渗透汽化膜分离技术

合集下载

渗透气化分离技术

渗透气化分离技术

渗透气化分离技术渗透气化分离技术是一种利用膜分离原理进行气体分离的技术。

它通过将气体分子通过膜的渗透和气体分子的化学反应来实现气体分离。

渗透气化分离技术具有高效、节能、环保等优点,因此在工业生产和环境保护等领域得到了广泛应用。

渗透气化分离技术的原理是利用膜的渗透性和选择性来实现气体分离。

膜的渗透性是指气体分子在膜上的渗透速率,而选择性是指膜对不同气体分子的选择性。

渗透气化分离技术的膜材料通常是聚合物、无机材料和复合材料等。

这些材料具有不同的渗透性和选择性,可以根据不同的气体分子进行选择。

渗透气化分离技术的应用非常广泛,主要包括以下几个方面:1. 工业生产领域。

渗透气化分离技术可以用于气体分离、纯化和回收等方面。

例如,可以将二氧化碳从天然气中分离出来,用于石油化工和食品工业等领域。

2. 环境保护领域。

渗透气化分离技术可以用于废气处理和污水处理等方面。

例如,可以将废气中的有害气体分离出来,减少对环境的污染。

3. 医疗领域。

渗透气化分离技术可以用于呼吸机和人工肺等医疗设备中。

例如,可以将氧气和二氧化碳分离出来,提高呼吸机的效率和安全性。

渗透气化分离技术具有高效、节能、环保等优点,但也存在一些问题。

例如,膜的选择性和稳定性需要进一步提高,膜的制备成本较高,膜的寿命较短等。

因此,需要进一步研究和发展渗透气化分离技术,提高其应用效果和经济效益。

总之,渗透气化分离技术是一种非常重要的气体分离技术,具有广泛的应用前景。

随着科技的不断进步和发展,相信渗透气化分离技术将会得到更广泛的应用和推广。

渗透汽化膜分离原理

渗透汽化膜分离原理

渗透汽化膜分离原理渗透汽化膜分离是一种利用溶液中不同组分的气体透过选择性渗透膜的原理进行分离的方法。

该原理基于气体在溶液中的溶解性差异,通过渗透膜的选择性作用,使得气体分子能够透过膜的孔隙,而其他溶质无法通过,从而实现对气体的高效分离。

渗透汽化膜分离的基本原理可以用扩散理论和膜的选择性两个方面来解释。

首先,根据扩散理论,溶液中不同组分的气体分子会因其在溶液中的溶解度不同而产生浓度梯度。

在渗透汽化膜分离过程中,当一侧气体分子在膜表面发生蒸发过程时,气体分子会进入膜材的孔隙中,并在膜材内部扩散,然后从另一侧膜表面释放出来。

由于气体组分在溶液中的溶解度不同,故气体分子在膜材内部的扩散速率也不同,从而导致了气体的分离。

其次,渗透汽化膜分离中的膜选择性是实现气体分离的关键。

渗透膜通常由聚合物、无机材料或陶瓷等制成,其特点是具有一定的孔隙结构和选择性,可用于选择性分离不同大小和性质的气体分子。

渗透膜的选择性主要是通过孔隙结构的大小和形状以及膜表面的相互作用来实现的。

一般而言,渗透膜的孔隙尺寸很小,可以实现对较小分子的选择性分离。

渗透汽化膜分离的分离效果主要取决于以下几个因素:1. 温度:渗透汽化膜分离过程中,提高温度可以增加溶液中气体分子的扩散速率,从而加速分离过程。

2. 压力差:增加两侧膜表面的压力差可以增强气体分子在膜内的扩散速度,进而提高分离效率。

3. 膜材料:渗透膜的选择性和分离效率与膜材料的孔隙结构、孔隙大小以及膜表面的相互作用相关。

选择适合的膜材料可以提高分离效果。

4. 溶液浓度和气体浓度:溶液浓度和气体浓度对渗透汽化膜分离过程有一定的影响。

一般来说,较低浓度的溶液和气体浓度有助于提高分离效率。

总结来说,渗透汽化膜分离是一种基于气体在溶液中的溶解度不同而利用渗透膜的选择性进行分离的方法。

该方法利用气体分子在膜内扩散的速率差异,通过温度、压力差、膜材料以及溶液浓度和气体浓度等因素的调控,实现对气体的高效分离。

第八章渗透汽化膜技术

第八章渗透汽化膜技术
渗透蒸发过程用膜与气体分离膜类似,主要使用非对称 膜和复合膜。在筛选渗透蒸发膜材料时,应考虑以下问题: ①、优先透过组分的性质 在渗透蒸发中应以含量少的组分为优先透过组分,根据
透过组分的性质选用膜材料。
一般可分三种情况: I、有机溶液中少量水的脱除,可用亲水性聚合物; II、水溶液中少量有机质的脱除,可用弹性体聚合物;
再生。常用的荷电基团有-COO-、-SO3-、-NH+、-NR3+。
D、共混 将具有不同性质的聚合物共混,以使膜具有需要 的特性。但共混的聚合物在同一溶剂中必须相容 , 即在配成制
膜液时必须为均相。
(4) 影响渗透蒸发过程的因素
① 温度 组分在膜中的扩散系数、溶解度及渗透率随温度的升 高而增加。温度对分离系数 (选择性) 的影响不大 ,一般温度 升高 , 选择性有所下降 , 但也有温度升高 ,选择性升高的情况。 ② 压力 液相侧的压力对液体在高分子膜中的溶解度影响不大 , 故对渗透汽化过程的影响不大,所以通常液相侧均为常压。
膜下游侧压力 ( 真空度 ) 是一个重要的操作参数。当膜 下游真空侧压力升高时,过程的传质推动力(组分的蒸气压差) 变小,从而使得组分的渗透通量降低。
③ 液体中易渗透组分的浓度 在液体混合物中易渗透组分浓度增大 , 渗透通量增加。
因为随着易渗透组分浓度的增大,组分在膜中的溶解度和 扩散系数均增大。
III、有机液体混合物的分离
这种体系又可分三类:极性/非极性、极性/极 性和非极性/ 非极性混合物。 对极性/非极性体系的分离材料的选择比较 容易,透过组分为极性可选用有极性基团的
聚合物,透过组分为非极性应选用非极性聚
合 物。
而极性/极性和非极性/非极性混合物的分
离就比较困难,特别当组分的分子大小、形 状相似时更难分离。

渗透汽化膜技术及其应用

渗透汽化膜技术及其应用

渗透汽化膜技术及其应用
渗透汽化膜技术是一种有效的用于分离气体的新技术,它可以将气体分离成不同的组分,使气体的组成更加纯净,有利于节约能源、改善空气质量和环境保护等方面。

渗透汽化膜技术是一种新型的气体分离技术,它可以将气体分离成不同的组分,从而获得更加纯净的组分。

它的原理是利用渗透汽化膜的渗透特性,将混合气体的组分分离出来。

渗透汽化膜的毛细管是由一种可渗透的材料制成的,它可以将混合气体中的组分分离出来,使气体的组成更加纯净。

渗透汽化膜技术具有节能、改善空气质量、环境保护方面的优势。

比如,在燃料气中分离氧气和氮气,可以提高燃料气的燃烧效率,减少燃料消耗,从而节约能源。

此外,渗透汽化膜技术还可以将有害气体从空气中洁净,从而改善空气质量,减少污染。

此外,渗透汽化膜技术还可以用于回收有用气体,从而实现资源循环利用,保护环境。

渗透汽化膜技术广泛应用于工业气体分离、空气净化、燃料气改良等领域。

在石油化工、环保、医药、冶金等行业中,渗透汽化膜技术得到了广泛的应用,为社会的经济发展和环境保护做出了巨大的贡献。

总之,渗透汽化膜技术是一种具有重要意义的分离技术。

它既可以节约能源,又可以改善空气质量,保护环境,并在工业生产中得到广泛应用。

第八章渗透汽化膜技术

第八章渗透汽化膜技术

冷凝物
一、引言
渗透汽化膜分离技术的突出优点: * 典型的节能技术(低能耗,一般比恒沸精馏节能1/2 ~3/4) * 典型的清洁生产技术(过程不引入其它组成,产品和环境不会受到污染) * 典型的便于放大、耦合和集成技术
它特别适用于普通精馏难于分离或不能分离的近沸点、恒沸 点混合物的分离,对有机溶剂及混合溶剂中微量水的脱除,对 废水中少量有机物的回收,对有机物/有机物分离和与反应耦合、 将反应生成物不断脱除等具有明显的经济上和技术上的优势。
② 膜材料改性
A、交联 交联可以三种方法进行。第一种是通过化 学反应在两聚合物链间联接上一化合物,这类交联绝大多 数是以过氧化物为引发剂的自由基反应;第二种为光照射 交联;第三种为物理交联。
B、接枝 通过化学反应或光照射等把某些齐聚物链节作 为支链接到聚合物主链上。如果接枝的分子中含功能团,它能 与聚合物中的功能团相反应,则可用化学反应进行接枝。聚乙 烯、聚四氟乙烯之类通过熔压法制的薄膜可用光照射接校进行 改性。
有人提出用定性的亲憎水平衡理论来选择膜材料。 根据这个理论,膜材料应与优先渗透组分之间存在适 当的亲和作用力,这种亲和作用力是由膜材料中的官 能团与渗透组分分子间作用的结果。高分子物质的 官能团可分亲水与疏水两类,采用共混、接校、共聚、 交联等方法调节这两类官能团的比例,使优先渗透组 分与膜间有适当大的亲和力,可能得到好的效果。
3.9

3.9 4 12
U. Sander, P. Soukup, Design and operation of a pervaporation plant for ethanol dehydration, J. Membr. Sci. 36 (1988) 463, (contribution of the company LURGI).

渗透汽化膜分离技术及应用简介

渗透汽化膜分离技术及应用简介

这样,渗透物组分在膜两侧的蒸汽分压差 或化 这样,渗透物组分在膜两侧的蒸汽分压差(或化 学位梯度)的作用下透过膜 的作用下透过膜, 学位梯度 的作用下透过膜,并在膜的下游侧汽化 被冷凝成液体而除去。 ,被冷凝成液体而除去。 不能透过膜的截留物流出膜分离器。 不能透过膜的截留物流出膜分离器。 因此, 因此,渗透汽化过程是依靠不同组分在特定聚 合物膜中溶解扩散能力不同,透过速率不同, 合物膜中溶解扩散能力不同,透过速率不同,从而 实现不同组分分离的目的。 实现不同组分分离的目的。
工业技术经济比较
从国际上已投产的工业装置的运行结果表明, 从国际上已投产的工业装置的运行结果表明, 与传统的恒沸蒸馏和萃取精馏相比, 与传统的恒沸蒸馏和萃取精馏相比,采用渗透汽化 技术生产无水乙醇,可使能耗大大降低, 技术生产无水乙醇,可使能耗大大降低,仅为蒸馏 法的1/2-1/3,整个生产装置总投资为传统分离方法 法的 , 总投资的40%-80%。 总投资的 。 表1是文献中关于渗透汽化法与共沸蒸馏法进 是文献中关于渗透汽化法与共沸蒸馏法进 行乙醇脱水典型操作费用的比较, 行乙醇脱水典型操作费用的比较,从表中可以看出 采用渗透汽化法总能耗为共沸蒸馏法的1/3。 ,采用渗透汽化法总能耗为共沸蒸馏法的 。
Hale Waihona Puke 表2 蓝景异丙醇脱水生产中所需的操作费用比较
项目名称 01 蒸汽消耗 02 电耗 03 设备折旧费 04 膜和密封材料 更换费
数 量 0.12 70度 度
金额( 金额(元/ 吨) 12 42 60 50 164
备注 0.6MPa蒸汽(100 蒸汽( 蒸汽 元/吨) 吨 0.6元/度 元度 十年折旧
实例无水乙醇/燃料乙醇的膜生产 工艺
简 介 蓝景无水乙醇 无水酒精 燃料乙醇 燃料酒 蓝景无水乙醇(无水酒精 燃料乙醇,燃料酒 无水酒精,燃料乙醇

2024年渗透汽化膜市场规模分析

2024年渗透汽化膜市场规模分析

2024年渗透汽化膜市场规模分析渗透汽化膜是一种重要的膜分离技术,常用于海水淡化、废水处理和化工行业等领域。

本文将对全球渗透汽化膜市场的规模进行分析。

1. 市场概述渗透汽化膜技术是一种将溶液分离成纯净水和浓缩溶液的膜分离过程。

相比传统的热蒸馏方法,渗透汽化膜具有能耗低、操作简便等优势,因此在市场上得到了广泛的应用。

2. 市场规模根据市场研究数据,全球渗透汽化膜市场在过去几年保持着快速增长的趋势。

据预测,到2025年,全球渗透汽化膜市场的规模将达到X亿美元。

3. 市场驱动因素渗透汽化膜市场的增长受到多个因素的驱动。

首先,全球水资源的短缺问题促使各国加大对水资源的开发和利用,渗透汽化膜技术作为一种高效的水处理方法,得到了广泛的应用。

其次,化工行业和制药行业的发展也推动了渗透汽化膜市场的增长,这些行业对水质的要求较高,需要使用渗透汽化膜进行处理。

4. 市场分析根据产品类型,渗透汽化膜市场主要分为反渗透膜和纳滤膜两大类。

其中,反渗透膜在市场中占据较大的份额,在海水淡化、废水处理等领域得到了广泛应用。

根据应用领域,渗透汽化膜市场可以细分为海水淡化、废水处理、食品饮料、制药和生物技术等多个领域。

其中,海水淡化领域是渗透汽化膜市场的主要应用领域之一,随着全球淡水资源的短缺,海水淡化技术将会得到更广泛的应用。

5. 市场前景随着全球水资源的日益紧张和工业发展的推动,渗透汽化膜市场的前景十分广阔。

预计未来几年将会有更多的投资进入该市场,并推动技术的进步和产品的创新。

同时,渗透汽化膜技术也将在更多领域得到应用。

6. 结论综上所述,全球渗透汽化膜市场在未来将呈现出较大的增长潜力。

市场规模将持续扩大,并在水处理、化工和制药等领域发挥重要作用。

企业应抓住机遇,加大研发投入,提高产品质量和创新能力,以满足市场需求。

渗透汽化膜工作原理

渗透汽化膜工作原理

渗透汽化膜工作原理
渗透汽化膜是一种介于反渗透和微滤之间的膜分离技术,具有选择性高、能耗低、易于操作等特点,能除去水中的离子、细菌和生物大分子,在食品加工领域得到了广泛的应用。

其基本工作原理是:当半透膜两侧溶液中的溶质分子在半透膜两侧都存在时,溶液中的部分溶剂分子可以穿过半透膜而在膜内扩散。

当溶质分子通过半透膜时,一部分溶剂分子会扩散到溶质内,并溶解在溶质内,称为扩散作用。

而渗透液中的部分溶剂分子会穿过半透膜而到达半透膜外,称为渗透作用。

当半透膜两侧的溶液中有某种溶质存在时,半透膜将这个溶质吸收到溶液中,称为扩散作用。

由于渗透和扩散作用的存在,在渗透汽化过程中,使水中的离子、分子、小分子和生物大分子通过半透膜向另一端扩散。

因此渗透汽化可去除水中的有机物、色素、微生物和细菌等。

同时利用渗透汽化可分离出大量的可溶性盐和溶解性糖。

对盐浓度较高或较低的溶液来说,渗透汽化能分离出大量盐。

在一定的压力下,水分子能够透过半透膜而进入溶液中。

—— 1 —1 —。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蒸汽渗透膜分离技术清华大学膜技术工程研究中心北京清源洁华膜技术有限公司2015年10月1. ,概要北京清源洁华膜技术有限公司成立于2013年,公司以清华大学膜技术工程研究中心渗透汽化膜等专利技术为基础,从事渗透汽化、汽体渗透、透醇膜、超滤膜、纳滤膜等的研发生产。

北京清源洁华膜技术有限公司主要发起人全部毕业于清华大学,分别具有几十年的膜性能研发生产、化工工艺开发设计、化工设备加工制造、化工装置及企业生产管理经验,对国家环境保护工作的紧迫性及膜分离技术的先进性共同认知促成大家走到了一起。

汽体渗透和渗透汽化膜分离技术是近二十年来发展起来的一种高新技术,依据溶解扩散分离原理,依靠有机汽体和空气各组分在膜中的溶解与扩散速度不同的性质来实现分离的新型膜分离技术,以混合物中组分分压差为分离推动力,有机汽体透过膜、空气不能透过膜。

该技术具有高效、低能耗、操作安全等优点,与传统油汽回收技术相比,具有明显的技术上和经济上的优势。

北京清源洁华膜技术有限公司作为清华大学膜技术工程中心生产、实验基地,拥有三项国家发明专利,分别是:一种渗透汽化优先透醇沸石填充硅橡胶复合膜的制备方法(专利号:ZL 2008 1 0105405.6;专利有效期:2008年4月30日至2028年4月29日)、一种渗透汽化汽油脱硫用互穿网络膜的制备方法(专利号:ZL 2010 1 0282031.2;专利有效期:2010年9月14日至2030年9月13日)、二氮杂萘聚醚砜酮类聚合物平板超滤膜及其制备方法(专利证书号:ZL 20071 0177247.0;专利有效期:2007年11月13日至2027年11月12日)。

2.项目背景清华大学膜技术工程研究中心深知国际竞争的残酷性和中国人拥有该先进技术自主产权的重要性,是国内最早开展渗透汽化和汽体渗透膜技术研究单位。

在国家的支持下,本研究中心先后承担了国家自然科学基金“七五”重大项目“膜分离与分离膜”、“八五”重点项目“新型膜分离过程的应用基础研究”、“九五”国家重点科技攻关“渗透汽化透水膜及其过程关键技术开发”研究以及国家“十五”“863”项目“渗透汽化膜材料及其应用”研究,取得了醇、酯、酮脱水等16项小试研究成果和苯脱水、碳六油脱水两项工业中试研究成果,建立了年生产能力10万平方米的渗透汽化膜生产线,在广东、山东、江苏、浙江、四川等地相继建成了30多套渗透汽化膜脱水工业装置,在渗透汽化膜制备、膜组件设计、膜工艺等方面申请专利10多项,形成了完整的具有我国自主知识产权的专有技术,代表着我国渗透汽化和汽体渗透膜技术的先进水平。

国内已有少数几家公司在做蒸汽渗透膜分离业务,主要应用领域是汽车加油站尾气中汽油成分回收,油库有机蒸汽回收,聚合反应器放空尾气中聚合物单体回收,油田井口天然气中重组分回收等。

规模较大的是大连欧科膜工程技术有限公司,2011年合同额超过2亿元,但欧科是外国公司蒸汽渗透膜产品的代理,利润空间有限。

作为一种新型分离技术,蒸汽渗透膜分离过程与另一个新近飞速发展的分离技术 - 吸附过程之间是竞争关系,但是蒸汽渗透与传统分离技术–精馏是目标一致互为补充的关系。

国内西南地区的一些大的吸附公司已经吸纳精馏工程技术人员,靠强强结合去赢得项目,发展势头很猛。

但是,令人惊讶的是,国内仅有的几家蒸汽渗透膜公司几乎和精馏公司没有联合关系,仅仅是靠自己单打独拼去赢得有机蒸汽回收合同;另外,国内知名精馏工程公司忙于自己份内业务,对蒸汽渗透了解甚少,在此以前也没有主动和蒸汽渗透膜公司联系共同开拓市场。

北京清源洁华膜技术有限公司自2013年成立以来,研发生产的透有机气体油汽分离膜已经实现规模化工业生产,生产的膜组件产品已经成功应用于中石化北京清华西门加油站尾气回收系统及山东油脂行业溶剂油尾气回收系统。

相比原有技术装置,采用膜分离工艺装置不仅提高了工艺性能指标,还降低了生产及运行成本。

北京清源洁华膜技术有限公司与中石化青岛安全工程研究院、北京燕山石化设计院合作建设的中石化安徽阜阳油库油汽回收装置,采用我公司技术方案,使用我们加工生产的膜组件及装置,已经通过中石化系统专家认证,阜阳油库现场已经完成设备安装,即将进行正常生产调试运行。

蒸汽渗透膜简介蒸气渗透膜法基于膜对气体(或蒸汽)的渗透性,利用一定压力差下混合气体中各组分在膜中具有不同的渗透速率而实现分离。

气体或蒸汽分子首先被吸附并溶解于膜与料气接触的表面,然后借助浓度梯度在膜中扩散,最后从膜的另一侧解吸出来。

蒸气渗透膜可以分为玻璃态聚合物膜和橡胶态聚合物膜,前者优先透过相对分子量小的分子(氢气、氮气、一氧化碳、二氧化碳、甲烷等),适用于不可凝性混合气体分离;后者优先渗透相对分子量较大或者沸点高易冷凝的分子(甲醇,乙醇、二甲醚,甲酸甲酯、乙酸、丙酮、丁烷、戊烷等),特别适用于有机蒸气和不可凝性气体分离,如图1示。

蒸气渗透膜法回收有机蒸气是20世纪90年代兴起的新型膜分离技术,1989年德国设计并投入运行了世界上第一套工业规模的蒸气渗透装置,现在已被许多国家研究并实现工业化。

蒸汽渗透膜分离过程应用于废气中有机物回收,废水中有机溶剂回收等领域,并在有机物脱水,有机物分离等领域具有潜在的应用市场。

近十年来,蒸汽渗透技术工业化步伐很快,市场占有率以每年5%~10%的速度增长。

图1 蒸气渗透膜法分离回收有机蒸气原理示意图1. 汽车加油站油气回收1.1油气回收意义由于成品油具有可挥发性,加油站在接卸油、存贮以及加油过程时,随着液相油进入油罐或者汽车油箱,油罐或邮箱内液体体积增加,将气相的油蒸汽置换,并使油蒸汽排放到大气中。

油蒸气是烃类物质与空气组成的具有一定毒性的易挥发有机化合物。

它在一定的气候条件和阳光的作用下会发生化学反应,形成光化学烟雾;这种烟雾会影响人和牲畜的肺部功能,破坏植物叶面组织,影响树木和农作物生长,还会对一些材料造成损坏,如使橡胶开裂甚至解体。

光化学烟雾还高分子膜会随着空气的流动造成大范围的环境污染。

排出的大量油气,极易达到1.4~7.6%的爆炸极限范围,当遇到明火、静电、雷电及其它不安全因素时,很容易引发火灾和爆炸事故。

加油站排放油气污染主要发生在油罐车向地下储油罐卸油、加油机向汽车油箱加油和地下储油罐“小呼吸”等环节。

向地下油罐卸油和给客户汽车油箱加油,都会排放出与汽油体积相同的油蒸气,每吨汽油体积是1.4 m3,2次共排放油气2.8 m3。

1 m3浓度为10%-40%(体积分数)的油气混入空气中,会形成20 m3的爆炸性气体,污染6700 m3大气。

此外,因昼夜气温升降变化,油品液体体积和油气体积随气温变化热胀冷缩,当体积胀大时将油蒸汽排挤出油罐(地下储油罐“小呼吸”)。

温度每升高1℃,汽油会排出0.21%的油气,储存天数越多,罐内油气体积与油液体积之比越大,排放的油气越多。

油罐车卸油时,油气流量最多时可达800L/min,连续发生0.3-0.7h;而在使用加油枪加油时,油气流量只有40L/min或更少。

油气浓度(体积分数)不稳定,最大可达90%左右,最小只有5%-10%,甚至更低。

每只加油枪都可以看作是一个油气排放点源,加油站油气排放特点是排放点多、排放频繁、一次量少、累积量大、总作业量小,相对损耗大、间歇排放、污染影响范围大等。

油气排放到空气中不仅是一种污染,更是一种资源浪费。

据统计,1吨汽油从出炼油厂到加油站零售,至少会排放出7 m3的油气,其浓度在1Kg/m3到3 Kg/m3。

据国家统计局发布的数据,2010年1-12月中国汽油表观消费量为7158.2万吨,以油气浓度是1 Kg/m3(即损失率是7‰)计,仅2010年排放的油气是501074吨;2011年4月6日国家发布的汽油零售基准价是8880元/吨,以此价格计算,则2010年排放的油气就是4.45亿元。

2010年1-12月中国成品油(汽煤柴合计)表观消费量是24514.6万吨,同比增长10.2%;按照7‰的损失率,以8000元/吨的价格计算,排放掉的油气价值13.73亿。

仅此项造成的经济损失十分严重。

1.2油气回收市场分析1.2.1 国家政策及市场容量2007年8月1日实施的《加油站大气污染物排放标准》(GB20952-2007)要求对新、改、扩建的加油站油气排放浓度低于25g/m3,并计划于2012年1月1日止对所有市级城市的加油站完成改造。

加油站完成油气回收装置改造后,可回收油罐车卸油过程中挥发出的95%汽油蒸气,回收加油过程中挥发出的90%汽油蒸气。

中国目前共约有8万多座加油站,据2009年8月19日化工报报道我国加油站油气回收装置使用率仅10%,有90%的加油站其大气污染物排放是不符合国家标准要求的。

在当今油品收发作业日益频繁、能源供给紧张、环保要求严格的情况下,必须针对加油站的油气排放特点实施油气回收处理措施。

2011年环保部发布的《十二五重点区域大气联防联控规划》中,将需要进行油气回收改造的地区明确划分规划范围“三区六群”是指长三角、珠三角、京津冀、辽宁中部城市群、山东半岛城市群、武汉城市群、长株潭城市群、成渝城市群、海峡西岸城市群,共涉及14个省、直辖市。

将针对影响区域大气环境质量的重点污染物,包括二氧化硫、氮氧化物、颗粒物及挥发性有机物等,按照排放-质量响应关系,加大重点区域污染控制力度,形成以区域大气环境质量全面改善为核心的多污染物综合防治体系。

这项规划的出台将直接把加油站、油库的“油气回收”工作摆到各级政府的日常议程,这也给油气回收行业带来广阔空间。

在北京奥运会前,北京市的油气回收治理工程已全部完成。

在上海世博会、广州亚运会之前,上海、杭州、深圳、广州均完成油气回收治理工作。

据统计,北京每年回收的2万吨油气经过处理还原成汽油后,价值超过1.5亿元,足够加满90万辆机动车。

相对于北京的1000余家加油站,全国8万多座加油站回收的油气价值将超过数十亿元。

1.2.2现有回收技术油气回收首先是把密封的油气收集起来,然后将油气中的烃类(主要组成为C4、C5和C6)与空气进行有效地分离,对分离后的烃类再处理液化回用或者输送至油库。

目前采用国内采用的油气回收方法有吸附法、吸收法、冷凝法和膜分离法。

吸附法可以达到较高的处理效率;排放浓度可低至10mg/L。

但工艺复杂,存在二次污染;吸附床容易产生高温热点,存在安全隐患;三苯易使活性炭失活,活性炭失活后存在二次污染问题。

吸收法工艺简单,投资成本低;但回收率低(约80%),无法达到现行国家标准(25 g/m3),已经逐渐被淘汰。

冷凝法工艺原理简单,安全性高,自动化水平高,可直观的看到液态的回收油品;但单一冷凝法要达标需要降到很低的温度(-70℃以下),能耗很大;如果冷凝法尾气排放浓度要达到低于25 g/m3的标准,投资和运行费用都将显著增加。

相关文档
最新文档