渗透汽化膜分离原理
渗透气化分离技术

渗透气化分离技术渗透气化分离技术是一种利用膜分离原理进行气体分离的技术。
它通过将气体分子通过膜的渗透和气体分子的化学反应来实现气体分离。
渗透气化分离技术具有高效、节能、环保等优点,因此在工业生产和环境保护等领域得到了广泛应用。
渗透气化分离技术的原理是利用膜的渗透性和选择性来实现气体分离。
膜的渗透性是指气体分子在膜上的渗透速率,而选择性是指膜对不同气体分子的选择性。
渗透气化分离技术的膜材料通常是聚合物、无机材料和复合材料等。
这些材料具有不同的渗透性和选择性,可以根据不同的气体分子进行选择。
渗透气化分离技术的应用非常广泛,主要包括以下几个方面:1. 工业生产领域。
渗透气化分离技术可以用于气体分离、纯化和回收等方面。
例如,可以将二氧化碳从天然气中分离出来,用于石油化工和食品工业等领域。
2. 环境保护领域。
渗透气化分离技术可以用于废气处理和污水处理等方面。
例如,可以将废气中的有害气体分离出来,减少对环境的污染。
3. 医疗领域。
渗透气化分离技术可以用于呼吸机和人工肺等医疗设备中。
例如,可以将氧气和二氧化碳分离出来,提高呼吸机的效率和安全性。
渗透气化分离技术具有高效、节能、环保等优点,但也存在一些问题。
例如,膜的选择性和稳定性需要进一步提高,膜的制备成本较高,膜的寿命较短等。
因此,需要进一步研究和发展渗透气化分离技术,提高其应用效果和经济效益。
总之,渗透气化分离技术是一种非常重要的气体分离技术,具有广泛的应用前景。
随着科技的不断进步和发展,相信渗透气化分离技术将会得到更广泛的应用和推广。
东南大学渗透汽化论文

渗透汽化技术张丽娟东南大学化学化工学院化学工程专业摘要本文重点介绍了渗透汽化的基本原理、装置和流程示意图、应用领域以及工业化应用实例之一即已经投产在用的乙醇脱水工艺技术,同时也间接说明了渗透汽化在某些方面比传统精馏萃取等分离方法更具优势,是未来分离技术的前沿领域之一,具有更为广阔的应用前景。
关键词渗透汽化装置优势分离技术前沿领域1.基本原理渗透汽化(pervaporation,简称PV)技术是一种新兴的分离技术,也称渗透汽化膜分离技术。
其原理是利用高分子膜材料对有机混合物中各组分的溶解度(热力学性质)和扩散速度(动力学性质)的不同来实现组分分离的一种膜过程(如图1)。
膜分离过程中渗透汽化的原料则以液体形式供料,液体混合物原料经加热器加热到一定温度后,在常压下送入膜分离器与膜接触,在膜的下游侧用抽真空或载气吹扫的方法维持低压。
渗透物组分在膜两侧的蒸汽分压差(或化学位梯度)的作用下透过膜,并在膜的下游侧汽化,被冷凝成液体而除去。
不能透过膜的截留物流出膜分离器[1]。
图1 渗透汽化技术原理图2 渗透汽化装置及流程图2 装置及流程示意图[4]整个装置由三部分组成(如图2):(1)料液和溶剂循环系统:包括料液罐和溶剂罐、加热系统、料液泵和溶剂泵以及流量计等。
实验中可以方便地设定料液或溶剂流量和温度,以测定不同操作条件下的膜分离性能。
通过自动控制加热系统,可以保证料液和溶剂温度在设定值处的波动范围为±0.2℃。
(2)膜组件:这是整个装置的核心部分。
它由料液侧和渗透物侧的两个腔室组成,中间由渗透膜分隔。
为了减小膜表面处因边界层的存在而引起的浓差极化现象对实验结果的影响,膜组件内的流体流动通道采用特殊的环形结构,以增大其湍动度。
同时,实验中可采用较大的料液流量并保持恒定,以保证膜组件内较大的流动雷诺准数,从而降低流动边界层的厚度。
(3)渗透物收集系统:包括液氮冷阱、真空泵和真空计等,主要用于收集渗透汽化过程渗透物。
第八章渗透汽化膜技术

透过组分的性质选用膜材料。
一般可分三种情况: I、有机溶液中少量水的脱除,可用亲水性聚合物; II、水溶液中少量有机质的脱除,可用弹性体聚合物;
再生。常用的荷电基团有-COO-、-SO3-、-NH+、-NR3+。
D、共混 将具有不同性质的聚合物共混,以使膜具有需要 的特性。但共混的聚合物在同一溶剂中必须相容 , 即在配成制
膜液时必须为均相。
(4) 影响渗透蒸发过程的因素
① 温度 组分在膜中的扩散系数、溶解度及渗透率随温度的升 高而增加。温度对分离系数 (选择性) 的影响不大 ,一般温度 升高 , 选择性有所下降 , 但也有温度升高 ,选择性升高的情况。 ② 压力 液相侧的压力对液体在高分子膜中的溶解度影响不大 , 故对渗透汽化过程的影响不大,所以通常液相侧均为常压。
膜下游侧压力 ( 真空度 ) 是一个重要的操作参数。当膜 下游真空侧压力升高时,过程的传质推动力(组分的蒸气压差) 变小,从而使得组分的渗透通量降低。
③ 液体中易渗透组分的浓度 在液体混合物中易渗透组分浓度增大 , 渗透通量增加。
因为随着易渗透组分浓度的增大,组分在膜中的溶解度和 扩散系数均增大。
III、有机液体混合物的分离
这种体系又可分三类:极性/非极性、极性/极 性和非极性/ 非极性混合物。 对极性/非极性体系的分离材料的选择比较 容易,透过组分为极性可选用有极性基团的
聚合物,透过组分为非极性应选用非极性聚
合 物。
而极性/极性和非极性/非极性混合物的分
离就比较困难,特别当组分的分子大小、形 状相似时更难分离。
渗透汽化膜技术及其应用

渗透汽化膜技术及其应用
渗透汽化膜技术是一种有效的用于分离气体的新技术,它可以将气体分离成不同的组分,使气体的组成更加纯净,有利于节约能源、改善空气质量和环境保护等方面。
渗透汽化膜技术是一种新型的气体分离技术,它可以将气体分离成不同的组分,从而获得更加纯净的组分。
它的原理是利用渗透汽化膜的渗透特性,将混合气体的组分分离出来。
渗透汽化膜的毛细管是由一种可渗透的材料制成的,它可以将混合气体中的组分分离出来,使气体的组成更加纯净。
渗透汽化膜技术具有节能、改善空气质量、环境保护方面的优势。
比如,在燃料气中分离氧气和氮气,可以提高燃料气的燃烧效率,减少燃料消耗,从而节约能源。
此外,渗透汽化膜技术还可以将有害气体从空气中洁净,从而改善空气质量,减少污染。
此外,渗透汽化膜技术还可以用于回收有用气体,从而实现资源循环利用,保护环境。
渗透汽化膜技术广泛应用于工业气体分离、空气净化、燃料气改良等领域。
在石油化工、环保、医药、冶金等行业中,渗透汽化膜技术得到了广泛的应用,为社会的经济发展和环境保护做出了巨大的贡献。
总之,渗透汽化膜技术是一种具有重要意义的分离技术。
它既可以节约能源,又可以改善空气质量,保护环境,并在工业生产中得到广泛应用。
渗透汽化膜分离

膜分离是一项新兴的高效分离技术。膜分离过 程是被分离混合物在一定的推动力 ( 如压差、浓 差、电位差等 ) 作用下 , 通过传递介质----膜 , 进行分离的过 程。渗透汽化 (pervaporation, PV) 是一种新型膜分离技术 , 它利用膜对液体泪 合物中组分的溶解扩散性能的不同来实现分离。
五、研究内容及课题
(1) 测定渗透汽化膜的分离性能 ,包括其分离因 子及通量.对实验所用的膜做出评价。
(2) 改变进料温度或组成、膜后真空度、膜种 类和厚度 , 比较各状况下的分离性能 , 并对 结果进行分析。
(3) 对实验装置流程、膜器的设计、膜的选择以 及膜过程相关领域的研究提出自己的见解。
(4) 自拟课题进行研究。
整个传质过程中液体在膜中的溶解和扩散 占重要地位,而透过侧的蒸发传质阻 力相 对小得多,通常可以忽略不计,因此该过程 主要受控于溶解及扩散步骤。
由于不同组分在膜中的溶解和扩散速度不 同,使得优先透过组分在真空侧得到富集, 而难透过组分在料液侧得到富集.这便是渗 透汽化的基本原理,其流程如下图 所示:
二、基本原理
当液体混合物在一张高分子膜的表面流动 时,膜在高分子所含宫能团的作用下对、混 合物中各组分产生吸附作用,使得组分进入 膜表面(该步骤称为溶解过程).膜的另一侧 抽真空 (或者用惰性气体吹扫),在浓度梯度 作用下,组分透过 膜从料液侧迁移到真空侧 (该步骤称为扩散过程),解吸并冷凝后得到 透过品。
纳 600mL 料液 ; (2) 真空泵 : 旋片式 , 极限真空 O.06Pa, 抽气速率
1L/s; (3) U 形管压差计 : 指示液为束 , 量程 O~800mmHg; (4) 超级恒温水浴槽 z 控温精度0.1℃, 温度范围 :
渗透汽化——生物分离工程

• PV过程研究最多,产业化最早,应用最普遍,技术最成熟的
领域。
无水乙醇的生产 异丙醇的脱水浓缩 苯中微量水的脱除 碳六溶剂中微量水的脱除 …… • 一般采用亲水性的聚乙烯醇(PVA)为分离层,聚丙烯腈(PAN)多
孔膜为支撑层的PVA/PAN复合膜。
常见渗透汽化膜及应用
渗透汽化的应用
• b.热渗透汽化
通过加热进料液和冷凝的方法形成膜 两侧组分的蒸汽压差。
• c.载气吹扫渗透汽化
用载气吹扫膜的透过侧,以带走透过 组分。吹扫气经冷凝后回收透过组分 ,载气循环使用。当透过组分无回收 价值时,将吹扫气放空。
渗透汽化的分类
• 冷凝渗透汽化(d + e)
渗透汽化过程的特点
与蒸馏等传统的分离技术相比,渗透汽化过 程的特点:
有长足的进展,在石油化工、医药、食品、环保等工业领 域中具有广阔的应用前景及市场。
参考文献
[1].夏德万,张强,施艳荞,等. 渗透汽化膜分离研究的新进展[J].高分子通报,2007,9 :1-9. [2].李继定,展侠,葛洪,等.渗透汽化和汽体渗透膜技术应用及其浮浅思考[J].膜科学与技术,2011 ,31(1):135-139. [3].蔡邦肖,张佩琴.聚乙烯醇渗透汽化分离膜的研究进展[J].华东理工大学学报(自然科学版), 2006,32(2):235-240. [4].朱智慧,钱锦文.壳聚糖膜在渗透汽化领域的研究进展[J].材料科学与工程学报,2008,26(2): 308-311. [5].曹绪芝,平郑骅.聚乙烯基咪唑/陶瓷复合膜的渗透汽化性能[J].化学学报,2008,66(7):803809. [6].方军,黄继才,杨治中,等.用聚偏氟乙烯渗透汽化膜分离乙醇水溶液的方法[P].CN 99 116 274.9, 1999-07-08. [7]. Huang Z, Guan H, Qiao X Y, et al. Pervaporation study of aqueous ethanol solution through zeoliteincorporated multilayer poly (vinyl alcohol) membranes: effect of zeolites[J]. Journal of membrane science, 2006, 276 (1): 260-271. [8]. Zhu Y, Xia S, Liu G, et al. Preparation of ceramic-supported poly (vinyl alcohol)– chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures[J]. Jou rnal of Membrane Science, 2010, 349(1): 341-348. [9].Jiang L Y, Wang Y, Chung T S, et al. Polyimides membranes for pervaporation and biofuels separation[J]. Progress i n Polymer Science, 2009, 34(11): 1135-1160.
渗透汽化膜分离技术及应用简介

这样,渗透物组分在膜两侧的蒸汽分压差 或化 这样,渗透物组分在膜两侧的蒸汽分压差(或化 学位梯度)的作用下透过膜 的作用下透过膜, 学位梯度 的作用下透过膜,并在膜的下游侧汽化 被冷凝成液体而除去。 ,被冷凝成液体而除去。 不能透过膜的截留物流出膜分离器。 不能透过膜的截留物流出膜分离器。 因此, 因此,渗透汽化过程是依靠不同组分在特定聚 合物膜中溶解扩散能力不同,透过速率不同, 合物膜中溶解扩散能力不同,透过速率不同,从而 实现不同组分分离的目的。 实现不同组分分离的目的。
工业技术经济比较
从国际上已投产的工业装置的运行结果表明, 从国际上已投产的工业装置的运行结果表明, 与传统的恒沸蒸馏和萃取精馏相比, 与传统的恒沸蒸馏和萃取精馏相比,采用渗透汽化 技术生产无水乙醇,可使能耗大大降低, 技术生产无水乙醇,可使能耗大大降低,仅为蒸馏 法的1/2-1/3,整个生产装置总投资为传统分离方法 法的 , 总投资的40%-80%。 总投资的 。 表1是文献中关于渗透汽化法与共沸蒸馏法进 是文献中关于渗透汽化法与共沸蒸馏法进 行乙醇脱水典型操作费用的比较, 行乙醇脱水典型操作费用的比较,从表中可以看出 采用渗透汽化法总能耗为共沸蒸馏法的1/3。 ,采用渗透汽化法总能耗为共沸蒸馏法的 。
Hale Waihona Puke 表2 蓝景异丙醇脱水生产中所需的操作费用比较
项目名称 01 蒸汽消耗 02 电耗 03 设备折旧费 04 膜和密封材料 更换费
数 量 0.12 70度 度
金额( 金额(元/ 吨) 12 42 60 50 164
备注 0.6MPa蒸汽(100 蒸汽( 蒸汽 元/吨) 吨 0.6元/度 元度 十年折旧
实例无水乙醇/燃料乙醇的膜生产 工艺
简 介 蓝景无水乙醇 无水酒精 燃料乙醇 燃料酒 蓝景无水乙醇(无水酒精 燃料乙醇,燃料酒 无水酒精,燃料乙醇
渗透汽化膜工作原理

渗透汽化膜工作原理
渗透汽化膜是一种介于反渗透和微滤之间的膜分离技术,具有选择性高、能耗低、易于操作等特点,能除去水中的离子、细菌和生物大分子,在食品加工领域得到了广泛的应用。
其基本工作原理是:当半透膜两侧溶液中的溶质分子在半透膜两侧都存在时,溶液中的部分溶剂分子可以穿过半透膜而在膜内扩散。
当溶质分子通过半透膜时,一部分溶剂分子会扩散到溶质内,并溶解在溶质内,称为扩散作用。
而渗透液中的部分溶剂分子会穿过半透膜而到达半透膜外,称为渗透作用。
当半透膜两侧的溶液中有某种溶质存在时,半透膜将这个溶质吸收到溶液中,称为扩散作用。
由于渗透和扩散作用的存在,在渗透汽化过程中,使水中的离子、分子、小分子和生物大分子通过半透膜向另一端扩散。
因此渗透汽化可去除水中的有机物、色素、微生物和细菌等。
同时利用渗透汽化可分离出大量的可溶性盐和溶解性糖。
对盐浓度较高或较低的溶液来说,渗透汽化能分离出大量盐。
在一定的压力下,水分子能够透过半透膜而进入溶液中。
—— 1 —1 —。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
渗透汽化膜分离原理
渗透汽化膜分离是一种利用溶液中不同组分的气体透过选择性渗透膜的原理进行分离的方法。
该原理基于气体在溶液中的溶解性差异,通过渗透膜的选择性作用,使得气体分子能够透过膜的孔隙,而其他溶质无法通过,从而实现对气体的高效分离。
渗透汽化膜分离的基本原理可以用扩散理论和膜的选择性两个方面来解释。
首先,根据扩散理论,溶液中不同组分的气体分子会因其在溶液中的溶解度不同而产生浓度梯度。
在渗透汽化膜分离过程中,当一侧气体分子在膜表面发生蒸发过程时,气体分子会进入膜材的孔隙中,并在膜材内部扩散,然后从另一侧膜表面释放出来。
由于气体组分在溶液中的溶解度不同,故气体分子在膜材内部的扩散速率也不同,从而导致了气体的分离。
其次,渗透汽化膜分离中的膜选择性是实现气体分离的关键。
渗透膜通常由聚合物、无机材料或陶瓷等制成,其特点是具有一定的孔隙结构和选择性,可用于选择性分离不同大小和性质的气体分子。
渗透膜的选择性主要是通过孔隙结构的大小和形状以及膜表面的相互作用来实现的。
一般而言,渗透膜的孔隙尺寸很小,可以实现对较小分子的选择性分离。
渗透汽化膜分离的分离效果主要取决于以下几个因素:
1. 温度:渗透汽化膜分离过程中,提高温度可以增加溶液中气体分子的扩散速率,从而加速分离过程。
2. 压力差:增加两侧膜表面的压力差可以增强气体分子在膜内的扩散速度,进而提高分离效率。
3. 膜材料:渗透膜的选择性和分离效率与膜材料的孔隙结构、孔隙大小以及膜表面的相互作用相关。
选择适合的膜材料可以提高分离效果。
4. 溶液浓度和气体浓度:溶液浓度和气体浓度对渗透汽化膜分离过程有一定的影响。
一般来说,较低浓度的溶液和气体浓度有助于提高分离效率。
总结来说,渗透汽化膜分离是一种基于气体在溶液中的溶解度不同而利用渗透膜的选择性进行分离的方法。
该方法利用气体分子在膜内扩散的速率差异,通过温度、压力差、膜材料以及溶液浓度和气体浓度等因素的调控,实现对气体的高效分离。
渗透汽化膜分离在气体分离、水处理、化工等领域都有重要应用价值。