 绝对值不等式的解法1. 解绝对值不等式的核心:去绝对值去绝对值方法:以||x a -为例 (1)绝对值的几何意义:①||x a -表示数轴上x a -,0对应两点之间的距离②||x a -表示数轴上 x a ,对应两点之间的距离 (2)绝对值法则: ||0x a x a x a x a x a x a ->⎧⎪-==⎨⎪-+<⎩,,,(3)偶次方:221||() ( )n n x a x a n n -=-∈≥,N2. 解绝对值不等式常见题型(1)单个绝对值型不等式:如||ax b c +≤或||ax b c +≥ 思路一:依据绝对值的几何意义①||ax b c +≤转化为c ax b c -+≤≤ ②||ax b c +≥转化为c c ax b ax b ++-≥或≤思路二:依据绝对值的“零点”,由绝对值法则去绝对值,再解不等式 思路三:由相应函数()||f x ax b c =+-,利用数形结合思想,依据图象处理. (2)多个绝对值型不等式:如||||x a x b c -+-≥ 思路一:依据绝对值的几何意义数轴上到a 、b 对应两点的距离之和不小于c 的点的集合; 思路二:依据绝对值的“零点”依据绝对值的“零点”分段,由绝对值法则去绝对值,再解不等式; 思路三:依据函数图象由相应函数()||||f x x a x b c =-+--,利用数形结合思想,依据图象处理. (3)常见函数图象 ①()|1|f x x =-②()|1|f x x =+结论推广:①||||||x a x b a b -+--≥;②||||||||a b x a x b a b ------≤≤.四、 二元一次不等式(组)及线性规划 1. 二元一次不等式与平面区域若方程0Ax By C ++=表示直线l ,则 不等式0Ax By C ++>表示直线l 某一侧所有点组成的平面区域,将该侧任一点坐标00()x y ,代入Ax By C ++,000Ax By C ++> 恒成立.同理,不等式0Ax By C ++<表示直线l 的另一侧. 2. 由二元一次不等式组判断平面区域(1)直线定界(注意虚线与实线);(2)特殊点定域(如:原点,(0 1),,(1 0),等); (3)不等式组找公共区域. 3. 线性规划相关概念 约束条件: 关于x ,y 的不等式(或方程) 线性约束条件:关于x ,y 的一次不等式(或方程) 目标函数: 要求的关于变量x ,y 的函数 线性目标函数:目标函数为关于变量x ,y 的一次函数可行解: 满足约束条件的解(x ,y ) 可行域: 所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解线性规划问题:在线性约束条件下求线性目标函数的最大值或最小值问题 4. 求目标函数z =ax +by 的最值利用线性规划求最值,一般用图解法求解,其步骤是: (1)根据约束条件画出可行域;(2)考虑目标函数的几何意义,令z =0,画出直线l 0; (3)在可行域内平行移动直线l 0,从而确定最优解; (4)将最优解代入目标函数即可求出最大值或最小值.精讲精练1. 下列命题中正确的是( ) A . a b c d a c b d >>⇒->-,B .a ba b c c>⇒>C .ac bc a b <⇒<D .22ac bc a b >⇒>2. 若01a b <<<,则( )A .11b a> B .11()()22a b <C .n n a b >D .11lg lg a b>3. 当0a b >>,0c d <<时,给出以下结论:①ad bc <;②22a c b d +>+;③b c a d ->-; ④3330c d a <<<. 其中正确结论的序号是______________.4. 设方程20(0)ax bx c a ++=≠的两根为12 x x ,,且12x x <. (1)若0a <,则20ax bx c ++<的解集为____________; (2)若0a >,则20ax bx c ++≥的解集为____________.5. 已知不等式230x x t -+<的解集为{}|1 x x m x <<∈,R .(1)t =_________,m =_________;(2)若函数2()4f x x ax =-++在区间( 1]-∞,上递增,求关于x 的不等式2log (32)0a mx x t -++-<的解集.6.解下列不等式.(1)|21||21|6++-≤x x(2)|21||4|2x x+-->7.已知函数()|4||3|=-+-.f x x x(1)若()<有解,则实数a的取值范围为_________.f x a(2)若()<无解,则实数a的取值范围为___________.f x a(3)若()f x a>对一切实数x均成立,则实数a的取值范围为_______________.(4)若()2|3|af x x--≥有解,则实数a的取值范围为_______________.8.写出下列平面区域表示的二元一次不等式组.(1)____________________;(2)___________________.(1)9.(21)(4)0x y x y++-+≤表示的平面区域为下图中的()A.B.C.D.10.不等式组3434xx yx y⎧⎪+⎨⎪+⎩≥≥≤所表示的平面区域的面积等于()A.32B.23C.43D.3411.设变量x,y满足约束条件53151053x yx yx y+⎧⎪-+⎨⎪-⎩≤≥≤,则目标函数z=3x+5y的最大值为__________,最小值为_________.12.设变量x,y满足约束条件3602030x yx yy+-⎧⎪--⎨⎪-⎩≥≤≤,则目标函数z=2x-y的最小值为()A.7 B.-4 C.-1 D.413. 设变量x ,y 满足3010350x y x y x y +-⎧⎪-+⎨⎪--⎩≥≥≤,设y k x =,则k 的取值范围是( )A .14[]23,B .4[2]3,C .1[2]2,D .1[)2+∞,14. 给出平面区域如图中的阴影部分所示,若使目标函数z =ax +y(a >0)取得最大值时的最优解有无穷多个,则a 的值为 __________________.15. 某厂拟生产甲、乙两种适销产品,每件产品销售收入分别为3 000元、2 000元.甲、乙产品都需要在A 、B 两种设备上进行加工.在每台A 、B 设备上加工1件甲,设备所需工时分别为1 h 、2 h ;加工1件乙,设备所需工时分别为2 h 、1 h ,A 、B 两种设备每月有效使用台时数分别为400 h 和500 h . 问:如何安排生产可使收入最高?回顾与思考________________________________________________________ ________________________________________________________ ________________________________________________________【参考答案】1. D2. D3. ①②④4. (1)12( )( )x x -∞+∞,,; (2)12( ][ )x x -∞+∞,, 5. (1)22t m ==;;(2)13(0 )(1 )22,, 6. (1)33[ ]22-,;(2)5( 7)( )3-∞-+∞,, 7. (1)(1 )+∞,;(2)( 1]-∞,;(3)( 1)-∞,;(4)( 1]-∞,8.(1)4150220x yx yx y->⎧⎪+-<⎨⎪+-⎩≥;(2)36020yx yx y⎧⎪-+⎨⎪-+<⎩≥≥9. B10.C11.17-1112.C13.C14.3 515.每月生产甲产品200件,乙产品100件,可使收入最高.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

不等式与线性规划知识讲解一、不等式的定义1.定义:用不等号(><≠,,≥,,…)连接的式子叫不等式 2.同解不等式变形:一个不等式变形为另一个不等式时,如果这两个不等式是同解不等式,那么这种变形叫做同解不等式变形.3.不等式的性质1)a b b a >⇔<(反身性或对称性) 2)a b >,b c a c >⇒>(传递性) 3)a b a c b c >⇔+>+4),a b c d >>,则a c b d +>+.5)a b >,0c >,则ac bc >;如果a b >,0c <,则ac bc <. 6)00a b c d >>>>,,则ac bd >. 7)0a b >>,则(,1)n na b n n +>∈>N .8)0a b >>,1)n n +∈>N二、不等式的解法1.一元二次不等式的解集如下表2.分式不等式的解法1)()0()()0()f x f x g x g x >⇔⋅> 2)()0()()0()f x f x g x g x ≥⇔⋅≥且()0g x ≠ 3)()()()(00()[()()]0)()()f x f x ag x a a g x f x ag x g x g x ->≠⇔>⇔-> 3.无理不等式的解法12()0()()0()[()]f xg x g x f x g x ⎧≥⎪>⇔≥⎨⎪>⎩或()0()0f x g x ≥⎧⎨<⎩22()0()()0()[()]f x g x g x f x g x ⎧≥⎪⇔≥⎨⎪<⎩4.绝对值不等式1)绝对值的几何意义:①||x 是指数轴上点x 到原点的距离;②12||x x -是指数轴上12x x ,两点间的距离2)当0c >时,||ax b c ax b c +>⇔+>或ax b c +<-,||ax b c c ax b c +<⇔-<+<; 当0c <时,||ax b c x R +>⇔∈,||ax b c x φ+<⇔∈. 3)绝对值不等式的解法①公式法|()|()()()f x g x f x g x >⇔>或()()f x g x <- |()|()()()()f x g x g x f x g x <⇔-<<②平方法 ③分情况讨论法4.高次不等式(穿线法:)一般高次不等式()0f x >用数轴穿根法(或称穿线法)求解,其步骤是: 1)将()f x 最高次项的系数化为正数;2)将()f x 分解为若干个一次因式的积或二次不可分因式之积;3)将每个因式的标在数周上,从右上方依次通过每一点画曲线(注意重根,偶次方穿而不过,奇次方根穿又过,即所谓的奇穿偶不穿);三、基本不等式均值定理:定理:对于任意实数a b ,,222a b ab +≥,当且仅当a b =时,等号成立 推论:如果a b ,,是正数,那么2a b+,当且仅当a b =时,有等号成立. 四、线性规划的有关概念1.约束条件:由未知数,x y 的不等式(或方程)组成的不等式组成为,x y 的约束条件.不等式组25003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩就是,x y 的一个约束条件.2.线性约束条件:关于未知数,x y 的一次不等式(或方程)组成的不等式组成为,x y 的线性约束条件,不等式组230236035150x y x y x y -->⎧⎪+-<⎨⎪--<⎩就是,x y 的一个约束条件.3.目标函数:欲达到最大值或最小值所涉及的变量,x y 的解析式.如:已知,x y满足约束条件4335251x yx yx-≤-⎧⎪+≤⎨⎪≥⎩,分别确定,x y的值,使2z x y=+取到最大值和最小值使z'2z x y=+和z'=4.线性目标函数:目标函数为变量,x y的一次解析式.如上例中,2z x y=+为线性目标函数,而z'=5.线性规划问题:求线性目标函数在约束条件下的最值问题.6.可行解:满足约束条件的解(),x y.7.可行域:所有可行解组成的集合.8.最优解:使目标函数取得最值的可行解.五、线性规划的图解法1.画:在直角坐标平面上画出可行域和直线0ax by+=(目标函数为z ax by=+)2.移:平行移动直线0ax by+=,确定使z ax by=+取得最大值或最小值的点.3.求:求出取得最大值或最小值的坐标(解方程组)及最大值和最小值.经典例题一.选择题(共2小题)1.(2018春•台州期末)已知a,b∈R,a+b=2.则+的最大值为()A.1 B.C.D.2【解答】解:a,b∈R,a+b=2.则+====,令t=ab﹣1=a(2﹣a)﹣1=﹣(a﹣1)2≤0,则=,令4﹣2t=s(s≥4),即t=,可得==,由s+≥2=8,当且仅当s=4,t=2﹣2时上式取得等号,可得≤=,则+的最大值为,故选:C.2.(2018春•海淀区校级期中)设a,b∈R,下列不等式中一定成立的是()A.a2+3>2a B.a2+b2>0C.a3+b3≥a2b+ab2D.a+≥2【解答】解:A:将不等式转化为a2﹣2a+3=(a﹣1)2+2>0恒成立,A对.B:a2+b2≥0,B错C:将不等式转化为a2(a﹣b)+b2(b﹣a)=(a﹣b)(a2﹣b2)=(a﹣b)2(a+b)不一定大于等于0,C错.D:如果想要用基本不等式,需要满足a>0,D错.故选:A.二.填空题(共5小题)3.(2016秋•东湖区校级期末)已知实数x,y满足x2+y2=2x,则x2y2的取值范围是[0,].【解答】解:由x2+y2=2x,得y2=2x﹣x2≥0,∴0≤x≤2,x2y2=x2(2x﹣x2)=2x3﹣x4.设f(x)=2x3﹣x4(0≤x≤2),则f′(x)=6x2﹣4x3=2x2(3﹣2x),当0<x<时,f′(x)>0,函数f(x)在(0,)上单调递增;当<x<2时,f′(x)<0,函数f(x)在(,2)上单调递减,∴当x=时,函数取得极大值,也是最大值,f()=,当x=0、x=2时,f(x)=0,∴函数f(x)的值域为[0,],即0≤x2y2≤.故答案为:[0,].4.(2018春•定州市校级期末)已知实数x,y满足3x﹣y≤ln(x+2y﹣3)+ln(2x ﹣3y+5),则x+y=.【解答】解:由f(t)=lnt﹣t+1的导数为:f′(t)=﹣1=,当t>1时,f′(t)>0,f(t)递增,当0<t<1时,f′(t)<0,f(t)递减,可得f(t)的最大值为f(1)=0,即有lnt≤t﹣1,则ln(x+2y﹣3)+ln(2x﹣3y+5)≤x+2y﹣3﹣1+2x﹣3y+5﹣1=3x﹣y,当且仅当x+2y﹣3=2x﹣3y+5=1时,取得等号,则x=,y=,可得x+y=,故答案为:.5.(2017•浙江模拟)已知a,b∈R,且a≠﹣1,则|a+b|+|﹣b|的最小值是1.【解答】解:a,b∈R,且a≠﹣1,则|a+b|+|﹣b|≥=|a+1+﹣1|≥|2﹣1|=1,当且仅当a=0时取等号.故答案为:1.6.已知函数f(x)=x2﹣|x|,集合P={(x,y)|f(x)+f(y)≤0},则y=f(x)的最小值为﹣,在平面直角坐标系内集合P所表示的区域的面积是2+π.【解答】解:∵f(x)=x2﹣|x|=(|x|﹣)2﹣,∴当|x|=时,函数f(x)取得最小值为﹣,由f(x)+f(y)≤0得x2﹣|x|+y2﹣|y|≤0,即(|x|﹣)2+(|y|﹣)2≤,当x≥0,y≥0时,不等式等价为(x﹣)2+(y﹣)2≤,则对应图象为以(,)为圆心,半径为的圆内部分,则三角形OAB的面积S==,半圆的面积S=()2=,则第一象限部分的面积S=+,则集合P对应区域为第一象限的4倍,即总面积S=4×(+)=2+π,故答案为:﹣,2+π7.(2015•南昌模拟)若平面区域是一个三角形,则k的取值范围是(﹣∞,﹣2)∪(0,].【解答】解:直线y+2=k(x+1)表示过(﹣1,﹣2)的直线,根据约束条件画出可行域如图:平面区域是一个三角形,就是图中阴影部分,所以k∈(﹣∞,﹣2)∪(0,]故答案为:(﹣∞,﹣2)∪(0,].三.解答题(共9小题)8.(2017春•天津期中)解关于x的不等式:mx2﹣(m﹣2)x﹣2>0.【解答】题:不等式:mx2﹣(m﹣2)x﹣2>0化为(mx+2)(x﹣1)>0;当m≠0时,不等式对应方程为(x+)(x﹣1)=0,解得实数根为﹣,1;当m>0时,不等式化为(x+)(x﹣1)>0,且﹣<1,∴不等式的解集为(﹣∞,﹣)∪(1,+∞);当﹣2<m<0时,不等式化为(x+)(x﹣1)<0,且1<﹣,∴不等式的解集为(1,﹣);当m=﹣2时,﹣=1,不等式化为(x﹣1)2<0,其解集为∅;当m<﹣2时,不等式化为(x+)(x﹣1)<0,且﹣<1,∴不等式的解集为(﹣,1);当m=0时,不等式化为2(x﹣1)>0,解得x>1,∴不等式的解集为(1,+∞);综上,m>0时,不等式的解集为(﹣∞,﹣)∪(1,+∞);﹣2<m<0时,不等式的解集为(1,﹣);m=﹣2时,不等式的解集为∅;m<﹣2时,不等式的解集为(﹣,1);m=0时,不等式的解集为(1,+∞).9.(2018•江苏)若x,y,z为实数,且x+2y+2z=6,求x2+y2+z2的最小值.【解答】解:由柯西不等式得(x2+y2+z2)(12+22+22)≥(x+2y+2z)2,∵x+2y+2z=6,∴x2+y2+z2≥4是当且仅当时,不等式取等号,此时x=,y=,z=,∴x2+y2+z2的最小值为410.(2017•甘肃一模)已知函数f(x)=(m+)lnx+﹣x,(其中常数m>0).(1)当m=2时,求f(x)的极大值;(2)试讨论f(x)在区间(0,1)上的单调性;(3)当m∈[3,+∞)时,曲线y=f(x)上总存在相异两点P(x1,f(x1))、Q (x2,f(x2)),使得曲线y=f(x)在点P、Q处的切线互相平行,求x1+x2的取值范围.【解答】解:(1)当m=2时,(x>0)令f′(x)<0,可得<<或x>2;令f′(x)>0,可得<<,∴f(x)在,和(2,+∞)上单调递减,在,单调递增故极大(2)(x>0,m>0)①当0<m<1时,则>,故x∈(0,m),f′(x)<0;x∈(m,1)时,f′(x)>0此时f(x)在(0,m)上单调递减,在(m,1)单调递增;②当m=1时,则,故x∈(0,1),有<恒成立,此时f(x)在(0,1)上单调递减;③当m>1时,则<<,故,时,f′(x)<0;,时,f′(x)>0此时f(x)在,上单调递减,在,单调递增(3)由题意,可得f′(x1)=f′(x2)(x1,x2>0,且x1≠x2)即 ⇒∵x1≠x2,由不等式性质可得<恒成立,又x1,x2,m>0∴<⇒>对m∈[3,+∞)恒成立令,则>对m∈[3,+∞)恒成立∴g(m)在[3,+∞)上单调递增,∴故从而“>对m∈[3,+∞)恒成立”等价于“>”∴x1+x2的取值范围为,11.(2016•上海模拟)对于函数f(x),g(x),记集合D f>g={x|f(x)>g(x)}.(1)设f(x)=2|x|,g(x)=x+3,求D f>g;(2)设f1(x)=x﹣1,,h(x)=0,如果>>.求实数a的取值范围.【解答】解:(1)由2|x|>x+3,得D f>g={x|x<﹣1或x>3};(2)方法一:>>>,>>,由>>>,或>,,其中>>,则>在R上恒成立,令,,a>﹣t2﹣t,<,∴a≥0时成立.对于>,,其中>以下只讨论a<0的情况对于>,=t>0,t2+t+a>0,解得t<或t>,(a<0)又t>0,所以>即>⇒<,∴>=⇒>综上所述:>方法二(2)>>>,>>,由>>>,或>,,其中>a≥0.显然>恒成立,即x∈Ra<0时,>,在x≤1上恒成立令,,>,,所以,>>综上所述:>.12.(2017秋•腾冲县校级期中)已知函数g(x)=(a+1)x﹣2+1(a>0)的图象恒过定点A,且点A又在函数的图象.(1)求实数a的值;(2)解不等式f(x)<log a;(3)|g(x+2)﹣2|=2b有两个不等实根时,求b的取值范围.【解答】解:(1)∵函数g(x)=(a+1)x﹣2+1(a>0)的图象恒过定点A,∴A(2,2)…2分又点A在函数f(x)上,∴f(2)==2,∴2+a==3,∴a=1…4分(2)f(x)<log a⇔ <=0…6分⇒0<x+1<1⇒﹣1<x<0⇒不等式的解集为{x|﹣1<x<0}…8分(3)|g(x+2)﹣2|=2b⇒|2x+1﹣2|=2b⇒|2x﹣1|=2b…10分若x<0,0<2x<1,∴﹣1<2x﹣1<0;∴0<|2x﹣1|<1;若x>0,则2x>1,∴2x﹣1>0;∴0<2b<1,故b的取值范围为(0,)…12分13.(2018•南通一模)已知a>1,b>1,求+的最小值.【解答】解:∵a>1,b>1;∴a﹣1>0,b﹣1>0;∴,;两式相加:;∴;当且仅当,且时“=”成立;即a=b=2时,取得最小值8.14.(2017秋•杨浦区校级期末)已知关于x的不等式log2(﹣2x2+3x+t)<0,其中t∈R.(1)当t=0时,求该不等式的解;(2)若该不等式有解,求实数t的取值范围.【解答】解:(1)关于x的不等式log2(﹣2x2+3x+t)<0,当t=0时,不等式为log2(﹣2x2+3x)<0,即0<﹣2x2+3x<1,等价于<>,解得<<<或>,即0<x<或1<x<;∴不等式的解集为(0,)∪(1,);(2)不等式log2(﹣2x2+3x+t)<0有解,∴0<﹣2x2+3x+t<1,化为2x2﹣3x<t<2x2﹣3x+1;设f(x)=2x2﹣3x,x∈R,∴f(x)min=f()=﹣,且f(x)无最大值;∴实数t的取值范围是(﹣,+∞).15.(2017春•张家口期中)设关于x的不等式x2﹣(b+2)x+c<0的解集为{x|2<x<3}.(1)设不等式bx2﹣(c+1)x﹣c>0的解集为A,集合B=[﹣2,2),求A∩B;(2)若x>1,求的最小值.【解答】解:关于x的不等式x2﹣(b+2)x+c<0的解集为{x|2<x<3}∴,解得;(1)不等式bx2﹣(c+1)x﹣c>0可化为3x2﹣7x﹣6>0,由3x2﹣7x﹣6>0解得<或x>3,即,,;又B=[﹣2,2),∴,;(2)∵x>1,∴x﹣1>0,则==,当且仅当x=3时等号成立,即的最小值为3.16.(2016秋•济南期末)已知a>0,a≠1且log a3>log a2,若函数f(x)=logax 在区间[a,2a]上的最大值与最小值之差为1.(1)判断函数g(x)=1﹣的奇偶性;(2)解不等式log(x﹣1)>log(a﹣x).【解答】解:(1)∵a>0,a≠1且log a3>log a2,∴a>1,又∵函数f(x)=log a x在区间[a,2a]上的最大值与最小值之差为1,∴log a2a﹣log a a=1,即log a2=1,解得a=2;∵函数g(x)的定义域为R,且g(x)=1﹣=1﹣=,∴g(﹣x)===﹣=﹣g(x),∴g(x)是定义域R上的奇函数;(2)不等式log(x﹣1)>log(a﹣x),<,∴>解得1<x<,故所求不等式的解集为(1,)。

相关文档
最新文档