湖南省长沙一中2021 2021学年高一上学期期中数学试题
湖南省长沙市第一中学2022-2023学年高三上学期月考(一)数学试题(解析版)

【解析】
【详解】当E,F排在前三位时, =24,当E,F排后三位时, =72,当E,F排3,4位时, =24,N=120种,选D.
6.函数 ( 且 )在一个周期内的图象如图所示,将函数 图象上的点的横坐标伸长为原来的2倍,再向右平移 个单位长度,得到函数 的图象,则 ()
A. B.1C.-1D.
参考数据:
参考时间轴:
A.宋B.唐C.汉D.战国
【答案】D
【解析】
【分析】根据给定条件可得函数关系 ,取 即可计算得解.
【详解】依题意,当 时, ,而 与死亡年数 之间的函数关系式为 ,
则有 ,解得 ,于是得 ,
当 时, ,于是得: ,解得 ,
由 得,对应朝代为战国,
所以可推断该文物属于战国.
故选:D
(1)记 ,写出 ,并求出数列 的通项公式;
(2)求数列 的前2022项和 .
【答案】(1) , ,
(2)
【解析】
【分析】(1)根据 的定义求得 ,求出 ,由等比数列通项公式可得结论;
(2)由 得 , ,然后用并项求和法结合等比数列前 项和公式计算.
【小问1详解】
,
又
【小问2详解】
,则
18.如图, 为 中点,曲线 上任一点到 点的距离相等, 在曲线 上且关于 对称.
长沙市一中2023届高三月考试卷(一)
数学
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知集合 ,则 ()
A. B. C. D.
【答案】B
【解析】
【分析】利用对数不等式及分式不等式的解法求出集合 ,结合集合的补集及交集的定义即可求解.
函数的单调性+奇偶性(含答案)

函数的单调性+奇偶性(含解析)一、单选题1.函数1()lg(21)f x x =-的定义域为( ) A .1|2x x ⎧⎫>⎨⎬⎩⎭ B .12x x ⎧≥⎨⎩且}1x ≠ C .12x x ⎧⎨⎩且}1x ≠ D .1|2x x ⎧⎫≥⎨⎬⎩⎭2.函数()f x = ) A .1,3⎛⎫-+∞ ⎪⎝⎭ B .1,13⎛⎫- ⎪⎝⎭ C .1,13⎡⎫-⎪⎢⎣⎭ D .1,3⎛⎫-∞- ⎪⎝⎭3.已知函数,若方程有两个实数根,则实数k 的取值范围是( ) A .(−1,−12] B .[−12,0) C .[−1,+∞) D .[−12,+∞) 4.设函数()1,02,0x x x f x b x +≥⎧=⎨+<⎩是R 上的单调增函数,则实数b 的取值范围为( ) A .(),1-∞ B .[)0,+∞ C .(],0-∞ D .(]1,1- 5.下列函数既是偶函数,又在(),0-∞上单调递减的是()A .12x y ⎛⎫= ⎪⎝⎭B .23y x -=C .1y x x =-D .()2ln 1y x =+ 6.设 ()212,11,1x x f x x x ⎧--≤⎪=⎨+>⎪⎩,则()()2f f =( ) A .-2B .2C .5D .267.集合{|,P x y =={|,Q y y ==U =R ,则()U P Q ⋂是( ) A .[)1,+∞B .∅C .[)0,1D .[)1,1- 8.函数x x x f 431)(3-=的单调递减区间是( )A .)2,(--∞B .)2,2(-C .),2(∞+D .),2()2,(+∞⋃--∞9.已知集合214A x x ⎧⎫=⎨⎬⎩⎭∣,集合{B y y ==∣,则A B =( ) A .11,22⎡⎤-⎢⎥⎣⎦ B .[1,1]- C .[0,1] D .1[0,]210.若函数()f x 满足()2f x x =+,则()32f x +的解析式是( )A .()3298f x x +=+B .()3232f x x +=+C .()3234f x x +=--D .()3234f x x +=+11.函数f (x )是定义域为R 的奇函数,当x>0时,f (x )=x+1,则当x<0时,f (x )的 表达式为( )A .1)(+-=x x fB .1)(--=x x fC .1)(+=x x fD .1)(-=x x f12.已知函数21,0(),0x x f x x x +≥⎧=⎨<⎩, 则[(2)]f f -的值为( ) A .1B .2C .4D .5二、多选题13.已知函数()f x 是一次函数,满足()()98ff x x =+,则()f x 的解析式可能为( ) A .()32f x x =+B .()32f x x =-C .()34f x x =-+D .()34f x x =-- 14.已知函数2,[1,2)x y x ∈-=,下列说法正确的是( )A .函数是偶函数B .函数是非奇非偶函数C .函数有最大值是4D .函数的单调增区间是为(0,2)15.下列函数中,与y x =是同一个函数的是( ) A .3log 3x y = B.3log 3x y = C.y = D .2y = 16.中国清朝数学家李善兰在1859年翻译《代数学》中首次将“function ”译做:“函数”,沿用至今,为什么这么翻译,书中解释说“凡此变数中函彼变数者,则此为彼之函数”.1930年美国人给出了我们课本中所学的集合论的函数定义,已知集合-{}1,1,2,4M =-,{}1,2,4,16N =,给出下列四个对应法则,请由函数定义判断,其中能构成从M 到N 的函数的是( )A .2y x =B .2y x =+C .2x y =D .2y x三、填空题17.函数()f x =_______.18.偶函数()f x 满足当0x >时,()34f x x =+,则()1f -=_____.19.已知定义在R 上的偶函数()f x 在(0,)+∞上单调递增,则()f x 在(,0)-∞上的单调性是________.20.设,0()ln ,0x e x g x x x ⎧≤=⎨>⎩则1()2g g ⎡⎤=⎢⎥⎣⎦____________.四、解答题21.已知()222f x x x =-+.(1)画出()f x 的图象.(2)根据图象写出()f x 的单调区间和值域.22.用函数的单调性的定义证明函数()4f x x x=+在()2,+∞上是增函数. 23.求解下列函数的定义域(1)(2) 24.求函数1,01(),12x f x x x x ⎧<<⎪=⎨⎪⎩的最值25.已知函数1(),f x a x=-其中0a >。
湖南省长沙市第一中学2021届高三月考试卷(三)数学试题

长沙市一中2021届高三月考试卷(三)数学时量:120分钟 满分:150分一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求.)1.已知集合{}2450A x x x =--<,{}1,0,1,2,3,5B =-,则A B ⋂=( )A.{}1,0-B.{}1,0,1-C.{}0,1,2D.{}0,1,2,32.设复数z 满足()12z i +=,i 为虚数单位,则复数z 的虚部是( ) A.1B.-1C.iD.i -3.四名同学各掷一枚骰子5次,分别记录每次骰子出现的点数,根据下面四名同学的统计结果,可以判断出一定没有出现点数6的是( )(注:一组数据1x ,2x ,…,n x 的平均数为x ,它的方差为()()()2222121n s x x x x x x n ⎡⎤=-+-++-⎢⎥⎣⎦)A.平均数为2,方差为2.4B.中位数为3,众数为2C.平均数为3,中位数为2D.中位数为3,方差为2.84.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.”在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征,则函数()441x x f x =-的图象大致是( )A. B. C. D.5.某公司安排甲、乙、丙、丁4人去上海、北京、深圳出差,每人仅出差一个地方,每个地方都需要安排人出差.若不安排甲去北京,则不同的安排方法共有( ) A.18种B.20种C.24种D.30种6.如图是由等边AIE △和等边KGC △构成的六角星,图中B ,D ,F ,H ,J ,L 均为三等分点,两个等边三角形的中心均为O ,若OA OL OC λμ=+,则λμ-的值为( )A.23D.17.已知双曲线22221x y a b-=(0a >,0b >)的左、右焦点分别为1F 、2F ,圆2222x y a b +=+与双曲线在第一象限和第三象限的交点分别为A ,B ,四边形21AF BF 的周长p 与面积p =离心率为( )C.2D.38.已知函数,()f x 满足()()f x f x =-,且当(],0x ∈-∞时,()()0f x xf x '+<成立,若()()0.60.622a f =⋅,()()ln2ln2b f =⋅,2211log log 88c f ⎛⎫⎛⎫=⋅⎪ ⎪⎝⎭⎝⎭,则a ,b ,c 的大小关系是( ) A.a b c >>B.c b a >>C.a c b >>D.c a b >>二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.) 9.下列说法正确的有( )A.两个随机变量的线性相关性越强,则相关系数r 的绝对值越接近于0B.()()2121E X E X +=+,()()2141D X D X +=+C.设随机变量ξ服从正态分布()0,1N ,若()1P p ξ>=,则()1112P p ξ-<<=-D.甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点各不相同”,事件B =“甲独自去一个景点”,则()29P A B = 10.已知函数()sin ,sin cos ,cos ,sin cos ,x x x f x x x x ⎧≥⎪=⎨<⎪⎩则下列说法正确的是( )A.()f x 的值域是[]0,1B.()f x 是以π为最小正周期的周期函数C.()f x 在区间3,2ππ⎛⎫⎪⎝⎭上单调递增 D.()f x 在[]0,2π上有2个零点 11.如图,在正方体1111ABCD A BC D -中,点P 在线段1BC 上运动,则下列判断中正确的有( )A.平面1PB D ⊥平面1ACDB.1A P ∥平面1ACDC.异面直线1A P 与1AD 所成角的取值范围是0,3π⎛⎤⎥⎝⎦D.三棱锥1D APC -的体积不变12.将2n 个数排成n 行n 列的一个数阵,如下图:11a 12a 13a …1n a 21a 22a 23a …2n a 31a 32a 33a …3n a…1n a 2n a 3n a …nn a设数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( ) A.3m =B.767173a =⨯C.()1313j ij a i -=-⨯D.()()131314n S n n =+- 三、填空题(本题共4小题,每小题5分,共20分)13.在6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项为______.(用数字作答)14.已知{}n a 为等差数列,其公差为2,且7a 是3a 与9a 的等比中项,n S 为{}n a 前n 项和,则10S 的值为______.15.已知7件产品中有5件合格品,2件次品.为找出这2件次品,每次任取一件检验,检验后不放回,则“恰好第一次检验出正品且第五次检验出最后一件次品”的概率为______. 16.函数()2sin32sin cos f x x x x =-(0,2x π⎡⎤∈⎢⎥⎣⎦)的最大值为______. 四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.在ABC △中,角A 、B 、C 的对边分别为a 、b 、c ,()sin cos a b C C =+. (1)求角B 的大小; (2)若2A π=,D 为ABC △外一点(A 、D 在直线BC 两侧),2DB =,3DC =,求四边形ABDC 面积的最大值.18.已知数列{}n a 是公差不为零的等差数列,11a =,其前n 项和为n S ,数列{}n b 前n 项和为n T ,从①1a ,2a ,5a 成等比数列,2n n T b =-,②53253S S -=,1122n n T -⎛⎫=- ⎪⎝⎭,③数列{}n b 为等比数列,101111021n n n a a =+=∑,11a b =,3458a b =,这三个条件中任选一个作为已知条件并解答下列问题. (1)求数列{}n a ,{}n b 的通项公式;(2)求数列n n a b ⎧⎫⎨⎬⎩⎭的前n 项和n M .19.如图,四边形ABCD 为平行四边形,4DAB π∠=,点E 在AB 上,22AE EB ==,且DE AB ⊥.以DE 为折痕把ADE △折起,使点A 到达点F 的位置,且60FEB ∠=︒.(1)求证:平面BFC ⊥平面BCDE ; (2)求二面角B EF C --的余弦值.20.已知抛物线()2:20C y px p =>的焦点为F ,过点,02p A ⎛⎫-⎪⎝⎭的直线与抛物线在第一象限相切于点B ,点B 到坐标原点O的距离为(1)求抛物线C 的标准方程;(2)过点()8,0M 任作直线l 与抛物线C 相交于P ,Q 两点,请判断x 轴上是否存点T ,使得点M 到直线PT ,QT 的距离都相等.若存在,请求出点T 的坐标;若不存在,请说明理由.21.甲、乙两人组成“虎队”代表班级参加学校体育节的篮球投篮比赛活动,每轮活动由甲、乙两人各投篮一次,在一轮活动中,如果两人都投中,则“虎队”得3分;如果只有一个人投中,则“虎队”得1分;如果两人都没投中,则“虎队”得0分.已知甲每轮投中的概率是34,乙每轮投中的概率是23;每轮活动中甲、乙投中与否互不影响.各轮结果亦互不影响.(1)假设“虎队”参加两轮活动,求:“虎队”至少投中3个的概率; (2)①设“虎队”两轮得分之和为X ,求X 的分布列; ②设“虎队”n 轮得分之和为n X ,求n X 的期望值. (参考公式()E X Y EX EY +=+) 22.已知函数()2xf x e ax b =-+(,a b ∈R ,其中e 为自然对数的底数).若含糊()f x 有两个不同的零点1x ,2x .(1)当a b =时,求实数a 的取值范围; (2)设()f x 的导函数为()f x ',求证:1202x x f +⎛⎫'<⎪⎝⎭.长沙市一中2021届高三月考试卷(三)数学参考答案一、单项选择题1.D 【解析】∵{}15A x x =-<<,{}1,0,1,2,3,5B =-,∴{}0,1,2,3A B ⋂=.故选D. 2.B 【解析】由()1i 2z +=,得()()()21i 21i 1i 1i 1i z -===-++-,∴复数z 的虚部是-1.故选B. 3.A 【解析】若平均数为2,且出现6点,则方差()22162 3.25s >-=,因为2.4 3.2<,所以选项A 中一定没有出现点数;选项B ,C ,D 中涉及中位数,众数,不能确定是否出现点数6.故选A.4.D 【解析】因为函数()441x x f x =-,()()()444141x x x x f x f x ----==≠±--,所以函数()f x 不是偶函数,也不是奇函数,图象不关于y 轴对称,也不关于原点对称,故排除A 、B 选项;又因为()937f =,()2564255f =,所以()()34f f >,而选项C ,函数()441x x f x =-在()0,x ∈+∞上是递增的,故排除C.故选D.5.C 【解析】若安排一人去北京,共有123223C C A 18=种;若安排两人去北京,共有2223C A 6=种,总共24种,故选C.6.D 【解析】解法1:以点O为坐标原点,建立平面直角坐标系,设等边三角形的边长为()0,2A,)C,L ⎛⎫ ⎪ ⎪⎝⎭,因为OA OL OC λμ=+,所以0,2,μλ⎧+=⎪⎨⎪+=⎩解得32λ=,12μ=,于是31122λμ-=-=.解法2:OA OL OC OL OI λμλμ=+=-,因为A ,L ,I 三点共线,所以1λμ-=.故选D. 7.C 【解析】由题知,122AF AF a -=,四边形21AF BF 是平行四边形,122pAF AF +=, 联立解得14p AF a =+,24pAF a =-,又线段12F F 为圆的直径,所以由双曲线的对称性可知四边形21AF BF 为矩形,所以221216p S AF AF a =⋅=-,因为p =232p S =,即2223216p p a ⎛⎫=- ⎪⎝⎭,解得2232p a =,由2221212AF AF F F +=,得222248p a c +=,即2232a c =,即e =.故选C.8.B 【解析】根据题意,令()()h x xf x =,因为()()f x f x =-对x ∈R 成立,所以()()()()h x xf x xf x h x -=--=-=-,因此函数()h x 为R 上的奇函数.又因为当(],0x ∈-∞时,()()()0h x f x xf x ''=+<,所以函数()h x 在(],0-∞上为减函数,又因为函数()h x 为奇函数,所以函数()h x 在R 上为减函数, 因为0.621log 0ln 2128<<<<,所以()()0.621log ln 228h h h ⎛⎫>> ⎪⎝⎭,即c b a <<.故选B. 二、多项选择题9.CD 【解析】对于A ,根据相关系数的定义可得A 错误;对于B ,()()2121E X E X +=+,()()214D X D X +=,即B 错误;对于C ,设随机变量ξ服从正态分布()0,1N ,()()11P P p ξξ>=<-=,则()1112P p ξ-<<=-,故C 正确;对于D.甲、乙、丙、丁4个人到4个景点旅游,每人只去一个景点,设事件A =“4个人去的景点各不相同”,事件B =“甲独自去一个景点”,则()()()()()44134A 2C 39P AB n AB P A B P B n B ⨯====,故D 正确,故选CD.10.AD 【解析】()()5sin ,22,44()3cos ,22,44x k x k k f x x k x k k ππππππππ⎧+≤≤+∈⎪⎪=⎨⎪-+≤≤+∈⎪⎩Z Z 作出函数()f x 的大致图象如图所示:由图可知()f x 的值域是[]0,1,故A 正确; 因为()sin 0fππ==,()2cos21f ππ==,所以()()2f f ππ≠,所以π不是()f x 的最小正周期,故B 错误;由图可知()f x 在区间5,4ππ⎛⎫⎪⎝⎭上单调递增,在53,42ππ⎛⎫ ⎪⎝⎭上单调递减,故C 不正确;由图可知,在[]0,2π上,()302f f ππ⎛⎫== ⎪⎝⎭,所以()f x 在[]0,2π上有2个零点,故D 正确;故选AD.11.ABD 【解析】对于A ,易知1DB ⊥平面1ACD ,1DB 在平面1PB D 内,从而平面1PB D ⊥平面1ACD ,A 正确;对于B ,易知平面11BAC ∥平面1ACD ,1A P 在平面11BAC 内,所以1A P ∥平面1ACD ,故B 正确;对于C ,1A P 与1AD 所成角即为1A P 与1BC 的所成角,1111A B BC AC ==,当P 与线段1BC 的两端点重合时,1A P 与1AD 所成角取最小值3π,当P 与线段1BC 的中点重合时,1A P 与1AD 所成角取最大值2π,故1A P 与1AD 所成角的范围是,32ππ⎡⎤⎢⎥⎣⎦,故C 不正确;对于D ,由选项B 得1BC ∥平面1ADC ,故1BC 上任意一点到平面1ADC 的距离均相等,所以以P 为顶点,三角形1ADC 为底面,则三棱锥1P AD C -的体积不变,又11D APC P AD C V V --=,所以三棱锥1D APC -的体积不变,故D 正确.故选ABD.12.ACD 【解析】选项A :由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+, 可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++, 解得3m =或12m =-(舍去),所以选项A 是正确的; 选项B :又由()66667612533173a a m ==+⨯⨯=⨯,所以选项B 不正确;选项C :又由()111111j j ij i a a m a i m m --==+-⨯⨯⎡⎤⎣⎦()()112133313j j i i --=+-⨯⨯=-⨯⎡⎤⎣⎦,所以选项C是正确的;选项D :又由这2n 个数的和为S ,则()()()111212122212n n n n nn S a a a a a a a a a =++++++++++++()()()11211131313131313n n n n a a a ---=+++---()()()()23111313131224nn n n n n +-=-⋅=+-, 所以选项D 是正确的.故选ACD. 三、填空题13.135 【解析】6213x x ⎛⎫+ ⎪⎝⎭的展开式的通项公式为()62361661C 3C 3kkk k k k k T x x x --+⎛⎫==⨯⨯ ⎪⎝⎭,由360k -=,得2k =,∴6213x x ⎛⎫+ ⎪⎝⎭的展开式的常数项为226C 3135⨯=.故答案为135. 14.-110 【解析】{}n a 为等差数列,其公差为2,由7a 是3a 与9a 的等比中项,可得2739a a a =,即()()()211112416a a a +=++,解得120a =-,则()101102010921102S =⨯-+⨯⨯⨯=-.故答案为-110.15.17【解析】考查两件次品的位置,共有27C 21=种取法,因为恰好第五次取出最后一件次品,依题意另一件次品只能排2,3,4位,共有13C 3=种取法.故概率为17. 16.9【解析】∵()()2sin32sin cos sin 2sin2cos cos2sin f x x x x x x x x x x =-=+-= ()2312sin sin sin 2sin x x x x =-=-,令sin x t =,由0,2x π⎡⎤∈⎢⎥⎣⎦知[]0,1t ∈, 令32yt t =-,216y t '=-,令0y '=,得6t =, 当0,6t ⎡⎫∈⎪⎢⎪⎣⎭,0y '>,函数y 单调递增,当t⎤∈⎥⎝⎦时,0y '<,函数y 单调递减,所以当t =y 四、解答题17.【解析】(1)在ABC △中,∵()sin cos a b C C =+,∴()sin sin sin cos A B C C =+. ∴()()sin sin sin cos B C B C C π--=+,∴()()sin sin sin cos B C B C C +=+, ∴sin cos cos sin sin sin sin cos B C B C B C B C +=+,∴cos sin sin sin B C B C =, 又∵()0,C π∈,故sin 0C ≠,∴cos sin B B =,即tan 1B =.又∵()0,B π∈,∴4B π=.(2)在BCD △中,2DB =,3DC =,∴22232232cos 1312cos BC D D =+-⨯⨯⨯=-.又2A π=,由(1)可知4B π=,∴ABC △为等腰直角三角形,∴2111133cos 2244ABC S BC BC BC D =⨯⨯⨯==-△,又∵1sin 3sin 2BDC S BD DC D D =⨯⨯⨯=△.∴13133cos 3sin 444ABDC D D D S π⎛⎫-+=+- ⎪⎝=⎭四边形. ∴当34D π=时,四边形ABCD的面积有最大值,最大值为134+18.【解析】(1)选择条件①,设数列{}n a 的公差为d ,由1a ,2a ,5a 成等比数列,即2215a a a =,所以()2114d d +=+,解得0d =(舍)或2d =,所以21n a n =-,因为2n n T b =-,则112n n T b ++=-,所以11122n n n n n b T T b b +++=-=--+,则112n n b b +=, 又1112b T b ==-,解得11b =,所以112n n b -⎛⎫= ⎪⎝⎭.选择条件②,设数列{}n a 的公差为d ,所以53115103325353S S a d a d d ++-=-==,所以21n a n =-, 因为1122n n T -⎛⎫=- ⎪⎝⎭,令1n =,可得11b =,当2n ≥时,1112n n n n b T T --⎛⎫=-= ⎪⎝⎭,且1n =时,11b =适合上式,所以112n n b -⎛⎫= ⎪⎝⎭.选择条件③,设数列{}n a 的公差为d ,所以111111n n n n a a d a a ++⎛⎫=- ⎪⎝⎭, 所以10111223101111111111n n n a a d a a a a a a =+⎡⎤⎛⎫⎛⎫⎛⎫=-+-++-⎢⎥⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎣⎦∑111111111101021d a a a a ⎛⎫=-== ⎪⎝⎭, 又11a =,则1121a =,所以2d =,所以21n a n =-,设数列{}n b 的公比为q ,因为35a =,3458a b =,可得418b =, 又111a b ==,可得12q =,所以112n n b -⎛⎫= ⎪⎝⎭.(2)()112121212n n n n a n n b ---==-⋅⎛⎫⎪⎝⎭,所以()()01221123252232212n n n M n n --=⨯+⨯+⨯++-⋅+-⋅,()()12312123252232212n n n M n n -=⨯+⨯+⨯++-⋅+-⋅,以上两式相减得,()1211222222212n n n M n --=+⨯+⨯++⋅--⋅()2323n n =--⋅-,()2323n n M n =-⋅+.19.【解析】(1)证明:∵DE AB ⊥,∴DE EB ⊥,DE EF ⊥,∴DE ⊥平面BEF ,∴DE BF ⊥, ∵22AE EB ==,∴2EF =,1EB =,∵60FEB ∠=︒,∴由余弦定理得BF =222EF EB BF =+,∴FB EB ⊥,又DE BE E ⋂=,∴BF ⊥平面BCDE ,∴平面BFC ⊥平面BCDE .(2)以B 为原点,BA 为x 轴,在平面ABCD 中过点B 作AB 的垂线为y 轴,BF 为z 轴,建立空间直角坐标系,∵4DAB π∠=,DE AB ⊥.∴2DE =,∴()1,0,0E,(F ,()2,2,0C -,()3,2,0CE =-,(EF =-,设平面CEF 的法向量(),,m x y z =,则CE 320,0,m x y EF m x ⎧⋅=-=⎪⎨⎪⋅=-=⎩取2z =,得()23,3m =,平面BEF 的一个法向量()0,1,0p =,∴3129cos ,m p m p m p⋅==⋅, 由图可知二面角B EF C --的平面角为锐角,∴二面角B EF C --20.【解析】(1)设直线AB 的方程为()02p y k x k ⎛⎫=+> ⎪⎝⎭, 联立方程组22,,2y px p y k x ⎧=⎪⎨⎛⎫=+ ⎪⎪⎝⎭⎩消去x 得,2220ky py kp -+=, 由222440p k p ∆=-=,解得1k =(1k =-舍),B 点坐标为,2p p ⎛⎫⎪⎝⎭,则OB ==,解得4p =, 故抛物线C 的标准方程为28y x =.(2)设直线:8l x ny =+,假设存在这样的点T ,设()11,P x y ,()22,Q x y ,点(),0T t ,联立方程28,8,y x x ny ⎧=⎨=+⎩消去x 整理得,28640y ny --=,可得128y y n +=,1264y y =-,若点M 到直线PT ,QT 的距离相等,则直线PT ,QT 的斜率互为相反数, 有12121212088PT QT y y y y k k x t x t ny t ny t+=+=+=--+-+-(先假设1x t ≠,2x t ≠), 可得()()1221880y ny t y ny t +-++-=,整理得,()()1212280ny y t y y +-+=,得8t =-.显然18x ≠-且28x ≠-. 故存在这样的点T 的坐标为()8,0-.21.【解析】(1)设甲、乙在第n 轮投中分别记作事件n A ,n B ,“虎队”至少投中3个记作事件C ,则()()()()()()12121212121212121212P C P A A B B P A A B B P A A B B P A A B B P A A B B =++++2222112233232232C 1C 144343343⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⋅⋅-⋅+⋅⋅⋅-+⋅= ⎪ ⎪ ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭11126443++=.(2)①“虎队”两轮得分之和X 的可能取值为:0,1,2,3,4,6,则()2232101143144P X ⎛⎫⎛⎫==-⋅-=⎪⎪⎝⎭⎝⎭, ()2233232210121111443433144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅-⋅-+-⋅⋅-=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()3232323232323232252111111114343434343434343144P X ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫==⋅-⋅⋅-+⋅-⋅-⋅+-⋅⋅⋅-+-⋅⋅-⋅=⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,()32321232114343144P X ⎡⎤⎛⎫⎛⎫==⨯⋅⋅-⋅-=⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, ()22332223604211443334144P X ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫==⨯⋅-⋅+⋅-⋅=⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦,()223236643144P X ⎛⎫⎛⎫==⋅= ⎪ ⎪⎝⎭⎝⎭.故X 的分布列如下图所示:②10,1,3X =,()132********P X ⎛⎫⎛⎫==-⋅-= ⎪ ⎪⎝⎭⎝⎭, ()132325111434312P X ⎛⎫⎛⎫==⋅-+-⋅= ⎪ ⎪⎝⎭⎝⎭,()132634312P X ==⋅=,∴1562313121212EX =⨯+⨯=,12312n EX n EX n =⋅=. 22.【解析】(1)由题意知,()22xf x e a '=-,当0a ≤,()0f x '>,函数()f x 在R 上单调递增,()f x 最多有1个零点,不合题意. 当0a >时,函数()f x 在1,ln22a ⎛⎫-∞ ⎪⎝⎭上单调递减,函数()f x 在1ln ,22a ⎛⎫+∞ ⎪⎝⎭上单调递增, 所以()min 13ln ln 22222a a a f x f a ⎛⎫==-⎪⎝⎭,当302e a <<时,1ln 022a f ⎛⎫>⎪⎝⎭,函数()f x 没有零点; 当32a e =时,1ln 022a f ⎛⎫=⎪⎝⎭,函数()f x 有只1个零点; 当32a e >时,1ln 022a f ⎛⎫<⎪⎝⎭,13ln 222a >,又()210f e =>,此时存在111,ln22a x ⎛⎫∈ ⎪⎝⎭,使得()10f x =, 令()xh x x e =-,()0,x ∈+∞,则()10xx e h '=->,所以()h x 在()0,+∞单调递增,所以()()00h x h >>,所以当()0,x ∈+∞时,xe x >,所以()()2ln 2ln ln ln ln ln ln 0aa a f a ea a a e a a a e a =-+>-=->, 所以存在21ln ,ln 22a x a ⎛⎫∈⎪⎝⎭,使得()20f x =, 故此时函数()f x 有两个不同的零点1x ,2x .综上可得:当()32,a e ∈+∞时,函数()f x 有两个不同的零点1x ,2x .(2)证明:由题意得1221220,0,x x e ax b e ax b ⎧-+=⎨-+=⎩两式相减,得212221x x e e a x x -=-,设12x x <,()22e xf x a '=-,则()21211221212212212121222x x x x x x x x x x x x e e e f e x x e e x x x x ++--+-⎛⎫'⎡⎤=-=-+- ⎪⎣⎦--⎝⎭, 令210t x x =->,()2t th t t e e -=-+,∵()()220t t t te e e e h t ---=-+'-<=,∴()h t 在()0,+∞上单调递减,()()00h t h <=即1202x x f +⎛⎫'<⎪⎝⎭.。
湖南省湘西州2021-2022学年高一上学期期末数学试题含解析

所以 的定义域为 ,关于原点对称.
又因为 ,
所以函数 是奇函数.
因为 在 上单调递增, 在 上单调递减,
所以函数 在 上单调递增.
(2)对任意 ,存在 ,使得不等式 成立,
等价于 ,
由(1)知 在 上单调递增,则 在 上单调递增,
,
函数 的对称轴为 ,
当 时, ,则 ,
(2)利用平移变换,得到 ,再令 求解;
【小问1详解】
解:数据补充完整如下表:
0
0
5
0
-5
0
函数f(x)的解析式为; .
【小问2详解】
将 图象上所有点向左平移 个单位长度,
得到
由 ,可解得:
当 时,可得:
从而可得离原点O最近的对称中心为:
18.已知函数 .
(1)当 时,求关于 的不等式 的解集;
(2)求关于 的不等式 的解集;
对于选项D,指数式 化为对数式为 ,故D正确.
故选:ACD.
9.已知实数 , 满足等式 ,下列式子可以成立的是()
A. B. C. D.
【答案】ABD
【解析】
【分析】分别画出 , 的图象,结合图象即可判断
【详解】分别画出 , 的图象,如示意图:
实数 , 满足等式 ,
可得: ,或 ,或 .
故选:ABD.
17.某同学将“五点法”画函数 在某一个时期内的图象时,列表并填入部分数据,如下表:
(1)请将上述数据补充完整,填写在答题卡上相应位置,并直接写出函数 的解析式;
(2)将 图象上所有点向左平移 个单位长度,得到 图象,求 的图象离原点O最近的对称中心.
【答案】(1)表格见解析,
湖南省长沙市长郡中学2023-2024学年高一上学期入学考试数学试题

湖南省长沙市长郡中学2023-2024学年高一上学期入学考试数学试题学校:___________姓名:___________班级:___________考号:___________A.15B..如图,在平面直角坐标系中,一次函数的坐标为和C,已知点A(1)求证:EF是⊙O的切线;(2)若6AE=,23CE=,求»AC14.为了了解学生关注热点新闻的情况,“两会”期间,小明对班级同学一周内收看“两会”新闻的次数情况作了调查,调查结果统计如图所示(其中男生收看数没有标出).根据上述信息,解答下列各题:(1)该班级女生人数是________,女生收看“两会”新闻次数的中位数是________;(2)对于某个群体,我们把一周内收看某热点新闻次数不低于3次的人数占其所在群体总人数的百分比叫做该群体对某热点新闻的“关注指数”.如果该班级男生对“两会”新闻的“关注指数”比女生低5%,试求该班级男生人数;(3)为进一步分析该班级男、女生收看“两会”新闻次数的特点,小明给出了男生的部分统计量(如表).(1)当AP经过CD的中点N时,求点P的坐标;(2)在(1)的条件下,已知二次函数2y x=-+AH右侧的抛物线沿AH对折,交y轴于点M,(1)求出此函数图象的顶点坐标(用含(2)当4a=时,此函数图象交x轴于点为x轴下方图象上一点,过点P作(3)点(21,3)---,(0,3) M a aN a--再根据两点之间,线段最短可得蚂蚁沿台阶面爬行到点的最短路程是此长方形的对角线B长,然后运用勾股定理可完成解答.【详解】如图所示:三级台阶平面展开图为长方形,长为20,宽为(23)315+´=,则蚂蚁沿台阶面爬行到点的最短路程是此长方形的对角线长.B点的最短路程为x,可设蚂蚁沿台阶面爬行到B,由勾股定理得:2222x=+=201525解得:25x=,即蚂蚁沿台阶面爬行到B点的最短路程为25.故选:C7.C【分析】过点C作CH y^轴于点H,过点A作AG y^轴于点G,易证()@V V,AGO OHC AAS根据全等三角形的性质,求出点C坐标,利用待定系数法求解即可.【详解】过点C作CH y^轴于点G,如图所示:^轴于点H,过点A作AG y则有90CHO OGA Ð=Ð=°,90HCO HOC \Ð+Ð=°,ABCO Q 是正方形,OA OC \=,90COA Ð=°,90COH AOG \Ð+Ð=°,AOG HCO \Ð=Ð,()AGO OHC AAS \@V V ,HC OG \=,HO GA =,(1,2)A -Q ,1GA \=,2OG =,(2,1)C \,将A ,C 点坐标代入y kx b =+,得221k b k b +=-ìí+=î,解得3k =,在矩形AOCD中,AO则APH ATPÐ=Ð=Ð∴90Ð+Ð=APT HPJV V∽,四ATP PJH==,AT OJ AO TJAM AM=¢,由6,3AO AD==可得点代入二次函数2y x bx =-+236y x x=-++.由(1)可知45MAM¢Ð=答案第161页,共22页。
第四关 以立体几何为背景的新颖问题为背景的填空题-(原卷版)

压轴填空题第四关 以立体几何为背景的新颖问题为背景的填空题【名师综述】以立体几何为背景的新颖问题常见的有折叠问题,与函数图象相结合问题、最值问题,探索性问题等. 对探索、开放、存在型问题的考查,探索性试题使问题具有不确定性、探究性和开放性,对学生的能力要求较高,有利于考查学生的探究能力以及思维的创造性,是新课程下高考命题改革的重要方向之一;开放性问题,一般将平面几何问题类比推广到立体几何的中,不过并非所有平面几何中的性质都可以类比推广到立体几何中,这需要具有较好的基础知识和敏锐的洞察力;对折叠、展开问题的考查,图形的折叠与展开问题(三视图问题可看作是特殊的图形变换)蕴涵了“二维——三维——二维” 的维数升降变化,求解时须对变化前后的图形作“同中求异、异中求同”的思辩,考查空间想象能力和分析辨别能力,是立几解答题的重要题型.类型一 几何体在变化过程中体积的最值问题典例1.如图,等腰直角三角形ABE 的斜边AB 为正四面体A BCD -的侧棱,2AB =,直角边AE 绕斜边AB 旋转一周,在旋转的过程中,三棱锥E BCD -体积的取值范围是___________.【来源】山东省菏泽市2021-2022学年高三上学期期末数学试题【举一反三】如果一个棱锥底面为正多边形,且顶点在底面的射影是底面的中心,这样的棱锥称为正棱锥.已知正四棱锥P ABCD -内接于半径为1的球,则当此正四棱锥的体积最大时,其高为_____类型二 几何体的外接球或者内切球问题典例2.已知正三棱锥S ABC -的底面边长为32P ,Q ,R 分别是棱SA ,AB ,AC 的中点,若PQR 是等腰直角三角形,则该三棱锥的外接球的表面积为______.【来源】陕西省宝鸡市2022届高三上学期高考模拟检测(一)文科数学试题【举一反三】已知菱形ABCD 中,对角线23BD =,将ABD △沿着BD 折叠,使得二面角A BD C --为120°,AC 33= ,则三棱锥A BCD -的外接球的表面积为________. 【来源】江西宜春市2021届高三上学期数学(理)期末试题类型三 立体几何与函数的结合典例3. 已知正方体1111ABCD A B C D -的棱长为1,E 为线段11A D 上的点,过点E 作垂直于1B D 的平面截正方体,其截面图形为M ,下列命题中正确的是______. ①M 在平面ABCD 上投影的面积取值范围是17,28⎡⎤⎢⎥⎣⎦;②M 的面积最大值为334; ③M 的周长为定值.【来源】江西省九江市2022届高三第一次高考模拟统一考试数学(理)试题【举一反三】如图,点C 在以AB 为直径的圆周上运动(C 点与A ,B 不重合),P 是平面ABC 外一点,且PA ⊥平面ABC ,2PA AB ==,过C 点分别作直线AB ,PB 的垂线,垂足分别为M ,N ,则三棱锥B CMN -体积的最大值为______.【来源】百校联盟2020-2021学年高三教育教学质量监测考试12月全国卷(新高考)数学试题类型四 立体几何中的轨迹问题典例4. 已知P 为正方体1111ABCD A B C D -表面上的一动点,且满足2,2PA PB AB ==,则动点P 运动轨迹的周长为__________.【来源】福建省莆田市2022届高三第一次教学质量检测数学试题【举一反三】在棱长为2的正方体1111ABCD A B C D -中,棱1BB ,11B C 的中点分别为E ,F ,点P 在平面11BCC B 内,作PQ ⊥平面1ACD ,垂足为Q .当点P 在1EFB △内(包含边界)运动时,点Q 的轨迹所组成的图形的面积等于_____________.【来源】浙江省杭州市2020-2021学年高三上学期期末教学质量检测数学试题【精选名校模拟】1.已知在圆柱12O O 内有一个球O ,该球与圆柱的上、下底面及母线均相切.过直线12O O 的平面截圆柱得到四边形ABCD ,其面积为8.若P 为圆柱底面圆弧CD 的中点,则平面PAB 与球O 的交线长为___________. 【来源】江苏省南通市2020-2021高三下学期一模试卷2.已知二面角PAB C 的大小为120°,且90PAB ABC ∠=∠=︒,AB AP =,6AB BC +=.若点P 、A 、B 、C 都在同一个球面上,则该球的表面积的最小值为______.【来源】山东省枣庄市滕州市2020-2021学年高三上学期期中数学试题3.四面体A BCD -中,AB BC ⊥,CD BC ⊥,2BC =,且异面直线AB 和CD 所成的角为60︒,若四面体ABCD 的外接球半径为5,则四面体A BCD -的体积的最大值为_________. 【来源】浙江省宁波市镇海中学2020-2021学年高三上学期11月期中数学试题4.我国古代《九章算术》中将上,下两面为平行矩形的六面体称为刍童,如图的刍童ABCD EFGH -有外接球,且43,4,26,62AB AD EH EF ====,点E 到平面ABCD 距离为4,则该刍童外接球的表面积为__________.【来源】江苏省苏州市张家港市2020-2021学年高三上学期12月阶段性调研测试数学试题5.已知正三棱柱111ABC A B C -的外接球表面积为40π,则正三棱柱111ABC A B C -的所有棱长之和的最大值为______.【来源】河南省中原名校2020-2021学年高三第一学期数学理科质量考评二6.已知体积为72的长方体1111ABCD A B C D -的底面ABCD 为正方形,且13BC BB =,点M 是线段BC 的中点,点N 在矩形11DCC D 内运动(含边界),且满足AND CNM ∠=∠,则点N 的轨迹的长度为______. 【来源】百校联盟2021届普通高中教育教学质量监测考试(全国卷11月)文科数学试卷7.矩形ABCD 中,3,1AB BC ==,现将ACD △沿对角线AC 向上翻折,得到四面体D ABC -,则该四面体外接球的表面积为______;若翻折过程中BD 的长度在710,22⎡⎤⎢⎥⎣⎦范围内变化,则点D 的运动轨迹的长度是______.【来源】江苏省无锡市江阴市青阳中学2020-2021学年高三上学期1月阶段检测数学试题8.如图,在四面体ABCD 中,AB ⊥BC ,CD ⊥BC ,BC =2,AB =CD =23,且异面直线AB 与CD 所成的角为60,则四面体ABCD 的外接球的表面积为_________.【来源】山东省新高考2020-2021学年高三上学期联考数学试题9.已知三棱锥P ABC -外接球的表面积为100π,PB ⊥平面ABC ,8PB =,120BAC ∠=︒,则三棱锥体积的最大值为________.【来源】江苏省徐州市三校联考2020-2021学年高三上学期期末数学试题10.已知直三棱柱111ABC A B C -的底面为直角三角形,且内接于球O ,若此三棱柱111ABC A B C -的高为2,体积是1,则球O 的半径的最小值为___________.【来源】广西普通高中2021届高三高考精准备考原创模拟卷(一)数学(理)试题11.如图,已知长方体1111ABCD A B C D -的底面ABCD 为正方形,P 为棱11A D 的中点,且6PA AB ==,则四棱锥P ABCD -的外接球的体积为______.【来源】2021年届国著名重点中学新高考冲刺数学试题(7)12.如图所示,在三棱锥B ACD -中,3ABC ABD DBC π∠=∠=∠=,3AB =,2BC BD ==,则三棱锥B ACD -的外接球的表面积为______.【来源】江西省南昌市八一中学、洪都中学、十七中三校2021届高三上学期期末联考数学(理)试题13.在三棱锥P ABC -中,平面PAB 垂直平面ABC ,23PA PB AB AC ====120BAC ∠=︒,则三棱锥P ABC -外接球的表面积为_________.【来源】福建省福州市八县(市)一中2021届高三上学期期中联考数学试题14.已知A ,B ,C ,D 205的球体表面上四点,若4AB =,2AC =,23BC =且三棱维A BCD -的体积为23CD 长度的最大值为________.【来源】福建省四地市2022届高三第一次质量检测数学试题15.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 是直角梯形,//AB CD ,AB ⊥AD ,22CD AD AB ===,3PA =,若动点Q 在PAD △内及边上运动,使得CQD BQA ∠=∠,则三棱锥Q ABC -的体积最大值为______.【来源】八省市2021届高三新高考统一适应性考试江苏省无锡市天一中学考前热身模拟数学试题16.已知正三棱锥A BCD -的底面是边长为23其内切球的表面积为π,且和各侧面分别相切于点F 、M 、N 三点,则FMN 的周长为______.【来源】湖南省常德市2021-2022学年高三上学期期末数学试题17.在三棱锥P ABC -中,PA ⊥平面ABC ,AC CB ⊥,4===PA AC BC .以A 为球心,表面积为36π的球面与侧面PBC 的交线长为______.【来源】山东省威海市2021-2022学年高三上学期期末数学试题18.在棱长为1的正方体1111ABCD A B C D -中,过点A 的平面α分别与棱1BB ,1CC ,1DD 交于点E ,F ,G ,记四边形AEFG 在平面11BCC B 上的正投影的面积为1S ,四边形AEFG 在平面11ABB A 上的正投影的面积为2S .给出下面四个结论:①四边形AEFG 是平行四边形; ②12S S +的最大值为2; ③12S S 的最大值为14;④四边形AEFG 6则其中所有正确结论的序号是___________.【来源】北京西城区2022届高三上学期期末数学试题196,在该圆柱内放置一个棱长为a 的正四面体,并且正四面体在该圆柱内可以任意转动,则a 的最大值为__________.【来源】河南省郑州市2021-2022学年高三上学期高中毕业班第一次质量预测数学(文)试题20.在三棱锥P -ABC 中,P A =PB =PC =2,二面角A -PB -C 为直二面角,∠APB =2∠BPC (∠BPC <4π),M ,N 分别为侧棱P A ,PC 上的动点,设直线MN 与平面P AB 所成的角为α.当tan α的最大值为2532时,则三棱锥P -ABC 的体积为__________.【来源】湖南省长沙市长郡中学2020-2021学年高三上学期入学摸底考试数学试题21.体积为8的四棱锥P ABCD -的底面是边长为22底面ABCD 的中心为1O ,四棱锥P ABCD -的外接球球心O 到底面ABCD 的距离为1,则点P 的轨迹长度为_______________________.22.如图,在ABC 中,2BC AC =,120ACB ∠=︒,CD 是ACB ∠的角平分线,沿CD 将ACD △折起到A CD'△的位置,使得平面A CD '⊥平面BCD .若63A B '=,则三棱锥A BCD '-外接球的表面积是________.【来源】河南省2021-2022学年高三下学期开学考试数学理科试题23.在三棱锥P ABC -中,4AB BC ==,8PC =,异面直线P A ,BC 所成角为π3,AB PA ⊥,AB BC ⊥,则该三棱锥外接球的表面积为______.【来源】辽宁省营口市2021-2022学年高三上学期期末数学试题24.在棱长为2的正方体1111ABCD A B C D -中,E 是CD 的中点,F 是1CC 上的动点,则三棱锥A DEF -外接球表面积的最小值为_______.【来源】安徽省淮北市2020-2021学年高三上学期第一次模拟考试理科数学试题25.如图,在正方体1111ABCD A B C D -中,点M ,N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是___________.①当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC ⊥;②当M ,N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行;③当M ,N 分别为棱11,B C CD 的中点时,则过1A ,M ,N 三点作正方体的截面,所得截面为五边形; ④直线MN 与平面ABCD 2;⑤若正方体的棱长为2,点1D 到平面1A MN 2.【来源】四川省成都市第七中学2021-2022学年高三上学期1月阶段性考试理科数学试题11。
湖南省长沙市长郡中学2023-2024学年高一上学期期中数学试题

27 8
ö÷ø
2 3
+ (1.5)-2 ;
试卷第41 页,共33 页
1
(2)若 x2
+
x
-
1 2
=
3 ,求
x3 + x-3 x + x-1 + 7
的值.
六、问答题
18.已知全集为 R
,集合
A
=
{x
2m
-1 £
x
£
m +1} , B
=
ì í
x
î
2
3 -
x
³
2üý . þ
(1)若
m
=
1 2
,求
A
I
(ðR B )
=
-2x x2 -1
=
-
f
(x)
,故函数为奇
函数,故排除 BD,
由
f
(2)
=
4 3
>
0
,
f
æ çè
1 2
ö ÷ø
=
1
-
3 4
=
-
4 3
,故
C
错误,
故选:A. 4.B 【分析】根据题意建立函数关系即可. 【详解】如图,
答案第11 页,共22 页
圆的直径 AC = 2OC = 50cm ,矩形的边 AB = x cm. ∵ ÐABC = 90° , ∴由勾股定理,得 BC = 2500 - x2cm , ∴矩形 ABCD 的面积 y = AB × BC = x × 2500 - x2 cm2 , 又∵ 0 < AB < AC = 50 , ∴ 0 < x < 50 . 故选:B. 5.C 【分析】根据函数的定义域和值域的定义,结合函数图象进行求解即可.
湖南省长沙市第一中学2021-2022学年高一上学期期中数学试题

长沙市第一中学2021-2022学年度高一第一学期期中考试数学时量:120分钟满分:150分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}2=P x x x <,则()A.1P -∈B.0P∉ C.[]0,1P⊆ D.{}0,1P ⊂≠2.函数()122xxf x =+在定义域R 上是()A.增函数B.减函数C.奇函数D.偶函数3.已知集合{}1S x ax ==是集合{}210T x x =-=的子集,则符合条件的实数a 的值共()A.1个B.2个C.3个D.无数个4.“12x >”是“12x <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.函数()f x x =-)A.(],0-∞ B.[)0,+∞ C.(],1-∞ D.[)1,+∞6.已知,,a b R a b ∈>,则下列不等式不恒成立的是()A .a b +> B.0a b -> C.22a b > D.11a b<7.设0.10.10.20.2,0.1,0.1a b c ---===,则,,a b c 的大小关系正确的是()A.a b c<< B.a c b<< C.c a b<< D.c b a<<8.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数()221f x x x =--,则下列结论:①()222f =;②()2f x 的值域为[]22-,;③()2f x 在[]1,1-上单调递减;④函数()21y f x =+为偶函数.其中正确的结论共有()A .4个B.3个C.2个D.1个二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列各组函数中,()f x 与()g x 是同一函数的是()A.()()2,f x g x ==B.()()12,2xxf xg x -⎛⎫== ⎪⎝⎭C.()()f x g x == D.()()3,9xxf xg x ==10.下列函数中既是奇函数且在()0,1x ∈上递增的函数是()A.()1f x x x=+B.()1f x x x=-C.()11f x x x =+--D.()1,01,0x x f x x x +>⎧=⎨-<⎩11.下列命题中正确的是()A.已知集合,M P 满足命题“1212,,0x M x P x x ∀∈∃∈-=”为真命题,则M P ⊆B.已知集合,M P 满足命题“221212,,0x M x P x x ∀∈∃∈-=”为真命题,则M P⊆C.已知集合M 满足命题“2,2x M x x ∃∈-<”为真命题,则{}12M x x ⊆-<<D.已知集合M 满足命题“,11x M x ∃∈-≥”为假命题,则{}02M x x ⊆<<12.如果对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“三角形型函数”.则下列函数中为“三角形型函数”的是()A.()()1,0,2f x x x =∈+∞ B.()()12,0,f x x x =∈+∞C.()()2,0,xf x x =∈+∞ D.()()1,0,1f x x x x =+∈+∞+三、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()xf x a-=(其中0,1a a >≠)在R 上递增,则a 的取值范围是__________.14.设函数()20,0x f x x x <=≥⎪⎩,则使得()1f a =的a 的值为__________.15.函数()f x =A ,若3A ∈,则a 的取值范围是__________.16.已知()2,01,0x a x f x x a x ⎧-<⎪=⎨--≥⎪⎩(1)若1a =,则()f x 的最小值为__________;(2)若存在两个不同的实数12,x x 使得()()120f x f x ==,则实数a 的取值范围是__________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知集合()()12212,,4x A x B f x f x x x A -⎧⎫⎧=<<==∈⎨⎨⎬⎩⎩⎭.(1)求集合,A B ;(2)求()()R RA B痧.18.从偶函数的定义出发,证明函数()y f x =是偶函数的充要条件是它的图象关于y 轴对称.19.已知函数()231x f x a =--是奇函数.(1)求实数a 的值,并说明理由;(2)求函数()f x 的值域.20.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供x ([]0,10x ∈)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([]0.5,1k ∈),A 公司生产t 万件防护服还需投入成本20950x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.8k =时,政府补贴多少万元才能使A 公司的防护服利润达到最大?并求出最大值.21.已知二次函数()2f x ax bx =+满足()22f =.(1)设0,0a b >>,求12a a b++的最小值;(2)若对[]()0,2,21x f x x ∀∈≤+恒成立,求实数a 的取值范围.22.已知函数()1x f x x =-.(1)讨论函数()f x 的奇偶性和单调性,并说明理由;(2)若函数()f x 与()2g x k x =⋅的图象有四个不同的公共点,求实数k 的取值范围.长沙市第一中学2021-2022学年度高一第一学期期中考试数学时量:120分钟满分:150分一、选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}2=P x x x <,则()A.1P-∈ B.0P∉ C.[]0,1P⊆ D.{}0,1P ⊂≠【答案】B 【解析】【分析】解不等式确定集合P ,然后根据集合的定义和包含关系判断.【详解】由已知{}2={|01}P x x x x x <=<<,因此只有0P ∉正确.故选:B .2.函数()122xxf x =+在定义域R 上是()A.增函数B.减函数C.奇函数D.偶函数【答案】D 【解析】【分析】根据奇偶性的定义,复合函数的单调性判断.【详解】11()22()22xxx x f x f x ---=+=+=,函数为偶函数,1()22x xf x =+是由函数1(0)y u u u=+>与函数2x u =复合所得,其中2x u =是R 上的增函数,且(0,)u ∈+∞,0x <时,01u <<,0x >时,1u >,但1y u u=+在(0,1)上递减,在(1,)+∞上递增,所以()f x 在(,0)-∞上递减,在(0,)+∞上递增,排除AB .故选:D .3.已知集合{}1S x ax ==是集合{}210T x x =-=的子集,则符合条件的实数a 的值共()A.1个B.2个C.3个D.无数个【答案】C 【解析】【分析】根据题意可得{}1,1T =-,结合S T ⊆,则分类讨论当S =∅,{}1S =,{}1S =-三种情况,分别求出a 的值,即可得出结果.【详解】解:由题可知,集合{}1S x ax ==,集合{}{}2101,1T x x =-==-,S T ⊆ ,则当S =∅时,可知0a =显然成立;当{}1S =时,可得1a =,符合题意;当{}1S =-时,可得1a =-,符合题意;故满足条件的实数a 的值共3个.故选:C.4.“12x >”是“12x <”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【答案】A 【解析】【分析】根据充分必要条件的定义判断.【详解】12x >时12x <成立,12x <时如112x =-<,则1x =-12<,因此只能是充分不必要条件,故选:A .5.函数()f x x =-)A.(],0-∞ B.[)0,+∞ C.(],1-∞ D.[)1,+∞【答案】C 【解析】【分析】根据题意10x -≥,利用换元法,令t =,得出0t ≥,21x t =-,则将原式转化为关于t 的二次函数,再根据二次函数的图象与性质,即可求出()f x 的最值,即可得出答案.【详解】解:由题可得10x -≥,令t =0t ≥,21x t =-,所以()22151,024f x t t t x t ⎛⎫==--=-++≥ ⎪⎝⎭,当0t =时,()f x 取得最大值为1,没有最小值,所以函数()f x x =-(],1-∞.故选:C.6.已知,,a b R a b ∈>,则下列不等式不恒成立的是()A.0a b +>B.0a b ->C.22a b > D.11a b<【答案】D 【解析】【分析】根据题意可知0a >,在讨论b 的正负,一一判断即可.【详解】由题意可知,0a >.因0a b >≥,所以22a b >,即22a b >,故C 正确;当0b ≥时,a b >,此时0a b +>与0a b ->都成立,而当0b <时,a b >-,此时0a b +>与0a b ->也都成立,因此AB 正确;当0b <时,因0a >,所以11a b>,故D 错.故选:D.7.设0.10.10.20.2,0.1,0.1a b c ---===,则,,a b c 的大小关系正确的是()A.a b c<< B.a c b<< C.c a b<< D.c b a<<【答案】A 【解析】【分析】结合函数的单调性确定正确选项.【详解】函数0.1y x -=在()0,∞+上递减,所以a b <.函数0.1x y =在R 上递减,所以b c <.所以a b c <<.故选:A8.设函数()y f x =的定义域为R ,对于任一给定的正数p ,定义函数()()()(),,p f x f x p f x p f x p⎧≤⎪=⎨>⎪⎩,则称()p f x 为()f x 的“p 界函数”.若函数()221f x x x =--,则下列结论:①()222f =;②()2f x 的值域为[]22-,;③()2f x 在[]1,1-上单调递减;④函数()21y f x =+为偶函数.其中正确的结论共有()A .4个B.3个C.2个D.1个【答案】B 【解析】【分析】根据题意,表示出函数()2f x 的解析式,再结合图像性质一一判断即可.【详解】由2212x x --≤,解得13x -≤≤,因此()2221,132,12,3x x x f x x x ⎧---≤≤⎪=<-⎨⎪>⎩.对于①,()22222211f =-⨯-=-,故①错;对于②,当13x -≤≤时,22212x x -≤--≤,结合()2f x 的解析式可知,()2f x 的值域为[]22-,,故②正确;对于③,当11x -≤≤时,()()2221f x f x x x ==--,结合图像性质可知,()2f x 在[]1,1-上单调递减,故③正确;对于④,()222,2212,22,2x x y f x x x ⎧--≤≤⎪=+=<-⎨⎪>⎩,结合图像可知函数()21y f x =+为偶函数,故④正确.故选:B.二、选择题(本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列各组函数中,()f x 与()g x 是同一函数的是()A.()()2,f x g x ==B.()()12,2xx f x g x -⎛⎫== ⎪⎝⎭C.()()f x g x == D.()()3,9xxf xg x ==【答案】BC【解析】【分析】确定函数的定义域与对应法则是否相同即可得.【详解】A 中()f x 定义域是[0,)+∞,()g x 的定义域是R ,不是同一函数;B 中1()22xxf x -⎛⎫== ⎪⎝⎭,与()g x 定义域、对应法则都相同,是同一函数;C 中两个函数定义域都是[1,)+∞,且()f x ==,与()g x 的对应法则相同,是同一函数;D 中两个函数的对应法则不相同,不是同一函数.故选:BC .10.下列函数中既是奇函数且在()0,1x ∈上递增的函数是()A.()1f x x x=+B.()1f x x x=-C.()11f x x x =+-- D.()1,01,0x x f x x x +>⎧=⎨-<⎩【答案】BCD 【解析】【分析】根据奇偶性定义判断奇偶性,化简函数式后,根据函数的表达式判断单调性.【详解】A .1()()f x x f x x-=--=-,是奇函数,由对勾函数性质知其在(0,1)上递减,B .1()()f x x f x x-=-+=-,是奇函数,y x =是R 上的增函数,1y x =在(0,)+∞上是减函数,因此1()f x x x=-在(0,)+∞上递增,B 正确;C .()1111()f x x x x x f x -=-+---=--+=-,是奇函数,(0,1)x ∈时,()1(1)2f x x x x =+--=,是增函数,C 正确;D .0x >时,()1f x x =+是增函数,又0x >时,0x -<,()1()f x x f x -=--=-,0x <时,()1(1)()f x x x f x -=-+=--=-,所以()f x 是奇函数,D 正确.故选:BCD .11.下列命题中正确的是()A.已知集合,M P 满足命题“1212,,0x M x P x x ∀∈∃∈-=”为真命题,则M P ⊆B.已知集合,M P 满足命题“221212,,0x M x P x x ∀∈∃∈-=”为真命题,则M P⊆C.已知集合M 满足命题“2,2x M x x ∃∈-<”为真命题,则{}12M x x ⊆-<<D.已知集合M 满足命题“,11x M x ∃∈-≥”为假命题,则{}02M x x ⊆<<【答案】AD 【解析】【分析】结合命题的真假性对选项进行分析,由此确定正确选项.【详解】A ,“1212,,0x M x P x x ∀∈∃∈-=”为真命题,21x x =,则M P ⊆,A 正确.B ,“()()2212121212,,0x M x P x x x x x x ∀∈∃∈-=+-=”为真命题,21x x =或21x x =-,所以,M P 不一定有包含关系,B 错误.C ,“2,2x M x x ∃∈-<”为真命题,()()22210,12x x x x x --=-+<-<<,如RM =符合,所以C 错误.D ,“,11x M x ∃∈-≥”为假命题,“,11x M x ∀∈-<”为真命题,111x -<-<,02x <<,则{}02M x x ⊆<<,D 正确.故选:AD12.如果对任意一个三角形,只要它的三边长,,a b c 都在函数()f x 的定义域内,就有()()(),,f a f b f c 也是某个三角形的三边长,则称()f x 为“三角形型函数”.则下列函数中为“三角形型函数”的是()A.()()1,0,2f x x x =∈+∞ B.()()12,0,f x x x =∈+∞C.()()2,0,xf x x =∈+∞ D.()()1,0,1f x x x x =+∈+∞+【答案】ABD 【解析】【分析】根据题意,要使()f x 为“三角形型函数”,只需满足两边之和大于第三边,结合函数单调性与不等式的性质,一一判断即可.【详解】根据题意,设0a b c <≤≤,且a b c +>.对于选项A ,易知()12f x x =在()0,∞+上单调递增,因此()()()22a b cf a f b f c ++=>=,故()()(),,f a f b f c 也是某个三角形的三边长,故A 正确;对于选项B ,易知()12f x x =在()0,∞+上单调递增,因此()()f a f b +=,()f c =,因2a b c =++,所以()()()f a f b f c +>,故()()(),,f a f b f c 也是某个三角形的三边长,故B 正确;对于选项C ,当2a b ==,3c =时,()()()8f a f b f c +==,因此不满足题意,故C 错;对于选项D ,()1111f x x x =++-+,结合对勾函数易知()f x 在()0,∞+上单调递增,因()()()111111f a f b a b c f c a b c +=+++>+=+++,所以()()(),,f a f b f c 也是某个三角形的三边长,故D 正确.故选:ABD.三、填空题(本大题共4小题,每小题5分,共20分)13.已知函数()xf x a -=(其中0,1a a >≠)在R 上递增,则a 的取值范围是__________.【答案】(0,1)【解析】【分析】根据指数函数的单调性求解.【详解】1()xxf x aa -⎛⎫== ⎪⎝⎭是增函数,则11a >,01a <<.故答案为:(0,1).14.设函数()20,0x f x x x <=≥⎪⎩,则使得()1f a =的a 的值为__________.【答案】1【解析】【分析】根据分段函数定义分类讨论可得.【详解】0a <时,()1f a ==,0a =舍去,0a ≥时,2()1f a a ==,1a =,故答案为:1.15.函数()f x =A ,若3A ∈,则a 的取值范围是__________.【答案】1,3⎡⎫+∞⎪⎢⎣⎭【解析】【分析】对a 进行分类讨论,结合函数定义域求得a 的取值范围.【详解】当0a =时,()(),0f x x =∈-∞,()3,0∉-∞,所以0a =不符合题意.所以0a ≠.由于3A ∈,所以()()3160310,,660a a a a a ⎧-+≥-≥⎨++≠⎩解得6a <-或13a ≥.()()12010,220ax x a ax x a x a ⎧-+≥-≥⎨++≠⎩①,当6a <-时,①解得1x a ≤或2ax >-,6,32aa ->->,3A ∉,所以6a <-不符合题意.当13a ≥时,①解得2a x <-或1x a≥,(]10,3a∈,3A ∈,符合题意.综上所述,a 的取值范围是1,3⎡⎫+∞⎪⎢⎣⎭.故答案为:1,3⎡⎫+∞⎪⎢⎣⎭16.已知()2,01,0x a x f x x a x ⎧-<⎪=⎨--≥⎪⎩(1)若1a =,则()f x 的最小值为__________;(2)若存在两个不同的实数12,x x 使得()()120f x f x ==,则实数a 的取值范围是__________.【答案】①.1-②.()0,∞+【解析】【分析】(1)1a =时,结合指数函数、绝对值的知识求得()f x 的最小值.(2)对a 进行分类讨论,结合“存在两个不同的实数12,x x 使得()()120f x f x ==”求得a 的取值范围.【详解】(1)1a =时,()21,011,0xx f x x x ⎧-<⎪=⎨--≥⎪⎩,()()0,20,1,211,0x x x <∈-∈-,0x ≥,11,10,111x x x -≥--≥--≥-,所以()f x 的最小值为1-.(2)()2,01,0x a x f x x a x ⎧-<⎪=⎨--≥⎪⎩,0x <,021,21x x a a a <<-<-<-,10,1x a x a --==+或1x a =-.若0a ≤,则20x a ->,而10x a =-<,()f x 至多只有1个零点,不符合题意.当01a <<时,()f x 在区间(),0-∞上,()220,log ,0xa x a -==∈-∞,()10,11,2x a x a =-<=+∈,符合题意.当1a =时,()211,0x-∈-,()()00,20f f ==,符合题意.当1a >时,210x a a -<-<,10,12x a x a =->=+>,符合题意.综上所述,a 的取值范围是()0,∞+.故答案为:1-;()0,∞+四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知集合()()12212,,4x A x B f x f x x x A -⎧⎫⎧=<<==∈⎨⎨⎬⎩⎩⎭.(1)求集合,A B ;(2)求()()R RA B痧.【答案】(1)1=,42A ⎛⎫⎪⎝⎭,2,22B ⎛⎫= ⎪ ⎪⎝⎭;(2)[)2,2⎛∞+∞ ⎝⎦ -,.【解析】【分析】(1)直接解指数型不等式即可得出集合A ,由A 的结果可求出幂函数()12f x x =的值域,从而得出集合B ;(2)根据补集的运算分别求出A R ð和B R ð,再由并集的运算即可求出()()R RA B痧的结果.【小问1详解】解:由题可知,32222112=222=,442x xA x x ---⎧⎫⎧⎛⎫=<<<<⎨⎨⎬ ⎪⎩⎝⎭⎩⎭,()()12,B f x f x x x A ⎧⎫==∈⎨⎬⎩⎭,可知当1,42x ⎛⎫∈ ⎪⎝⎭时,得12,22x ⎛⎫∈ ⎪ ⎪⎝⎭,即(),22f x ⎛⎫∈ ⎪ ⎪⎝⎭,所以,22B ⎛⎫= ⎪ ⎪⎝⎭.【小问2详解】解:由(1)得1=,42A ⎛⎫⎪⎝⎭,,22B ⎛⎫= ⎪ ⎪⎝⎭,则[)1=4,2R A ⎛⎤∞+∞ ⎥⎝⎦ -,ð,[)=2,2R B ⎛∞+∞ ⎝⎦ -,ð,所以()()[)=2,2R R A B ⎛∞+∞ ⎝⎦ -,痧.18.从偶函数的定义出发,证明函数()y f x =是偶函数的充要条件是它的图象关于y 轴对称.【答案】证明见详解.【解析】【分析】根据()f x 是偶函数的定义,从充分性和必要性两个方面进行推导即可.【详解】不妨设()f x 的定义域为D ,先证,若函数()y f x =是偶函数,则它的图象关于y 轴对称.因为()f x 是偶函数,即()()f x f x =-对任意的x D ∈恒成立,任取()f x 上的一点为()(),x f x ,因为()()f x f x =-,故点()(),x f x -均在()f x 的图象上,又该两点关于y 轴对称,且x 具有任意性,即对函数()f x 上的任意一点,其关于y 轴对称的点也一定在()f x 上,即()f x 的图象关于y 轴对称,即证;再证:若()f x 的图象关于y 轴对称,则()f x 是偶函数.因为()f x 的图象关于y 轴对称,故对图象上的任意一点()(),x f x ,其关于y 轴的对称点()(),x f x -一定也在()f x 上.故点()(),x f x -满足()f x 的解析式,也即()()f x f x -=,又因为x 具有任意性,故()()f x f x -=对任意的x D ∈恒成立.也即()f x 是偶函数.即证.综上所述:函数()y f x =是偶函数的充要条件是它的图象关于y 轴对称.【点睛】本题考查充要条件的证明,涉及函数奇偶性,属综合基础题.19.已知函数()231x f x a =--是奇函数.(1)求实数a 的值,并说明理由;(2)求函数()f x 的值域.【答案】(1)a =1-,理由见解析.(2)(,1)(1,)-∞-+∞ 【解析】【分析】(1)根据奇函数的定义求解;(2)利用指数函数性质和不等式性质求解.【小问1详解】由题意22232()()222031313131x x x x x f x f x a a a a -⨯-+=-+-=+=+=----,1a =-,【小问2详解】由(1)2()131x f x =---2113x=-+-,30x >且31x ≠,031x <<时,0131x <-<,2213x>-,所以()1f x >,31x >时,130x -<.2013x<-,所以()1f x <-,综上,()f x 的值域是(,1)(1,)-∞-+∞ .20.新冠肺炎疫情造成医用防护服短缺,某地政府决定为防护服生产企业A 公司扩大生产提供x ([]0,10x ∈)(万元)的专项补贴,并以每套80元的价格收购其生产的全部防护服,A 公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=⋅-⎪+⎝⎭(万件),其中k 为工厂工人的复工率([]0.5,1k ∈),A 公司生产t 万件防护服还需投入成本20950x t ++(万元).(1)将A 公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.8k =时,政府补贴多少万元才能使A 公司的防护服利润达到最大?并求出最大值.【答案】(1)3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈(2)当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元【解析】【分析】(1)根据题意得()8020950y x t x t =+-+-,代入1264t k x ⎛⎫=⋅- ⎪+⎝⎭化简即可;(2)根据题意,代入0.8k =,再结合均值不等式即可求解.【小问1详解】由题意得()802095030820y x t x t t x =+-+-=--1236030682018082044k k x k x x x ⎛⎫=---=--- ⎪++⎝⎭,即3601808204ky k x x =---+,[]0,10x ∈,[]0.5,1k ∈.【小问2详解】由0.8k =,得288288144820812444y x x x x =---=--+++,因()28828888432248326444x x x x +=++-≥⨯-=++,当且仅当2x =时取等号,所以6412460y ≤-+=.故当复工率0.8k =时,政府补贴2万元才能使A 公司的防护服利润达到最大值60万元.21.已知二次函数()2f x ax bx =+满足()22f =.(1)设0,0a b >>,求12a a b++的最小值;(2)若对[]()0,2,21x f x x ∀∈≤+恒成立,求实数a 的取值范围.【答案】(1)3;(2)2,2⎡⎫+-+∞⎪⎢⎪⎣⎭.【解析】【分析】(1)根据题意可得()1a a b ++=,利用整体代换,从而可得()121223a b a a a b a a b a a b a a b+⎛⎫+=+⋅++=++⎡⎤ ⎪⎣⎦+++⎝⎭,再利用基本不等式求最值,即可得出结果;(2)由题得出12b a =-,从而得()()212f x ax a x =+-,结合条件可知()221a x x x -≤+对[]0,2x ∀∈恒成立,分类讨论0a ≥和0a <两种情况,可知当0a ≥时,易知满足题意;当0a <时,可知当0x =或2x =时,()2201a x x x -=≤+恒成立,再通过分离参数法将问题转化为212x a x x +≥-在()0,2上恒成立,令()212x g x x x +=-,()0,2x ∈,化简运算得出()()()13141g x x x =++-+,利用基本不等式求出3141x x ++-+的最小值,从而得出()g x 的最大值,从而得出a 的范围;最后综合即可得出结果.【小问1详解】解:已知二次函数()2f x ax bx =+满足()22f =,得422a b +=,则21a b +=,即()1a a b ++=,又因为0,0a b >>,()121223a b a a a b a a b a a b a a b+⎛⎫∴+=+⋅++=++⎡⎤ ⎪⎣⎦+++⎝⎭33+=≥+,即123a a b +≥++,当且仅当2a b a a a b+=+时,取等号,得12a a b++的最小值为3.【小问2详解】解:已知二次函数()2f x ax bx =+满足()22f =,得422a b +=,所以12b a =-,则()()212f x ax a x =+-,又因为对[]()0,2,21x f x x ∀∈≤+恒成立,则()()21221f x ax a x x =+-≤+,即()221a x x x -≤+对[]0,2x ∀∈恒成立,又因为当[]0,2x ∈时,()()2220x x x x -=-≤,10x +>,可知当0a ≥时,()221a x x x -≤+在[]0,2x ∈恒成立,符合题意;当0a <时,可知当0x =或2x =时,()2201a x x x -=≤+恒成立,则212x a x x+≥-在()0,2上恒成立,令()212x g x x x+=-,()0,2x ∈,则()()()()()222211112214114431413x x x x g x x x x x x x x x x ++++====-++--+-+++-++()()()()()()2111331413141411x x x x x x x +===+-+++-+++-++,02x << ,113x ∴<+<,则31441x x ++-≥-+,当且仅当311x x +=+时,即()11,3x +=时,取等号,此时3141x x ++-+的最小值为4,则()max 22g x +==-,所以22a ≥+-,又0a <,解得:202a +-≤<,综上得:实数a的取值范围为2,2⎡⎫-+∞⎪⎢⎪⎣⎭.22.已知函数()1xf x x =-.(1)讨论函数()f x 的奇偶性和单调性,并说明理由;(2)若函数()f x 与()2g x k x =⋅的图象有四个不同的公共点,求实数k 的取值范围.【答案】(1)()f x 为奇函数,减区间是(,1)-∞-,(1,1)-,(1,)+∞;(2)(,4)(4,)-∞-⋃+∞【解析】【分析】(1)先确定奇偶性,然后通过分类讨论0x ≥的单调性,利用奇偶性得出单调性;()结合函数图象得出结论.【小问1详解】10x -≠,1x ≠±,函数定义域是{|1}x x ≠±,()()11x xf x f x x x --==-=----,函数是奇函数,0x ≥时,111()1111x x f x x x x -+===+---,[0,1)x ∈时,在[0,1)和(1,)+∞上函数递减,又()f x 是奇函数,所以()f x 在(,1)-∞-和(1,0]-上也是递减,即()f x 在(,1)-∞-同,(1,1)-,(1,)+∞上都是递减函数.【小问2详解】2()g x kx =是偶函数,首先原点是它们图象的一个交点,作出函数图象,()f x 是奇函数,由图象知在(,1)-∞-和(1,)+∞上两个图象总共有且只有一个交点:0k >时在(1,)+∞上有一个交点,在(,1)-∞-上无交点,0k <时,在(,1)-∞-上有一个交点,在(1,)+∞上无交点,因此由题意,在(1,1)-上两个函数图象除原点外还有两个交点.即21xkx x =-在(1,1)-上除0外还有两个不等实根,0x ≠,1(1)x x k=-,0x >时,22111(1)(24x x x x x k =-=-=--,所以1104k -<<,4k <-,0x <时,22111(1)(24x x x x x k =--=--=-++,所以1104k <<,4k >,综上k 的取值范围是(,4)(4,)-∞-⋃+∞.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
湖南省长沙一中2021 2021学年高一上学期期中数学试题湖南省长沙一中2021-2021学年高一上学期期中数学试题
2022-2022学年,湖南长沙第一中学,高中,第一中学数学试卷
一、选择题:(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.集合M={1,0,1},n={x|x2
2x=0},则m∩n=()a.{1,0,1}b.{0,1}c.{1}d.{0}
2.已知功能
,则f[f(2)]=()
a、 0b.1c.2d.3
3.下列函数中,在区间(0,1)上是增函数的是()a.y=|x|b.y=3x
c、 y=d.y=x2
+4
4.以下函数为偶数函数(a.y=XB.y=2x2)
c.y=xd.y=x2
十、∈[0,1]
5.函数f(x)=2x22x的单调递增区间是()a.(∞,1]b.[1,+∞)c.(∞,2]d.[2,+∞)
6.以下一组不正确的指数和对数公式是()a.e0
=1与ln1=0;
b、八,
=2与log82=
c、 Log39=2和9=3D。
Log33=1和31
=3
7.函数y=loga(x+2)+1的图像交点()A.(1,2)B.(2,1)C.(2,1)d.(1,1)
8.三个数a=0.72,b=log20.7,c=20.7
它们之间的大小关系是()A.A<C<B.B.A<B<CC。
B<a<CD。
B<C<a
9.函数f(x)=log3x+x3零点所在大致区间是()a.(1,2)b.(2,3)c.(3,4)d.(4,5)
10.当a>1时,函数y=a在同一坐标系中
x
y=logax的图像(
)a.b.c.
d。
二、填空题:(本大题共5小题,每小题5分,共25分.)11.函数f(x)=
12.当x∈ (1,2),函数f(x)=3的取值范围为
13.函数f(x)=
是一个偶数函数,定义字段是[A1,2A],然后是a+B=
x
+log3(x+2)的域是
14.函数f(x)在(1,1)上是奇函数,且在区间(1,1)上是增函数,f(1t)+f (t)<0,则t的取值范围是.
15.计算机的成本不断下降。
如果电脑的价格每三年下降一次,那么当前价格为8100
元的电脑在9年后的价格将是人民币
三、解答题:(本大题共6小题,共55分.解答应写出文字说明、证明过程或演算步骤.)16.计算下列各式:(1)log23?log32log2(2)(0.125)
;
+()+8+16.
17.(12分)(2021秋?长沙校级期中)根据下列条件,求函数解析式:
(1)假设f(x)是一个主函数,满足3f(x+1)2F(x)=2x+17,求f(x);(2)给定g(x+1)=x+3x,求g(x)
2
18(12分)(秋季2022?长沙中学水平)已知函数f(x)=x4×x+3。
(1)尝试
证明函数f(x)是一个偶数函数;(2)绘制F(x)的图像;(需要用铅笔画一个草图,然后用中性笔描出来)(3)请根据图片指出函数f(x)的单调递增区间和单调递减区间;(无需证明)
2
(4)当实数k取不同值时,讨论方程x4 | x |+3=k的实根数
19.(12分)(2021秋?长沙校级期中).已知幂函数关于y轴对称,且在区间(0,+∞)上是减函数,(1)求函数f(x)的解析式;
0.70.6
(2)若a>k,比较(lna)与(lna)的大小.
20(13分)(秋季2022?中期长沙学校水平)如果F(x)=XX+B,F(Log2a)=B,Log2f(a)=2(a> 0和a)≠ 1)
(1)求a,b的值和f(x)的解析式
(2)求F(log2x)的最小值和X的对应值
21.(18分)(2021秋?温州校级期末)设a是实数,
.
2
二
的图象
(1)如果函数f(x)是奇数函数,求a的值;
(2)试证明:对于任意a,f(x)在r上为单调函数;
xxx
(3)若函数f(x)为奇函数,且不等式f(k?3)+f(392)<0对任意x∈r恒成立,求实数k的取值范围.
2022-2022学年,湖南长沙第一中学,高中,第一中学数学试卷
参考答案与试题解析
一、多项选择题:(本主题共有10个子题,每个子题得5分,共计50分。
在每个
子题给出的四个选项中,只有一个符合问题的要求。
)
2
1.设集合M={1,0,1},n={x | x2x=0},然后M∩ n=()
a.{1,0,1}B.{0,1}C.{1}D.{0}[检验点]交点及其运算。
[主题]设置
【分析】求出n中方程的解确定出n,找出两集合的交集即可.【解答】解:由n中
方程变形得:x(x2)=0,解得:x=0或x=2,即n={0,2},∵m={1,0,1},∴m∩n={0},故选:d.
[点评]这个问题考察了十字路口及其运行情况。
掌握交叉口的定义是解决这一问题的
关键
2.已知函数,则f[f(2)]=()
a、 0b。
1C。
2D。
3.[测试点]分段函数的应用
【分析】根据x=2>1符合f(x)=x+3,代入求出f(x),因为f(x)=1≤1,符合
f(x)=x+1,代入求出即可.
[解决方案]解决方案:∵ x=2>1,∵ f(x)=x+3=2+3=1,∵ 1.≤ 1.
∴f[f(x)]=x+1=1+1=2,即f[f(x)]=2,故选c.
[点评]本主题探讨分段函数的应用。
注:这取决于X的值是在X>1还是在X的范围内
≤ 1,然后将其代入相应的函数解析公式中求出
3.下列函数中,在区间(0,1)上是增函数的是()
a、 y=|x | b.y=3xc.y=d.y=x+4
2
函数单调性的判定与证明
【分析】本题考查的是对不同的基本初等函数判断在同一区间上的单调性的问题.在
解答时,可以结合选项逐一进行排查,排查时充分考虑所给函数的特性:一次函数性、幂
函数性、二次函数性还有反比例函数性.问题即可获得解答.【解答】解:由题意可知:
对a:y=|x|=
,很容易知道它是区间(0,1)上的一个增函数,所以它是正确的;
对b:y=3x,是一次函数,易知在区间(0,1)上为减函数,故不正确;
对于C:y=,它是一个反比函数。
这很容易知道(∞, 0)和(0,+∞) 是单调的减法函数,所以函数是(0,1)上的减法函数,所以它是不正确的;
2
对于D:y=x+4,它是一个二次函数,开口向下,对称轴为x=0,所以它是区间(0,1)上的减法函数,所以它是不正确的;所以选择一个
【点评】此题是个基础题.本题考查的是对不同的基本初等函数判断在同一区间上的
单调性的问题.在解答的过程当中充分体现了对不同基本初等函数性质的理解、认识和应
用能力.值得同学们体会反思.
4.以下函数为偶数函数(a.y=XB.y=2x)
2
c、 y=x
d.y=x,x∈[0,1]
二
【考点】函数奇偶性的判断.
【话题】计算题;函数的性质及应用
【分析】利用函数奇偶性的定义,即可得出结论.【解答】解:对于a,y=x是奇函数;
二
对于b,y=2x是偶函数;对于c,y=
,定义域为[0,+∞); 对于D,y=x,x∈ [0,1],它们都是非奇数和非偶数函数,
2
因此:B
【点评】本题考查函数奇偶性的定义,考查学生分析解决问题的能力,比较基础.
5.函数f(x)=2的单调递增区间是()A的二次函数的性质(∞, 1] B.[1,+∞)
C(∞, 2] D.[2,+∞) [测试点]。
[Topic]函数的性质及应用
x22x
【分析】根据复合函数的单调性,F(x)=2的单调递增区间为二次函数y=X2X
2
也就是说,对称轴的左边部分y=X2X,这样就解决了这个问题
2
[解]解:设G(x)=X2X,则G(x)的对称轴为x=1,图像的开口向上,且‡G(x)在(∞, 1)在[1,+∞)
∴f(x)=2在(∞,1)上单调递减,在[1,+∞)上单调递增.故选b.
[点评]这个问题考察了二次函数和复合函数的单调性
6.下列指数式与对数式互化不正确的一组是()a.e=1与ln1=0;
x22x
x22x2
b.8
=2和log82=
1
c、 Log39=2和9=3D。
Log33=1和3=3
【考点】指数式与对数式的互化.【专题】函数的性质及应用.
【分析】可采用指数公式和对数公式相互转换的方法进行判断
[答:]解决方案:A.E=1,ln1=0,正确;b、八,
=2与log82=,正确;
二
c.log39=2应该化为3=9,不正确;
一
d.log33=1与3=3,正确.故选:c.
[点评]这个问题考察了指数和对数公式与计算能力之间的相互作用。
这属于基本问题
7.函数y=loga(x+2)+1的图象过定点()a.(1,2)b.(2,1)c.(2,1)d.(1,1)【考点】对数函数的单调性与特殊点.【专题】计算题;函数的性质及应用.【分析】由对数函数恒过定点(1,0),再根据函数平移变换的公式,结合平移向量公式即可得到到正确结论.。