四川省成都市郫都区2018-2019学年八年级上学期期末数学试题

合集下载

2018-2019学年四川省成都市新都区八年级(上)期末数学试卷(含答案解析)

2018-2019学年四川省成都市新都区八年级(上)期末数学试卷(含答案解析)

2018-2019学年四川省成都市新都区八年级(上)期末数学试卷一、选择题(本大题共10 小题,共30 分)1、(3分) 下列各数是无理数的是()D.0.414414414A. B. C.2、(3分) 立方根等于本身的数是()A.-1B.0C.±1D.±1或03、(3分) 在下列长度的各组线段中,能组成直角三角形的是()A.5,6,7B.5,12,13C.1,4,9D.5,11,124、(3分) 10名初中毕业生的中考体育考试成绩如下:26 29 26 25 26 26 27 28 29 30,这些成绩的中位数是()A.25B.26C.26.5D.305、(3分) 已知一次函数y=kx+b的图象经过二、三、四象限,则()A.k>0,b>0B.k>0,b<0C.k<0,b>0D.k<0,b<06、(3分) 下列计算正确的是()A.B.=1C.D.-17、(3分) 将△ABC的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.关于原点对称D.将原图形沿x轴的负方向平移了1个单位8、(3分) 方程组的解为,则被遮盖的两个数分别为()A.5,1B.3,1C.3,2D.4,29、(3分) 如图,直线l1、l2的交点坐标可以看作方程组()的解.A. B.C. D.10、(3分) 某公司市场营销部的个人月收入与其每月的销售量成一次函数关系,其图象如图所示,由图中给出的信息可知,营销人员没有销售时的收入是()A.310元B.300元C.290元D.280元二、填空题(本大题共9 小题,共36 分)11、(4分) 已知x、y是实数,+(y-3)2=0,则xy的值是______.12、(4分) 已知一个Rt△的两边长分别为3和4,则第三边长是______.13、(4分) 已知点A(x,4)到原点的距离为5,则点A的坐标为______.14、(4分) 已知一次函数y=-x+3,当0≤x≤2时,y的最大值是______.15、(4分) 小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满,则订餐方案共有______种.16、(4分) △ABC中,AB=15,AC=13,高AD=12,则△ABC的周长是______.17、(4分) 若直线y=3x+p与直线y=-2x+q的图象交x轴于同一点,则p、q之间的关系式为______.18、(4分) 如图,有一矩形纸片OABC放在直角坐标系中,O为原点,C在x轴上,OA=6,OC=10,如图,在OA上取一点E,将△EOC沿EC折叠,使O点落在AB边上的D点处,则点E的坐标为______.19、(4分) 在直角坐标系中,直线y=x+1与y轴交于点A,按如图方式作正方形A1B1C1O、A2B2C2C1、A3B3C3C2…,A1、A2、A3…在直线y=x+1上,点C1、C2、C3…在x轴上,图中阴影部分三角形的面积从左到右依次记为S1、S2、S3、…S n,则S n 的值为______(用含n的代数式表示,n为正整数).三、解答题(本大题共8 小题,共70 分)20、(8分) (1)16-5+(2)(+2)()21、(8分) 甲、乙两名战士在相同条件下各射击10次,每次命中的环数如下:甲:8,6,7,8,9,10,6,5,4,7乙:7,9,8,5,6,7,7,6,7,8(1)分别计算以上两组数据的平均数;(2)分别计算以上两组数据的方差.22、(8分) 已知:如图,∠BAP+∠APD=180°,∠1=∠2.求证:∠E=∠F.23、(8分) 已知:如图,四边形ABCD中,AD∥BC,∠B=90°,AD=AB=4,BC=7,点E在BC上,将△CDE沿DE折叠,点C恰好落在AB边上的点F处.(1)求线段DC的长度;(2)求△FED的面积.24、(8分) 在平面直角坐标系中,直线AB与x轴交于点A,与y轴交于点B,与直线OC:y=x交于C.(1)如图1若直线AB的解析式:y=-2x+12①求点C的坐标;②求△OAC的面积;(2)如图2,作∠AOC的平分线ON,若AB⊥ON,垂足为E,且OA=4,P、Q分别为线段OA、OE上的动点,连接AQ与PQ,是探索AQ+PQ是否存在最小值?若存在,求出这个最小值;若不存在,说明理由.25、(8分) 某工程队承包了某标段全长1755米的过江隧道施工任务,甲、乙两个班组分别从东、西两端同时掘进.已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米.(1)求甲、乙两个班组平均每天各掘进多少米?(2)为加快工程进度,通过改进施工技术,在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米.按此施工进度,能够比原来少用多少天完成任务?26、(10分) 如图,在平面直角坐标中,直角梯形OABC的边OC、OA分别在x轴、y轴上,AB∥OC,∠AOC=90°,∠BCO=45°,BC=12,点C的坐标为(-18,0).(1)求点B的坐标;(2)若直线DE交梯形对角线BO于点D,交y轴于点E,且OE=4,∠OFE=45°,求直线DE的解析式;(3)求点D的坐标.27、(12分) 如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(-,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.四、计算题(本大题共 1 小题,共 6 分)28、(6分) 解方程组(1)(2)2018-2019学年四川省成都市新都区八年级(上)期末数学试卷【第 1 题】【答案】C【解析】解:A、是分数,故不是无理数,B、=2,是整数,故不是无理数,C、=4,是无理数,D、0.414414414是小数,故不是无理数,故选:C.无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.【第 2 题】【答案】D【解析】解:∵立方根是它本身有3个,分别是±1,0.故选:D.根据立方根的定义得到立方根等于本身的数.本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,0.如立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)0的立方根是0.【第 3 题】【答案】B【解析】解:A、因为52+62≠72,所以不能组成直角三角形;B、因为52+122=132,所以能组成直角三角形;C、因为12+42≠92,所以不能组成直角三角形;D、因为52+112≠122,所以不能组成直角三角形.故选:B.欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.【第 4 题】【答案】C【解析】解:将10名考生的考试成绩从小到大排列为;25,26,26,26,26,27,28,29,29,30,最中间两个数的平均数为(26+27)÷2=26.5,则这些成绩的中位数是26.5.故选:C.根据中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数即可得出答案.本题考查了中位数的求法:先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.【第 5 题】【答案】D【解析】解:∵一次函数y=kx+b的图象经过第二,三,四象限,∴k<0,b<0,故选:D.根据图象在坐标平面内的位置确定k,b的取值范围.本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>0时,直线必经过一、三象限;k<0时,直线必经过二、四象限;b>0时,直线与y轴正半轴相交;b=0时,直线过原点;b<0时,直线与y轴负半轴相交.【第 6 题】【答案】D【解析】解:A、-=,原题计算错误;B、==,原题计算错误;C、(2-)(2+)=4-5=-1,原题计算错误;D、=3-1,原题计算正确.故选:D.利用二次根式的化简方法,混合运算的计算方法,逐一计算得出答案即可.本题考查了二次根式的混合运算,掌握二次根式的化简与计算方法是解决问题的关键.【第7 题】【答案】B【解析】解:根据对称的性质,得三个顶点坐标的横坐标都乘以-1,并保持纵坐标不变,就是横坐标变成相反数.即所得到的点与原来的点关于y轴对称.故选B.熟悉:平面直角坐标系中任意一点P(x,y),分别关于x轴的对称点的坐标是(x,-y),关于y轴的对称点的坐标是(-x,y).这一类题目是需要识记的基础题.考查的侧重点在于学生的识记能力,解决的关键是对知识点的正确记忆.【第8 题】【答案】A【解析】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:A.把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.【第9 题】【答案】A【解析】解:设l1的解析式为y=kx+b,∵图象经过的点(1,0),(0,-2),∴,解得:,∴l1的解析式为y=2x-2,可变形为2x-y=2,设l2的解析式为y=mx+n,∵图象经过的点(-2,0),(0,1),∴,解得:,∴l2的解析式为y=x+1,可变形为x-2y=-2,∴直线l1、l2的交点坐标可以看作方程组的解.故选:A.首先利用待定系数法求出l1、l2的解析式,然后可得方程组.此题主要考查了一次函数与二元一次方程组的解,关键是掌握两函数图象的交点就是两函数解析式组成的方程组的解.【第10 题】【答案】B【解析】解:设y=kx+b,由图知,直线过(1,800)(2,1300),代入得:,解之得:∴y=500x+300,当x=0时,y=300.即营销人员没有销售时的收入是300元.故选:B.设销量为x,收入为y,即求x=0时y的值.由图知求直线与y轴交点坐标,由两点式求直线解析式后再求交点.此题为一次函数的简单应用,主要是会求直线解析式.【第11 题】【答案】-4【解析】解:∵+(y-3)2=0,∴3x+4=0,y-3=0,解得x=-,y=3,∴xy=-×3=-4.首先根据非负数的性质列出方程求出x、y的值,代入所求代数式计算即可.本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【第12 题】【答案】5或【解析】解:当长是3和4的两边是两条直角边时,第三边是斜边==5;当长是3和4的两边一条是直角边,一条是斜边时,则长是4的一定是斜边,第三边是直角边==.故第三边长是:5或.故答案是:5或.分长是3和4的两边是两条直角边和一条是直角边一条是斜边,两种情况讨论,分别利用勾股定理即可求解.本题主要考查了勾股定理的应用,关键是注意到分两种情况讨论.【第13 题】【答案】(3,4)或(-3,4)【解析】解:∵点A(x,4)到原点的距离是5,点到x轴的距离是4,∴5=,解得x=3或x=-3.A的坐标为(3,4)或(-3,4).故答案填:(3,4)或(-3,4).根据两点间的距离公式便可直接解答.本题考查了勾股定理以及点的坐标的几何意义,横坐标的绝对值就是点到y轴的距离,纵坐标的绝对值就是到x轴的距离.【第14 题】【答案】3【解析】解:∵一次函数y=-x+3中k=-1<0,∴一次函数y=-x+3是减函数,∴当x最小时,y最大,∵0≤x≤2,∴当x=0时,y最大=3.故答案为:3.先根据一次函数的性质判断出函数y=-x+3的增减性,再根据x取最小值时y最大进行解答.本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.【第15 题】【答案】3【解析】解:设10人桌x张,8人桌y张,根据题意得:10x+8y=80∵x、y均为整数,∴,,共三种方案.故答案为:3.根据题意列出二元一次方程,根据方程的解为整数讨论得到订餐方案即可.本题考查了二元一次方程的应用,二元一次方程有无数个解,当都为整数时,变为有数个解.【第16 题】【答案】32或42【解析】解:此题应分两种情况说明:(1)当△ABC为锐角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5∴BC=5+9=14∴△ABC的周长为:15+13+14=42;(2)当△ABC为钝角三角形时,在Rt△ABD中,BD===9,在Rt△ACD中,CD===5,∴BC=9-5=4.∴△ABC的周长为:15+13+4=32∴当△ABC为锐角三角形时,△ABC的周长为42;当△ABC为钝角三角形时,△ABC 的周长为32.综上所述,△ABC的周长是42或32.故填:42或32.本题应分两种情况进行讨论:(1)当△ABC为锐角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD 和CD的长求出,两者相加即为BC的长,从而可将△ABC的周长求出;(2)当△ABC为钝角三角形时,在Rt△ABD和Rt△ACD中,运用勾股定理可将BD 和CD的长求出,两者相减即为BC的长,从而可将△ABC的周长求出.此题考查了勾股定理及解直角三角形的知识,在解本题时应分两种情况进行讨论,易错点在于漏解,同学们思考问题一定要全面,有一定难度.【第17 题】【答案】2p+3q=0【解析】解:∵直线y=3x+p与直线y=-2x+q的图象交x轴于同一点,∴当y=0得出0=3x+p,解得:x=-,当y=0得出0=-2x+q,解得:x=,故-=,整理得出:2p+3q=0,故答案为:2p+3q=0.根据图象与x轴交点求法得出直线y=3x+p与直线y=-2x+q的图象与x轴交点,进而利用两式相等得出答案即可.此题主要考查了图象与x轴交点求法,根据图象交x轴于同一点得出等式进而得出是解题关键.【第18 题】【答案】(0,)【解析】解:由翻转变换的性质可知,CD=OC=10,则BD==8,∴AD=AB-BD=2,设OE=x,则AE=6-x,DE=OE=x,由勾股定理得,x2=(6-x)2+4,解得,x=,则点E的坐标为:(0,),故答案为:(0,).根据翻转变换的性质求出CD,根据勾股定理求出AD,设OE=x,根据勾股定理列出方程,解方程即可.本题考查的是翻转变换的性质、矩形的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.【第19 题】【答案】22n-3【解析】方法一:解:∵直线y=x+1,当x=0时,y=1,当y=0时,x=-1,∴OA1=1,OD=1,∴∠ODA1=45°,∴∠A2A1B1=45°,∴A2B1=A1B1=1,∴S1=×1×1=,∵A2B1=A1B1=1,∴A2C1=2=21,∴S2=×(21)2=21同理得:A3C2=4=22,…,S3=×(22)2=23∴S n=×(2n-1)2=22n-3故答案为:22n-3.方法二:∵y=x+1,正方形A1B1C1O,∴OA1=OC1=1,A2C1=2,B1C1=1,∴A2B1=1,S1=,∵OC2=1+2=3,∴A3C2=4,B2C2=2,∴A3B2=2,S2=2,∴q==4,∴S n=.根据直线解析式先求出OA1=1,得出第一个正方形的边长为1,求得A2B1=A1B1=1,再求出第二个正方形的边长为2,求得A3B2=A2B2=2,第三个正方形的边长为22,求得A4B3=A3B3=22,得出规律,根据三角形的面积公式即可求出S n的值.本题考查了一次函数图象上点的坐标特征以及正方形的性质;通过求出第一个正方形、第二个正方形和第三个正方形的边长得出规律是解决问题的关键.【第20 题】【答案】解:(1)原式=8-+=8-2;(2)原式=(+2-)(+2+)=(+2)2-()2=2+4+4-3=3+4.【解析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.【第21 题】【答案】解:(1)==7;==7;(2)=×[(4-7)2+(5-7)2+2×(6-7)2+2×(7-7)2+2×(8-7)2+(9-7)2+(10-7)2]=3;=×[(5-7)2+2×(6-7)2+4×(7-7)2+2×(8-7)2+(9-7)2]=1.2.【解析】(1)根据平均数的公式:平均数=所有数之和再除以数的个数;(2)方差就是各变量值与其均值离差平方的平均数,根据方差公式计算即可,所以计算方差前要先算出平均数,然后再利用方差公式计算,本题考查平均数、方差的定义:一般地设n个数据,x1,x2,…x n的平均数为,则方差S2=[(x1-)2+(x2-)2+…+(x n-)2],它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.【第22 题】【答案】证明:∵∠BAP与∠APD互补,∴AB∥CD.(同旁内角互补两直线平行),∴∠BAP=∠APC(两直线平行,内错角相等),∵∠1=∠2(已知)由等式的性质得:∴∠BAP-∠1∠APC-∠2,即∠EAP=∠FPA,∴AE∥FP(内错角相等,两直线平行),∴∠E=∠F(由两直线平行,内错角相等).【解析】已知∠BAP与∠APD互补,根据同旁内角互补两直线平行,可得AB∥CD,再根据平行线的判定与性质及等式相等的性质即可得出答案.本题考查了平行线的判定与性质,属于基础题,关键是正确理解与运用平行线的判定与性质.【第23 题】【答案】解:(1)过点D作DM⊥BC于M.∵AD∥BC,∠B=90°,∴∠A=90°,且∠B=90°,DM⊥BC,∴四边形ABMD是矩形,且AD=AB,∴四边形ABMD是正方形.∴DM=BM=AB=4,CM=3,在Rt△DMC中,CD===5,(2)∵将△CDE沿DE折叠,∴EF=CE,DC=DF=5,且AD=DM,∴Rt△ADF≌Rt△MDC(HL),∴AF=CM=3,∴BF=1,∵EF2=BF2+BE2,∴CE2=1+(7-CE)2,∴CE=∴S△FED=×CE×DM=×=【解析】(1)通过证明四边形ABMD是正方形,可得DM=BM=AB=4,CM=3,由勾股定理可求CD的长.(2)由折叠的性质可得EF=CE,DC=DF=5,由“HL“可证Rt△ADF≌Rt△MDC,可得AF=CM=3,由勾股定理可求EC的长,及可求解.本题考查了折叠的性质,正方形的判定,全等三角形的判定和性质,勾股定理,求出DM的长是本题的关键.【第24 题】【答案】解:(1)①联立AB、OC的函数表达式得:,,点C(4,4);②直线AB的解析式:y=-2x+12令y=0,则x=6,即OA=6,S△OAC=×OA×y C=×6×4=12;(2)ON是∠AOC的平分线,且AB⊥ON,则点A关于ON的对称点为点C,AO=OC=4,当C、Q、P在同一直线上,且垂直于x轴时,AQ+PQ有最小值CP,CP=OCsin∠AOC=4×sin45°=2.【解析】(1)①联立AB、OC的函数表达式即可求解;②S△OAC=×OA×y C,即可求解;(2)ON是∠AOC的平分线,且AB⊥ON,则点A关于ON的对称点为点C,当C、Q、P在同一直线上,且垂直于x轴时,AQ+PQ有最小值CP,即可求解.本题考查的是一次函数综合运用,涉及到等腰三角形的性质、点的对称性,其中(2),利用点的对称性求解函数最小值,是此类题目的基本方法.【第25 题】【答案】解:(1)设甲、乙班组平均每天掘进x米,y米,得,解得.∴甲班组平均每天掘进4.8米,乙班组平均每天掘进4.2米.(2)设按原来的施工进度和改进施工技术后的进度分别还需a天,b天完成任务,则a=(1755-45)÷(4.8+4.2)=190(天)b=(1755-45)÷(4.8+0.2+4.2+0.3)=180(天)∴a-b=10(天)∴少用10天完成任务.【解析】(1)设甲、乙班组平均每天掘进x米,y米,根据已知甲组比乙组平均每天多掘进0.6米,经过5天施工,两组共掘进了45米两个关系列方程组求解.(2)由(1)和在剩余的工程中,甲组平均每天能比原来多掘进0.2米,乙组平均每天能比原来多掘进0.3米分别求出按原来进度和现在进度的天数,即求出少用天数.此题考查的知识点是二元一次方程组的应用,解题的关键是根据已知找出相等关系列方程组求解,然后由已知和所求原来进度求出少用天数【第26 题】【答案】解:(1)过B作BG⊥x轴,交x轴于点G,在Rt△BCG中,∠BCO=45°,BC=12,∴BG=CG=12,∵C(-18,0),即OC=18,∴OG=OC-CG=18-12=6,则B=(-6,12);(2)∵∠EOF=90°,∠OFE=45°,∴△OEF为等腰直角三角形,∴OE=OF=4,即E(0,4),F(4,0),设直线DE解析式为y=kx+b,把E与F坐标代入得:,解得:k=-1,b=4,∴直线DE解析式为y=-x+4;(3)设直线OB解析式为y=mx,把B(-6,12)代入得:m=-2,∴直线OB解析式为y=-2x,联立得:,解得:,则D(-4,8).【解析】(1)过B作BG⊥x轴,交x轴于点G,由题意得到三角形BCG为等腰直角三角形,根据BC的长求出CG与BG的长,根据OC-CG求出OG的长,确定出B坐标即可;(2)由题意得到三角形EOF为等腰直角三角形,确定出E与F的坐标,设直线DE 解析式为y=kx+b,把E与F代入求出k与b的值,确定出直线DE解析式;(3)设直线OB解析式为y=mx,把B坐标代入求出m的值,确定出OB解析式,与直线DE解析式联立求出D坐标即可.此题属于一次函数综合题,涉及的知识有:坐标与图形性质,待定系数法求一次函数解析式,以及等腰直角三角形的判定与性质,熟练掌握待定系数法是解本题的关键.【第27 题】【答案】解:(1)令x=0,则y=2,令y=0,则x=-2,则点A、B的坐标分别为:(0,2)、(-1,0),过点C作CH⊥x轴于点H,∵∠CHB+∠CBH=90°,∠CBH+∠ABO=90°,∴∠ABO=∠BCH,∠CHB=∠BOA=90°,BC=BA,∴△CHB≌△BOA(AAS),∴BH=OA=2,CH=OB,则点C(-3,1),将点A、C的坐标代入一次函数表达式:y=mx+b得:,解得:,故直线AC的表达式为:y=x+2;(2)同理可得直线CD的表达式为:y=-x-…①,则点E(0,-),直线AD的表达式为:y=-3x+2…②,联立①②并解得:x=1,即点D(1,-1),点B、E、D的坐标分别为(-1,0)、(0,-)、(1,-1),故点E是BD的中点,即BE=DE;(3)将点P坐标代入直线BC的表达式得:k==,直线AC的表达式为:y=x+2,则点M(-6,0),S△BMC=MB×y C=×5×1=,S△BPN=S△BCM==NB×k=NB,解得:NB=,故点N(-,0)或(,0).【解析】(1)证明△CHB≌△BOA(AAS),即可求解;(2)求出B、E、D的坐标分别为(-1,0)、(0,-)、(1,-1),即可求解;(3)S△BMC=MB×y C=×5×1=,S△BPN=NB×k=NB,即可求解.本题考查的是一次函数综合运用,涉及到三角形全等、函数表达式得求解、面积的计算等,其中(3),要注意分类求解,避免遗漏.【第28 题】【答案】解:(1),①+②得:3x=9,解得:x=3,把x=3代入①得:y=1,则方程组的解为;(2)方程组整理得:,①+②得:3x+2y=27④,②+③得:6x-2y=0,即3x-y=0⑤,④-⑤得:3y=27,解得:y=9,把y=9代入⑤得:x=3,把x=3,y=9代入①得:t=15,则方程组的解为.【解析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.。

┃精选3套试卷┃2018届成都市八年级上学期数学期末综合测试试题

┃精选3套试卷┃2018届成都市八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.在长为10cm ,7cm ,5cm ,3cm 的四根木条,选其中三根组成三角形,则能组成三角形的个数为( ) A .1 B .2C .3D .4【答案】B【分析】根据任意两边之和大于第三边判断能否构成三角形. 【详解】依题意,有以下四种可能:(1)选其中10cm ,7cm ,5cm 三条线段符合三角形的成形条件,能组成三角形 (2)选其中10cm ,7cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形 (3)选其中10cm ,5cm ,3cm 三条线段不符合三角形的成形条件,不能组成三角形 (4) 选其中7cm ,5cm ,3cm 三条线段符合三角形的成形条件,能组成三角形 综上,能组成三角形的个数为2个 故选:B . 【点睛】本题考查了三角形的三边关系定理,熟记三边关系定理是解题关键.2.请仔细观察用直尺和圆规作一个角A O B '''∠等于已知角AOB ∠的示意图,请你根据所学的图形的全等这一章的知识,说明画出A O B AOB '''∠=∠的依据是( )A .SASB .ASAC .AASD .SSS【答案】D【分析】根据尺规作图得到OD O D ''=,OC O C ''=,CD C D ''=,根据三条边分别对应相等的两个三角形全等与全等三角形的性质进行求解.【详解】由尺规作图知,OD O D ''=,OC O C ''=,CD C D ''=, 由SSS 可判定COD C O D '''≅,则A O B AOB '''∠=∠, 故选D . 【点睛】本题考查基本尺规作图,全等三角形的判定与性质,熟练掌握全等三角形的判定定理:SSS 和全等三角形对应角相等是解题的关键.3.如图,为估计池塘岸边A 、B 的距离,小方在池塘的一侧选取一点O ,测得OA =15米,OB =10米,A 、B 间的距离不可能是( )A .20米B .15米C .10米D .5米【答案】D【解析】∵5<AB<25,∴A 、B 间的距离不可能是5,故选D.4.如图,在ABC 中,AB AC =,点E 在AC 上,ED BC ⊥于点D ,DE 的延长线交BA 的延长线于点F ,则下列结论中错误的是( )A .AE CE =B .12DEC BAC ∠=∠ C .AF AE=D .1902B BAC ∠+∠=︒ 【答案】A【分析】由题意中点E 的位置即可对A 项进行判断;过点A 作AG ⊥BC 于点G ,如图,由等腰三角形的性质可得∠1=∠2=12BAC ∠,易得ED ∥AG ,然后根据平行线的性质即可判断B 项;根据平行线的性质和等腰三角形的判定即可判断C 项;由直角三角形的性质并结合∠1=12BAC ∠的结论即可判断D 项,进而可得答案. 【详解】解:A 、由于点E 在AC 上,点E 不一定是AC 中点,所以,AE CE 不一定相等,所以本选项结论错误,符合题意;B 、过点A 作AG ⊥BC 于点G ,如图,∵AB=AC ,∴∠1=∠2=12BAC ∠, ∵ED BC ⊥,∴ED ∥AG ,∴122DEC BAC ∠=∠=∠,所以本选项结论正确,不符合题意; C 、∵ED ∥AG ,∴∠1=∠F ,∠2=∠AEF ,∵∠1=∠2,∴∠F=∠AEF ,∴AF AE =,所以本选项结论正确,不符合题意;D 、∵AG ⊥BC ,∴∠1+∠B=90°,即1902B BAC ∠+∠=︒,所以本选项结论正确,不符合题意.故选:A.【点睛】本题考查了等腰三角形的判定和性质、平行线的判定和性质以及直角三角形的性质等知识,属于基本题型,熟练掌握等腰三角形的判定和性质是解题的关键.5.下列计算正确的是()A.235+=B.321⨯=D.822-=C.236÷=【答案】D【分析】分别利用二次根式加减乘除运算法则化简求出答案即可+不是同类项,不能合并,故本选项错误;【详解】解:A、23B、23-不是同类项,不能合并,故本选项错误;⨯=,故本选项错误;C、2323D、8242÷==;故本选项正确;故选:D【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.6.甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500m,先到终点的人原地休息.已知甲先出发2s.在跑步过程中,甲、乙两人的距离y(m)与乙出发的时间t(s)之间的关系如图所示,给出以下结论:①a=8;②b=92;③c=1.其中正确的是()A.①②③B.仅有①②C.仅有①③D.仅有②③【答案】A【详解】解:∵乙出发时甲行了2秒,相距8m,∴甲的速度为8/2=4m/ s.∵100秒时乙开始休息.∴乙的速度是500/100=5m/ s.∵a秒后甲乙相遇,∴a=8/(5-4)=8秒.因此①正确.∵100秒时乙到达终点,甲走了4×(100+2)=408 m,∴b=500-408=92 m.因此②正确.∵甲走到终点一共需耗时500/4=125 s,,∴c=125-2=1 s.因此③正确.终上所述,①②③结论皆正确.故选A.7.如图,分别以Rt△ABC的直角边AC,斜边AB为边向外作等边三角形△ACD和△ABE,F为AB的中点,连接DF,EF,∠ACB=90°,∠ABC=30°.则以下4个结论:①AC⊥DF;②四边形BCDF为平行四边形;③DA+DF=BE ;④ACDBCDES1S6四边形其中,正确的是()A.只有①②B.只有①②③C.只有③④D.①②③④【答案】A【分析】根据平行四边形的判定定理判断②,根据平行四边形的性质和平行线的性质判断①,根据三角形三边关系判断③,根据等边三角形的性质分别求出△ACD、△ACB、△ABE的面积,计算即可判断④.【详解】∵∠ACB=90°,∠ABC=30°,∴∠BAC=60°,AC=12AB,∵△ACD是等边三角形,∴∠ACD=60°,∴∠ACD=∠BAC,∴CD∥AB,∵F为AB的中点,∴BF=12AB,∴BF∥CD,CD=BF,∴四边形BCDF为平行四边形,②正确;∵四边形BCDF为平行四边形,∴DF∥BC,又∠ACB=90°,∴AC⊥DF,①正确;∵DA=CA ,DF=BC ,AB=BE ,BC+AC >AB ∴DA+DF >BE ,③错误; 设AC=x ,则AB=2x ,S △ACD =2222222333143733342ACDACBABEBCDExSx S x S x S x x x ====++四边形,,, ,④错误, 故选:A . 【点睛】此题考查平行四边形的判定和性质、等边三角形的性质,掌握一组对边平行且相等的四边形是平行四边形、等边三角形的有关计算是解题的关键.8.我们根据指数运算,得出了一种新的运算,如表是两种运算对应关系的一组实例: 指数运算 21=2 22=4 23=8 … 31=3 32=9 33=27 … 新运算log 22=1log 24=2log 28=3…log 33=1log 39=2log 327=3…根据上表规律,某同学写出了三个式子: ①log 216=4,②log 525=5,③log 212=﹣1.其中正确的是 A .①② B .①③C .②③D .①②③【答案】B 【解析】422log 16log 24== ,故①正确;255log 25log 52== ,故②不正确;122log 0.5log 21-==- ,故③正确;故选B.9.下列图形是轴对称图形的为( )A .B .C .D .【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解. 【详解】A 、不是轴对称图形,故本选项不合题意; B 、不是轴对称图形,故本选项不合题意; C 、不是轴对称图形,故本选项不合题意; D 、是轴对称图形,故本选项符合题意. 故选:D .本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10.如图,在△ABC中,∠C=90°,AD平分∠BAC,AE=AC,下列结论中错误的是()A.DC=DE B.∠AED=90°C.∠ADE=∠ADC D.DB=DC【答案】D【分析】证明△ADC≌△ADE,利用全等三角形的性质即可得出答案.【详解】在△ADC和△ADE中,∵AE ACCAD EAD AD AD=⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△ADE(SAS),∴DC=DE,∠AED=∠C=90°,∠ADE=∠ADC,故A、B、C选项结论正确,D选项结论错误.故选:D.【点睛】本题考查了全等三角形的判定与性质,注意掌握全等三角形的判定定理及全等三角形的性质,对于选择题来说,可以运用排除法得解.二、填空题11.无盖圆柱形杯子的展开图如图所示.将一根长为20cm的细木筷斜放在该杯子内,木筷露在杯子外面的部分至少有__________cm.【答案】1【解析】根据题意直接利用勾股定理得出杯子内的筷子长度,进而得出答案.【详解】解:由题意可得:22129+11,则木筷露在杯子外面的部分至少有:20−11=1(cm).故答案为1.此题主要考查了勾股定理的应用,正确得出杯子内筷子的长是解决问题的关键.12.如图,在△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,两边PE,PF分别交AB,AC于点E,F,连接EF交AP于点G.给出以下四个结论,其中正确的结论是_____.①AE=CF,②AP=EF,③△EPF是等腰直角三角形,④四边形AEPF的面积是△ABC面积的一半.【答案】①③④.【分析】根据等腰直角三角形的性质得:∠B=∠C=45°,AP⊥BC,AP=12BC,AP平分∠BAC.所以可证∠C=∠EAP;∠FPC=∠EPA;AP=PC.即证得△APE与△CPF全等.根据全等三角形性质判断结论是否正确,根据全等三角形的面积相等可得△APE的面积等于△CPF的面积相等,然后求出四边形AEPF的面积等于△ABC的面积的一半.【详解】∵AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC的中点,∴∠B=∠C=45°,AP⊥BC,AP=12BC=PC=BP,∠BAP=∠CAP=45°,∵∠APF+∠FPC=90°,∠APF+∠APE=90°,∴∠FPC=∠EPA.∴△APE≌△CPF(ASA),∴AE=CF;EP=PF,即△EPF是等腰直角三角形;故①③正确;S△AEP=S△CFP,∵四边形AEPF的面积=S△AEP+S△APF=S△CFP+S△APF=S△APC=12S△ABC,∴四边形AEPF的面积是△ABC面积的一半,故④正确∵△ABC是等腰直角三角形,P是BC的中点,∴AP=12 BC,∵EF不是△ABC的中位线,∴EF≠AP,故②错误;故答案为:①③④.【点睛】本题考查了全等三角形的判定和性质,等腰直角三角形的性质的运用,等腰直角三角形的判定定理的运用,三角形面积公式的运用,解答时灵活运用等腰直角三角形的性质求解是关键. 13.计算:6x 2÷2x= . 【答案】3x .【解析】试题解析:6x 2÷2x=3x . 考点:单项式除以单项式.14.关于一次函数(0)y kx k k =+≠有如下说法:①当0k >时,y 随x 的增大而减小;②当0k >时,函数图象经过一、 二、三象限;③函数图象一定经过点(1, 0);④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为()2)0( y k x k k =-+≠.其中说法正确的序号是__________. 【答案】②【分析】根据一次函数的图象与性质一一判断选择即可. 【详解】解: ①当0k >时,y 随x 的增大而增大,故错误; ②当0k >时,函数图象经过一、 二、三象限,正确;③将点(1, 0)代入解析式可得02k =,不成立,函数图象不经过点(1, 0),故错误;④将直线(0)y kx k k =+≠向下移动2个单位长度后所得直线表达式为2(0)y kx k k =+-≠,故错误. 故答案为: ②. 【点睛】本题考查了一次函数的图象与性质,熟练掌握该知识点是解答关键. 15.用图象法解二元一次方程组020kx y b x y -+=⎧⎨-+=⎩小英所画图象如图所示,则方程组的解为_________.【答案】13x y =⎧⎨=⎩【分析】根据任何一个一次函数都可以化为一个二元一次方程,再根据两个函数交点坐标就是二元一次方程组的解可直接得到答案.【详解】∵直线y=kx+b 与y=x+2的交点坐标为(1,3),∴二元一次方程组020kx y b x y -+=⎧⎨-+=⎩的解为13x y =⎧⎨=⎩,故答案为13x y =⎧⎨=⎩.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解. 16.已知:如图,点B E C F 、、、在同一直线上,,,AB DE BE CF AC DF ===,62,40A DEF ∠=︒∠=︒,则F ∠=______.【答案】78【分析】先证明△ABC ≌△DEF, 得到∠A=∠D,由62,40A DEF ∠=︒∠=︒即可求得∠F 的度数. 【详解】解:∵BE=CF , ∴BE+EC=CF+EC ,即BC=EF , 在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS), ∴∠A=∠D∵62,40A DEF ∠=︒∠=︒, ∴∠F=180°-62°-40°=78°, 故答案为78°. 【点睛】本题考查全等三角形的判定和性质,解题的关键是正确寻找全等三角形全等的条件,属于基础题. 17.分式值2||12a a a -+-为0,则a =____________________. 【答案】-1【分析】根据分式的值为零的条件:分子=0且分母≠0,列出方程和不等式即可得出结论. 【详解】解:∵分式2||12a a a -+-的值为0∴21020a a a ⎧-=⎨+-≠⎩解得:a=-1故答案为:-1. 【点睛】此题考查的是分式的值为零的条件,掌握分式的值为零的条件:分子=0且分母≠0是解决此题的关键. 三、解答题 18.解方程: (1)3731x y x y +=⎧⎨-=-⎩(2)12325x y x y ⎧-=⎪⎨⎪+=-⎩ 【答案】(1)21x y =⎧⎨=⎩;(2)13x y =⎧⎨=-⎩【分析】(1)把①×3+②消去y ,求出x 的值,再把x 的值代入①求出y 的值即可; (2)用②-①消去x ,求出y 的值,,再把y 的值代入②求出x 的值即可. 【详解】(1)3731x y x y +=⎧⎨-=-⎩①②,①×3+②,得 10x=20, ∴x=2,把x=2代入①,得 6+y=7, ∴y=1,∴21x y =⎧⎨=⎩; (2)12325x y x y ⎧-=⎪⎨⎪+=-⎩①②, ②-①,得1273y y +=-, y=-3,把y 的值代入②,得 x-6=-5, x=1,∴13x y =⎧⎨=-⎩. 【点睛】本题运用了加减消元法求解二元一次方程组,需要注意的是运用这种方法需满足其中一个未知数的系数相同或互为相反数,若不具备这种特征,则根据等式的性质将其中一个方程变形或将两个方程都变形,使其具备这种形式.19.分解因式:(1)﹣3a 2+6ab ﹣3b 2;(2)9a 2(x ﹣y)+4b 2(y ﹣x).【答案】(1)﹣3(a ﹣b)2;(2)(x ﹣y)(3a+2b)(3a ﹣2b).【分析】(1)原式提取公因式,再利用完全平方公式分解即可;(2)原式提取公因式,再利用平方差公式分解即可.【详解】(1)原式=﹣3(a 2﹣2ab+b 2)=﹣3(a ﹣b)2;(2)原式=(x ﹣y)(3a+2b)(3a ﹣2b).【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.20.先将21112x x x x-⎛⎫-÷ ⎪+⎝⎭ 化简,然后请自选一个你喜欢的x 值代入求值. 【答案】2x +,当10x =时,原式=1【分析】将括号中两项通分并利用同分母分式的减法法则计算,化除法为乘法运算,约分得到最简结果,取一个使分式分母和除式不为0的数,如10x =代入计算即可得到结果. 【详解】21112x x x x-⎛⎫-÷ ⎪+⎝⎭ 1(2)1x x x x x -+=⋅- 2x =+,取10x =,原式=10+2=1.【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.21.如图所示,△ADF 和△BCE 中,∠A=∠B ,点D ,E ,F ,C 在同一直线上,有如下三个关系式:①AD=BC ;②DE=CF ;③BE ∥AF .请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由.【答案】如:AD=BC ,BE ∥AF ,则DE=CF ;理由见解析【分析】只要以其中三个作为条件,能够得出另一个结论正确即可,下边以①③为条件,②为结论为例.【详解】解:如:AD=BC ,BE ∥AF ,则DE=CF ;理由是:∵BE ∥AF ,∴∠AFD=∠BEC ,在△ADF 和△BEC 中,A B AFD BEC AD BC ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADF ≌△BCE(AAS),∴DF=CE ,∴DF ﹣EF=CE ﹣EF ,∴DE=CF .【点睛】此题考查全等三角形的判定与性质,解题关键在于掌握判定定理.22.某校举办了一次成语知识竞赛,满分10分,学生得分均为整数,成绩达到6分及6分以上为合格,达到9分或10分为优秀.这次竞赛中甲、乙两组学生成绩统计分析表和成绩分布的折线统计图如图所示组别平均分 中位数 方差 合格率 优秀率 甲组6.8 a 3.76 90% 30% 乙组 b7.5 1.96 80% 20%(1)求出成绩统计分析表中a ,b 的值;(2)小英同学说:“这次竞赛我得了7分,在我们小组中排名属中游略上!”观察上面表格判断,小英是甲、乙哪个组的学生;(3)甲组同学说他们组的合格率、优秀率均高于乙组,所以他们组的成绩好于乙组,但乙组同学不同意甲组同学的说法,认为他们的成绩要好于甲组.请你给出两条支持乙组同学观点的理由.【答案】(1)6,7.2;(2)甲组;(3)理由见详解.【分析】中位数是按顺序排列的一组数据中居于中间位置的数,偶数个数量的中位数=中间两个数之和2÷,平均分=所有人分数之和÷总人数,.【详解】(1)甲组:总人数10人,第5人分数=6分,第6人分数=6分,中位数(66)62a +== 乙组:平均分25162738297.210b ⨯+⨯+⨯+⨯+⨯== (2)小英是甲组的.理由是:乙组的平均分=7.2分,高于小英的7分,如果在乙组的话小英应该是排名属中游略下。

模拟卷:2018-2019学年八年级数学上学期期末原创卷A卷(四川)

模拟卷:2018-2019学年八年级数学上学期期末原创卷A卷(四川)

数学试题 第1页(共6页) 数学试题 第2页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________绝密★启用前2018-2019学年上学期期末原创卷A 卷(四川)八年级数学(考试时间:120分钟 试卷满分:150分)注意事项:1.本试卷分A 卷和B 卷两部分。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

写在本试卷上无效。

3.回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

4.考试结束后,将本试卷和答题卡一并交回。

5.考试范围:华师大版八上全册。

A 卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.16的平方根是( ) A .-4B .4C .±4D .±82.在-3,12,0,-2这四个数中,最小的数为( ) A .-3 B .12C .0D .-23.下面调查适合利用选举的形式进行数据收集的是( ) A .谁在电脑福利彩票中中一等奖 B .10月1日是什么节日C .谁在某地2013年中考中取得第一名D .谁最适合当文艺委员4.多项式4a -a 3分解因式的结果是( ) A .a (4-a 2)B .a (2-a )(2+a )C .a (a -2)(a +2)D .a (2-a )25.下列运算中正确的是( ) A .21()93--=-B .(a -b )(-a -b )=a 2-b 2C .2a 2·a 3=2a 6D .(-a )10÷(-a )4=a 66.如果下列各组数是三角形的三边长,那么能组成直角三角形的一组数是( ) A .6,7,8B .5,6,8C .3,2,5D .4,5,67.如图,以∠AOB 的顶点O 为圆心,适当长为半径画弧,交OA 于点C ,交OB 于点D ,再分别以点C 、D 为圆心,大于12CD 的长为半径画弧,两弧在∠AOB 内部交于点E ,作射线OE ,连接CD .以下说法错误..的是( )A .△OCD 是等腰三角形B .点E 到OA 、OB 的距离相等C .CD 垂直平分OED .证明射线OE 是角平分线的依据是SSS8.随着全球经济危机的到来,我国纺织品行业的出口受到严重影响,下图是甲、乙纺织厂的出口和内销情况,从图中可看出出口量较多的是( )A .甲B .乙C .两厂一样多D .不能确定9.如图,△ABC 和△DCE 都是等边三角形,点B 、C 、E 在同一条直线上,BC =1,CE =2,连接BD ,则BD 的长为( )A .3B .2C .3D 710.如图,在等腰Rt △ABC 中,∠C =90°,AC =8,F 是AB 边上的中点,点D ,E 分别在AC 、BC 边上运动,且保持AD =CE ,连接DE ,DF ,EF ,在此运动过程中,下列结论:①△DFE 是等腰直角三角形;②DE 长度的最小值为4;③四边形CDFE 的面积保持不变;④△CDE 面积的最大值是4.正确的结论是数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………( )A .①②③B .①③④C .①②④D .②③④二、填空题(本大题共4小题,每小题4分,共16分) 11.计算:(-6a 2b 2c )2÷4ac 2=__________.12.a 是9-的相反数,b 的立方根为2-,则a b +的倒数为__________.13.如图,在等边三角形ABC 中,点D E ,分别在边BC AB ,上,且DE AC ∥,过点E 作EF DE ⊥,交CB 的延长线于点F .若5BD =,则2EF =__________.14.已知:如图,BD 为△ABC 的角平分线,且BD =BC ,E 为BD 延长线上的一点,BE =BA ,过E 作EF⊥AB ,F 为垂足.下列结论:①△ABD ≌△EBC ;②∠BCE +∠BCD =180°;③AF 2=EC 2-EF 2;④BA +BC =2BF .其中正确的是__________.三、解答题(本大题共6小题,共54分.解答应写出文字说明、证明过程或演算步骤)15.(本小题满分12分)(1)计算:0131|31|(2018π)()8164--++-++;(2)已知2299123x x y x -+--=+,求x y -的平方根.16.(本小题满分6分)先化简,再求值:(1)2(a -3)(a +2)-(3+a )(3-a ),其中a =-2;(2)已知21[4(1)(2)(2)]4xy xy xy xy --+-÷,其中x =-2,y =-0.5.17.(本小题满分8分)《中华人民共和国道路交通管理条例》规定:小汽车在城街路上行驶速度不得超过70 km /h ,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面车速检测仪A的正前方60 m 处的C 点,过了5 s 后,测得小汽车所在的B 点与车速检测仪A 之间的距离为100 m . (1)求B ,C 间的距离;(2)这辆小汽车超速了吗?请说明理由.18.(本小题满分8分)图1、图2中,C 为线段AB 上一点,△ACM 与△CBN 都是等边三角形.(1)如图1,线段AN 与线段BM 是否相等?请证明你的结论;(2)如图2,AN 与MC 交于点E ,BM 与CN 交于点F ,探究△CEF 的形状,并证明你的结论.19.(本小题满分10分)如图,在Rt △ABC 中,∠ACB =90°,∠BAC =30°,E 为AB 边的中点,以BE 为边作等边△BDE ,连接AD ,CD . (1)求证:△ADE ≌△CDB ;(2)若BC =3,在AC 边上找一点H ,使得BH +EH 最小,并求出这个最小值.20.(本小题满分10分)如图,已知ABC △和AEF △中,B E ∠=∠,AB AE =,BC EF =,25EAB ∠=︒,57F ∠=︒.(1)请说明EAB FAC ∠=∠的理由;(2)ABC △可以经过图形的变换得到AEF △,请你描述这个变换; (3)求AMB ∠的度数.数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________B 卷一、填空题(本大题共5小题,每小题4分,共20分)21.若x 2-4y 2=-32,x +2y =4,则y x=__________.22.如图,△ABC ≌△ADE ,∠B =100°,∠BAC =30°,那么∠AED =__________°.23.等腰三角形一腰上的高与另一腰的夹角为40°,则等腰三角形顶角的度数是__________.24.如图,以数轴的原点为圆心,正方形对角线的长为半径画弧交数轴于点P ,则点P 对应的实数为__________.25.如图,在一个长为20 m ,宽为16 m 的矩形草地上放着一根长方体木块,已知该木块的较长边和场地宽AD 平行,横截面是边长为2 m 的正方形,一只蚂蚁从点A 处爬过木块到达点C 处需要走的最短路程是__________m .二、解答题(本大题共3小题,共30分.解答应写出文字说明、证明过程或演算步骤) 26.(本小题满分8分)已知5a -1的算术平方根是3,3a +b -1的立方根为2.(1)求a 与b 的值; (2)求2a +4b 的平方根.27.(本小题满分10分)如图,在四边形ABCD 中,AB =AD =8,∠A =60°,∠ADC =150°,四边形ABCD的周长为32.(1)求∠BDC 的度数; (2)四边形ABCD 的面积.28.(本小题满分12分)如图,在△ABC 中,AB =AC ,DE 是过点A 的直线,BD ⊥DE 于点D ,CE ⊥DE于点E ,AD =CE .(1)若BC 在DE 的同侧(如图①),求证:AB ⊥AC ;(2)若BC 在DE 的两侧(如图②),其他条件不变,(1)中的结论还成立吗?若成立,请说明理由.。

四川省成都市 2019八年级上期末考试数学试题含答案

四川省成都市 2019八年级上期末考试数学试题含答案

上期八年级期末考试题数 学本试卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟.A 卷分第I 卷和第II 卷,第I 卷为选择题,第II 卷为其他类型的题.第Ⅰ卷1至2页, 第Ⅱ卷和B 卷2至6页.考试结束时,监考人将第Ⅰ卷及第Ⅱ卷和B 卷的答题卡收回.A 卷(共100分)第I 卷(选择题,共30分)一、选择题:(本大题共有10个小题,每小题3分,共30分) 1.下列实数是无理数的是( ▲ ) A .﹣1 B .3 C .3.14D .31 2.在平面直角坐标系中,点A (-2,1)在( ▲ )A.第一象限B.第二象限C.第三象限D.第四象限 3. 9的算术平方根是( ▲ )(A )3 (B )3 (C )9 (D )3± 4.以下列各组数据为三角形的三边,能构成直角三角形的是( ▲ ) (A )4cm ,8cm ,7cm (B )2cm ,2cm ,2cm (C )2cm ,2cm ,4cm (D )6cm ,8cm ,10cm 5.在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是( ▲ )A.(-2,-3)B.(2,-3)C.(-3,2)D.(2,3) 6.如图,2l l 1∥,∠1=54°,则∠2的度数为( ▲ ) A.36° B.54° C.126° D.144° 7.已知⎩⎨⎧==53y x 的值为的解,则是方程k y kx 52-=+( ▲ )A .3B .4C .5 D.﹣58.如下表记录了甲、乙、丙、丁四名跳高运动员最近几次选拔赛成绩的平均数与方差:甲 乙 丙 丁 平均数(cm )185 180 185 180 方差3.63.67.48.1根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应该选择( ▲ ) A.丁 B .丙 C .乙 D .甲 9.一次函数y=x 1-的图象不经过( ▲ ) A .第一象限B . 第二象限C . 第三象限D . 第四象限10.如图,已知一次函数y =ax +b 和y =kx 的图象相交于点P ,则根据图象可得二元一次方程组⎩⎨⎧=-+=0y kx bax y 的解是( ▲ )A.⎩⎨⎧-=-=24y xB.⎩⎨⎧-=-=42y x C. ⎩⎨⎧==42y x D. ⎩⎨⎧-==42y x 第Ⅱ卷(非选择题,共70分)二、填空题:(每小题4分,共16分) 11.若02=-x ,则x = ▲ .12.如图,△ABC 中,AB =AC ,AD 是∠BAC 的平分线.已知AB =5,AD =3,则BC 的长为 ▲ . 13.在平面直角坐标系中,已知一次函数y=12+-x 的图象经过P 1(x 1,y 1)、P 2(x 2,y 2)两点,若x 1>x 2,则y 1 ▲ y 2(填“>”或“<”).14.如图,正方形ABCD 的边长为4,点A 的坐标为(-1,1),AB 平行于x 轴,则点C 的坐标为 ▲ .三、解答下列各题(共54分.15题每小题6分,16题6分,17和19题每题9分,18题8分,20题10分)7201)6201(24)1(1.15----+-π)计算:((2)()21631526-⨯-16、(6分)解方程组: ⎩⎨⎧=-=-203752y x y xAB'沿对角形线AC折叠,得到如图所示的图形,已知∠BAO=30°,17.(9分)把长方形CD(1)求∠AOC和∠BAC的度数;3,OD=3,求CD的长(2)若AD=318、(8分)食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体健康无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产甲、乙两种饮料共100瓶,需加入同种添加剂260克,其中甲饮料每瓶需加添加剂2克,乙饮料每瓶需加添加剂3克,饮料加工厂生产了甲、乙两种饮料各多少瓶?19.(9分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度. 小军为了解市政府调整水价方案的社会反响,随机访问了自己居住在小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小军发现每月每户的用水量在5m3-35m3之间,有7户居民对用水价格调价涨幅抱无所谓,不用考虑用水方式的改变. 根据小军绘制的图表和发现的信息,完成下列问题: (1)n = ▲ ,小明调查了 ▲ 户居民,并补全图1;(2)每月每户用水量的中位数落在 ▲ 之间,众数落在 ▲ 之间;(3)如果小明所在的小区有1200户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少?20.(10分)如图,在平面直角坐标系中,一次函数b x y +-=的图象与正比例函数x y k =的图象都经过点B (3,1) (1)求一次函数和正比例函数的表达式;(2)若直线CD 与正比例函数x y k =平行,且过点C (0,-4),与直线AB 相交于点D ,求点D 的坐标.(注:二直线平行,k 相等) (3)连接CB ,求三角形BCD 的面积.B 卷(共50分)一、填空题:(每小题4分,共20分)21.已知:m 、n 为两个连续的整数,且m <13<n ,则mn 的平方根...= ▲ . 22.有长度为9cm ,12cm ,15cm ,36cm ,39cm 的五根木棒,从中任取三根可搭成(首尾连接)直角三角形的概率为 ▲ . 23. 关于x ,y 的二元一次方程组⎩⎨⎧+=--=+my x my x 3531中,与m 方程组的解中的x 或y 相等,则m 的值为 ▲ .24.如图,直线y=x+6与x 轴、y 轴分别交于点A 和点B ,x 轴上有一点C (﹣4,0),点P 为直线一动点,当PC+PO 值最小时点P 的坐标为 ▲ .25.如图,在平面直角坐标系中,函数y=2x 和y =﹣x 的图象分别为直线1l ,2l ,过点(1,0)作x 轴的垂线交1l 于点A 1,过点A 1作y 轴的垂线交2l 于点A 2,过点A 2作x 轴的垂线交1l 于点A 3,过点A 3作y 轴的垂线交2l 于点A 4,…依次进行下去,则点A 2015的坐标为 ▲ .二.(共8分)26.甲、乙两人在某标准游泳池相邻泳道进行100米自由泳训练,如图是他们各自离出发点的距离y (米)与他们出发的时间x (秒)的函数图象.根据图象,解决如下问题.(注标准泳池单向泳道长50米,100米自由泳要求运动员在比赛中往返一次;返回时触壁转身的时间,本题忽略不计). (1)直接写出点A 坐标,并求出线段OC 的解析式; (2)他们何时相遇?相遇时距离出发点多远?(3)若甲、乙两人在各自游完50米后,返回时的速度相等;则快者到达终点时领先慢者多少米?三、(共10分)27. 已知C AB ∆中,12,26===BC AC AB .点P 从点B 出发沿线段BA 移动,同时点Q 从点C出发沿线段AC 的延长线移动,点P 、Q 移动的速度相同,PQ 与直线BC 相交于点D . (1)如图①,当点P 为AB 的中点时,求CD 的长;(2)如图②,过点P 作直线BC 的垂线,垂足为E ,当点P 、Q 在移动的过程中,设λ=+CD BE ,λ是否为常数?若是请求出λ的值,若不是请说明理由.(3)如图③,E 为BC 的中点,直线CH 垂直于直线AD ,垂足为点H ,交AE 的延长线于点M ;直线BF 垂直于直线AD ,垂足为F ;找出图中与BD 相等的线段,并证明.四、(共12分)28.如图①,等腰直角三角形ABC 的顶点A 的坐标为(0,1)-,C 的坐标为(4,3),直角顶点B 在第四象限,线段AC 与x 轴交于点D.将线段DC 绕点D 逆时针旋转90°至DE. (1)直接写出点B 、D 、E 的坐标并求出直线DE 的解析式.(2)如图②,点P 以每秒1个单位的速度沿线段AC 从点A 运动到点C 的过程中,过点P 作与x 轴平行的直线PG ,交直线DE 于点G ,求与△DPG 的面积S 与运动时间t 的函数关系式,并求出自变量t 的取值范围.(3)如图③,设点F 为直线DE 上的点,连接AF ,一动点M 从点A 出发,沿线段AF 以每秒1个单位的速度运动到F ,再沿线段FE 以每秒2个单位的速度运动到E 后停止.当点F 的坐标是多少时,是否存在点M 在整个运动过程中用时最少?若存在,请求出点F 的坐标;若不存在,请说明理由.A DCBPQ图②EADCB PQ图①图③图③图②图①四川省成都市 2019八年级上期末考试数学试题含答案金堂县2016-2017学年度八年级上期期末测试数学参考答案及评分意见A 卷(共100分)一、选择题:(本题共10小题,每小题3分,共30分) 题号 1 2 3 4 5 67 8 9 10 答案[来源:学*科*网Z*X*X*K]B B A D AC DDBA二、填空题(本题共4小题,每小题4分,共16分)11.2 ; 12. 8 ; 13.﹤; 14.()5,3 ;三、解答下列各题(本题满分54分. 15题每小题6分,16题6分,17题9分,18题8分, 19题9分, 20题10分)07201)6201(24)1(1.15----+-π)计算:(解:原式=1221--+- ………………………4分(每算对一个运算得1分) =2-………………………6分(2)()21631526-⨯- 解:原式=226315236⨯-⨯-⨯ ………………………3分(每个运算正确得1分) =235623-- ………………………5分=56- ………………………6分16. 解方程组:解:②-①×3得:⎩⎨⎧=-=-20371536y x y x ………………………3分(单独由①×3得1536=-y x 仍得3分) 5=x ………………………4分 把5=x 代入①得:5=y ………………………5分① ②⎩⎨⎧=-=-203752y x y x∴原方程组的解为⎩⎨⎧==55y x …………6分(注:用其它方法计算正确也得全分) 17.(1)解 :∵四边形CD B A '是矩形 ∴AD ∥C B ' ,090='∠B∴∠1=∠3 ……………2分 ∵翻折后∠1=∠2∴∠2=∠3 ……………3分∵翻折后090='∠=∠B B ∠BAO=30°∴0120=∠+∠=∠BAO B AOC ……………4分 ∴∠2=∠3=30°∴0603=∠+∠=∠BAO BAC ……………5分 答:∠AOC 为120°,∠BAC 为60°.(不答不扣分) (2)∵∠2=∠3∴AO=CO ……………6分∵AD=33,OD=3∴AO=CO=32 ……………7分 ∵四边形CD B A '是矩形 ∴∠D 是直角∴在ODC Rt ∆中,()()33322222=-=-=OD OC CD ………9分答:CD 长3。

四川成都2018-2019学度初二上半期重点数学试题含解析

四川成都2018-2019学度初二上半期重点数学试题含解析

四川成都2018-2019学度初二上半期重点数学试题含解析八年级数学A 卷〔共100分〕一、选择题〔每题3分,共30分〕1、以下实数中,无理数是()A 、31B 、16 CD2、以下各式正确旳选项是()A、3+= B3= C 、532=+ D2=±3旳值在〔〕A 、2到3之间B 、3到4之间C 、4到5之间D 、5到6之间 4、如图,点A 〔﹣2,1〕到y 轴旳距离为〔〕A 、﹣2B 、1C 、2D 、55、在平面直角坐标系中,点A 坐标为〔4,5〕,点A 向左平移5个单位长度到点A 1,那么点A 1旳坐标是〔〕A 、〔-1,5〕B 、〔0,5〕C 、〔9,5〕D 、〔-1,0〕6、点A 〔3,2〕,AC ⊥x 轴,垂足为C ,那么C 点旳坐标为〔〕A 、〔0,0〕B 、〔0,2〕C 、〔3,0〕D 、〔0,3〕7、点A (-3,y 1)和B (-2,y 2)都在直线y =121--x 上,那么y 1,y 2旳大小关系是〔〕 A 、y 1>y 2B 、y 1<y 2C 、y 1=y 2D 、大小不确定8、如图,直角三角形三边向外作正方形,字母A 所代表旳正方形旳面积为()A 、4B 、8C 、16D 、649、如图,以数轴旳单位长线段为边作一个正方形,以数轴旳原点为旋转中心,将过原点旳对角线顺时针旋转,使对角线旳另一端点落在数轴正半轴旳点A 处,那么点A 表示旳数是〔〕A 、211B 、2C 、3D 、1.410、满足以下条件旳△ABC ,不是直角三角形旳是〔〕A 、∠A ∶∠B ∶∠C=5∶12∶13 B 、a ∶b ∶c =3∶4∶5C 、∠C=∠A -∠BD 、b 2=a 2-c 24题图 8题图二、填空题〔每题4分,共16分〕11、比较大小:﹏﹏﹏﹏﹏﹏;64旳平方根是、12、使式子2+x 有意义旳x 旳取值范围是、13、4a +1旳算术平方根是3,那么a -10旳立方根是﹏﹏﹏﹏﹏﹏、;14、如下图,圆柱形玻璃容器,高8cm ,底面周长为30cm ,在外侧下底旳点A处有一只蚂蚁,与蚂蚁相对旳圆柱形容器旳上口外侧旳点B 处有食物,蚂蚁要吃到食物所走旳最短路线长度是cm 、三、解答题〔共22分〕15、计算〔每题4分,共12分〕 (1)2328-+(2)423250-+(3)21)1+-16、〔每题5分,共10分〕〔1〕y y y =+12,而y 1与x +1成正比例,y 2与x 2成正比例,同时x =1时,2=y ;x =0时,2=y ,求y 与x 旳函数关系式、 〔2〕如图,直线32+=x y 与x 轴相交于点A ,与y 轴相交于点B.⑴求A 、B 两点旳坐标;⑵过B 点作直线BP 与x 轴相交于P ,且使AP=2OA ,求ΔBOP 旳面积.四、解答题:(共32分〕17、〔8分〕在平面直角坐标系中,每个小正方形网格旳边长为单位1,格点三角形〔顶点是网格线旳交点旳三角形〕ABC 如下图.〔1〕请写出点A ,C 旳坐标;〔2〕请作出三角形ABC 关于y 轴对称旳三角形A 1B 1C 1;〔3〕求△ABC 中AB 边上旳高、18、〔6分〕一个正数旳两个平方根分别是3x -2和5x +6,求那个数、19、〔8分〕b a ,2690b b -+=,〔1〕求b a ,旳值;〔2〕假设b a ,为△ABC旳两边,第三边c =,求△ABC 旳面积、20.〔10分〕如图,将矩形纸片ABCD 中,AB =6,BC =9,沿EF 折叠,使点B 落在DC 边上点P 处,点A 落在点Q 处,AD 与PQ 相交于点H 、〔1〕〔3分〕如图1,当点P 为边DC 旳中点时,求EC 旳长;〔2〕〔5分〕如图2,当∠CPE =30°,求EC 、AF 旳长;〔3〕〔2分〕如图2,在〔2〕条件下,求四边形EPHF 旳值、14题图B卷一、填空题〔每题4分,共20分〕21、假设将等腰直角三角形AOB按如下图放置,斜边OB与x轴重合,OB=4,那么点A关于原点对称旳点旳坐标为、22、在三角形纸片ABC中,∠ABC=90°,AB=9,BC=12。

(汇总3份试卷)2018年成都市八年级上学期数学期末综合测试试题

(汇总3份试卷)2018年成都市八年级上学期数学期末综合测试试题

八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( ) A . B . C . D .【答案】D【解析】试题分析:A .是轴对称图形,故本选项错误;B .是轴对称图形,故本选项错误;C .是轴对称图形,故本选项错误;D .不是轴对称图形,故本选项正确.故选D .考点:轴对称图形.2.2019年被称为中国的5G 元年,如果运用5G 技术,下载一个2.4M 的短视频大约只需要0.000048秒,将数字0.000048用科学记数法表示应为( )A .0.48×10﹣4B .4.8×10﹣5C .4.8×10﹣4D .48×10﹣6 【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:将数字0.000048用科学记数法表示应为4.8×10﹣1.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.若2(32)()2x x p mx nx ++=+-,则下列结论正确的是( )A .6m =B .1n =C .2p =-D .3mnp =【答案】B【分析】直接利用多项式乘法运算法则得出p 的值,进而得出n 的值.【详解】解:∵2(32)()2x x p mx nx ++=+-,∴(3x+2)(x+p )=3x 2+(3p+2)x+2p=mx 2-nx-2,∴m=3,p=-1,3p+2=-n ,∴n=1,故选B.【点睛】此题考查了因式分解的意义;关键是根据因式分解的意义求出p 的值,是一道基础题.4.以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线a ,b 互相平行的是( )A .如图1,展开后测得∠1=∠2B .如图2,展开后测得∠1=∠2且∠3=∠4C .如图3,测得∠1=∠2D .如图4,展开后再沿CD 折叠,两条折痕的交点为O ,测得OA=OB ,OC=OD【答案】C【解析】试题分析:A 、∠1=∠2,根据内错角相等,两直线平行进行判定,故正确;B 、∵∠1=∠2且∠3=∠4,由图可知∠1+∠2=180°,∠3+∠4=180°,∴∠1=∠2=∠3=∠4=90°,∴a ∥b (内错角相等,两直线平行),故正确;C 、测得∠1=∠2,∵∠1与∠2即不是内错角也不是同位角,∴不一定能判定两直线平行,故错误;D 、在△AOB 和△COD 中,,∴△AOB ≌△COD ,∴∠CAO=∠DBO ,∴a ∥b (内错角相等,两直线平行),故正确.故选C .考点:平行线的判定.5.如图,若在象棋盘上建立直角坐标系,使“帅”位于点.“馬”位于点,则“兵”位于点( )A .(1?1)-, B .(2?1)--, C .(3?1)-,D .(1?2)-, 【答案】C【解析】试题解析:如图,“兵”位于点(−3,1).故选C.6.为确保信息安全,信息需加密传输,发送方将明文加密后传输给接收方,接收方收到密文后解密还原为明文,已知某种加密规则为,明文a ,b 对应的密文为a +2b ,2a -b ,例如:明文1,2对应的密文是5,0,当接收方收到的密文是1,7时,解密得到的明文是( )A .3,-1B .1,-3C .-3,1D .-1,3【答案】A 【分析】根据题意可得方程组2127a b a b +=⎧⎨-=⎩,再解方程组即可. 【详解】由题意得:2127a b a b +=⎧⎨-=⎩, 解得:31a b =⎧⎨=-⎩, 故选A .7.在下列长度的各组线段中,能组成直角三角形的是( )A .5,6,7B .5,12,13C .1,4,9D .5,11,12 【答案】B【解析】试题分析:解:A 、∵52+62≠72,故不能围成直角三角形,此选项错误;C 、∵12+42≠92,故不能围成直角三角形,此选项错误;B 、∵52+122=132,能围成直角三角形,此选项正确;D 、∵52+112≠122,故不能围成直角三角形,此选项错误.故选B .考点:本题考查了勾股定理的逆定理点评: 此类试题属于基础性试题,考生直接一招勾股定理把各项带入验证即可8.关于x 的分式方程15m x =-,下列说法正确的是( ) A .方程的解是5x m =+ B .5m >-时,方程的解是正数C .5m <-时,方程的解为负数D .无法确定 【答案】C【解析】方程两边都乘以x-5,去分母得:m=x-5,解得:x=m+5,∴当x-5≠0,把x=m+5代入得:m+5-5≠0,即m≠0,方程有解,故选项A错误;当x>0且x≠5,即m+5>0,解得:m>-5,则当m>-5且m≠0时,方程的解为正数,故选项B错误;当x<0,即m+5<0,解得:m<-5,则m<-5时,方程的解为负数,故选项C正确;显然选项D错误.故选C.9.如图,把一个含30°角的直角三角尺的直角顶点放在直尺的一边上,如果∠1=20°,那么∠2的度数为()A.20°B.50°C.60°D.70°【答案】B【分析】根据三角形的外角性质得出∠2=∠A+∠1,代入求出即可.【详解】解:如图:∠2=∠A+∠1=30°+20°=50°,故选:B.【点睛】本题考查了三角形的外角性质,能根据三角形的外角性质得出∠2=∠A+∠1是解此题的关键.∠的度数是()10.一副三角板有两个直角三角形,如图叠放在一起,则αA.165°B.120°C.150°D.135°【答案】A【分析】先根据直角三角形两锐角互余求出∠1,再由邻补角的定义求得∠2的度数,再根据三角形的一∠的度数.个外角等于与它不相邻的两个内角的和即可求得α【详解】∵图中是一副三角板,∴∠1=45°,∴∠2=180°-∠1=180°-45°=135°,∴α∠ =∠2+30°=135°+30°=165°.故选A .【点睛】本题考查了直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质是解题的关键.二、填空题11.已知平行四边形的面积是212cm 3cm ,则这边上的高是_____cm . 【答案】3【分析】根据平行四边形的面积公式:S =ah ,计算即可.【详解】设这条边上的高是h , 312h =, 解得:3h = 故填:43【点睛】本题考查平行四边形面积公式,属于基础题型,牢记公式是关键.12.已知9a b +=,6ab =,则22a b ab +的值是________________________.【答案】1【分析】先化简22a b ab +,然后将9a b +=,6ab =代入计算即可.【详解】解:22a b ab +=ab (a+b )将9a b +=,6ab =代入得6×9=1,故答案为:1.【点睛】本题考查了代数求值,将22a b ab +化成ab (a+b )是解题关键.13.计算321a a ⎛⎫⨯ ⎪⎝⎭的结果是________. 【答案】1a 【分析】由题意根据运算顺序,先把各个分式进行乘方运算,再进行分式的乘除运算即可得出答案.【详解】解:321a a ⎛⎫⨯ ⎪⎝⎭ 231a a =⨯23a a= 1a = 故答案为:1a. 【点睛】 本题主要考查分式的乘除法,解题时注意分式乘除法的运算,归根到底是乘法的运算,当分子和分母是多项式时,一般应先进行因式分解,再约分.14.如图,直线y =x+2与直线y =ax+c 相交于点P(m ,3).则关于x 的不等式x+2≥ax+c 的不等式的解为_____.【答案】x≥1【分析】将点P 的坐标代入直线y =x+2,解出m 的值,即得出点P 的坐标,数形结合,将不等式x+2≥ax+c 的解集转化为直线y =x+2与直线y =ax+c 的交点以及直线y =x+2图像在直线y =ax+c 图像上方部分x 的范围即可.【详解】把P (m ,3)代入y =x+2得:m+2=3,解得:m =1,∴P (1,3),∵x≥1时,x+2≥ax+c ,∴关于x 的不等式x+2≥ax+c 的不等式的解为x≥1.故答案为:x≥1.【点睛】本题主要考查一次函数与不等式的关系,将不等式的解集转化为一次函数的图像问题是解题关键. 15.已知x 2-2(m +3)x +9是一个完全平方式,则m =____________.【答案】-6或1.【解析】由题意得-2(m+3)=2()3⨯±,所以解得m=-6或1.16.当x 取________时,分式211x x --无意义; 【答案】1【分析】令x-1=0即可得出答案.【详解】∵分式无意义∴x-1=0解得x=1故答案为1.【点睛】本题考查的是分式无意义:分母等于0.17.由a b >,得到22ac bc >的条件是:c ______1.【答案】≠【分析】观察不等式两边同时乘以一个数后,不等式的方向没有改变,由此依据不等式的性质进行求解即可.【详解】∵由a b >,得到22ac bc >,∴c 2>1,∴c ≠1,故答案为:≠.【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题的关键. 基本性质1:不等式两边同时加或减去同一个整式,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于1的整式,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于1的整式,不等号方向改变.三、解答题18.解不等式332123x x ---≤-,并将解集在数轴上表示出来.【答案】13x ≥,数轴见解析 【分析】根据不等式的基本性质和一般步骤解不等式,然后将解集表示在数轴上即可.【详解】解:3(3)2(32)6x x ---≤-39646x x --+≤-31x -≤-13x ≥【点睛】此题考查的是解不等式,掌握不等式的基本性质和一般步骤是解决此题的关键.19.阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题: (1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 .(2)对于多项式x 3﹣5x 2+x+10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x+10的值为0,由此可以断定多项式x 3﹣5x 2+x+10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),分别求出m 、n 后再代入x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),就可以把多项式x 3﹣5x 2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m 、n 的值;②用“试根法”分解多项式x 3+5x 2+8x+1.【答案】(1)降次;(2)①m =﹣3,n =﹣5;②(x+1)(x+2)2.【分析】(1)根据材料回答即可;(2)①分别令x=0和x=1即可得到关于m 和n 的方程,即可求出m 和n 的值;②把x =﹣1代入x 3+5x 2+8x+1,得出多项式含有因式(x+1),再利用①中方法解出a 和b ,即可代入原式进行分解.【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)①在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n )中,令x =0,可得:102n =-,解得:n=-5,令x=1,可得:()15110=1m n -++-++,解得:m=﹣3,故答案为:m =﹣3,n =﹣5;②把x =﹣1代入x 3+5x 2+8x+1,得x 3+5x 2+8x+1=0,则多项式x 3+5x 2+8x+1可分解为(x+1)(x 2+ax+b )的形式,同①方法可得:a =1,b =1,所以x 3+5x 2+8x+1=(x+1)(x 2+1x+1),=(x+1)(x+2)2.【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答. 20.对于形如222x ax a ++的二次三项式,可以直接用完全平方公式把它分解成()2x a +的形式.但对于二次三项式²45x x +-,就不能直接用完全平方公式分解了.对此,我们可以添上一项4,使它与24x x +构成个完全平方式,然后再减去4,这样整个多项式的值不变,即()()()()()()22²45444529232351x x x x x x x x x +-=++--=+-=+++-=+-.像这样,把一个二次三项式变成含有完全平方式的方法,叫做配方法.(1)请用上述方法把²67x x --分解因式.(2)已知:2²46130x y x y ++-+=,求y 的值. 【答案】(1)()()71x x -+;(2)3y =.【分析】(1)根据配方法与平方差公式,即可分解因式;(2)根据配方法以及偶数次幂的非负性,即可求解.【详解】(1)22676997x x x x --=-+--()2316x =-- ()()3434x x =---+()()71x x =-+;(2)∵2246130x y x y ++-+=,∴2244690x x y y +++-+=,∴()()22230x y ++-=,∴20x +=,30y -=,解得:2x =-,3y =.【点睛】本题主要考查因式分解和解方程,掌握配方法和偶数次幂的非负性,是解题的关键.21.如图,在四边形ABCD 中,,//AD CD AD BC ⊥,E 为CD 的中点,连接AE BE 、,且AE 平分BAD ∠,延长AE 交BC 的延长线于点F .(1)求证:FC AD =;(2)求证:AB BC AD =+;(3)求证:BE 是ABF ∠的平分线;(4)探究∆∆、ABE BEC 和AED ∆的面积间的数量关系,并写出探究过程.【答案】(1)详见解析;(2)详见解析;(3)详见解析;(4)∆∆∆=+ABE BEC AED S S S ;详见解析【分析】(1)根据AAS 证明∆≅∆Rt FCE Rt ADE ,再由全等三角形的性质得到结论;(2)先证明BAE F ∠=∠得到△ABF 是等腰三角形,从而证明AB BF BC CF ==+,再根据CF AD =得到结论;(3)先证明AE=EF,再结合△ABF 是等腰三角形,根据三线合一得到结论;(4)根据三线合一可得S △ABE =S △BEF ,再根据S △BEF =S △BCE +S △CEF 和FCE ADE ∆≅∆得到结论.【详解】(1)证明:∵,//AD CD AD BC ⊥,∴090D ECF ∠=∠=,DAE F ∠=∠,∵E 为CD 的中点,∴DE EC =,在Rt FCE ∆和Rt ADE ∆中D ECF DAEF DE EC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴∆≅∆Rt FCE Rt ADE ,∴FC AD =;(2)证明:∵AE 平分BAD ∠,∴BAE DAE ∠=∠,由(1)知DAE F ∠=∠,∴BAE F ∠=∠,∴△ABF 是等腰三角形,∴AB BF BC CF ==+由(1)知CF AD =,∴AB BC AD =+;(3)证明:由(1)知∆≅∆Rt FCE Rt ADE ,∴AE EF =,由(2)知BA BF =,∴BE 是等腰ABF ∆底边上的中线,∴BE 是ABF ∠的平分线;(4)∵△ABF 是等腰三角形,BE 是中线,(已证)∴S △ABE =S △BEF ,又∵S △BEF =S △BCE +S △CEF ,∆≅∆Rt FCE Rt ADE (已证),∴S △BEF =S △BCE +S △ADE ,∴∆∆∆=+ABE BEC AED S S S .【点睛】考查了全等三角形的判定和性质、等腰三角形的“三线合一”的性质,解题关键是证明FCE ADE ∆≅∆和利用了等腰三角形底边上的中线、底边上的高和顶角的角平分线三线合一.22.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分) 中位数(分) 众数(分) 初中部85 高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.【答案】(1)平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些(3)初中代表队选手成绩较为稳定【解析】解:(1)填表如下:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩好些.∵两个队的平均数都相同,初中部的中位数高,∴在平均数相同的情况下中位数高的初中部成绩好些.(3)∵,222222S7085100851008575858085160 =-+-+-+-+-=高中队()()()()(),∴2 S初中队<2S高中队,因此,初中代表队选手成绩较为稳定.(1)根据成绩表加以计算可补全统计表.根据平均数、众数、中位数的统计意义回答.(2)根据平均数和中位数的统计意义分析得出即可.(3)分别求出初中、高中部的方差比较即可.23.我校要进行理化实验操作考试,需用八年级两个班级的学生整理实验器材.已知一班单独整理需要30分钟完成.如果一班与二班共同整理15分钟后,一班另有任务需要离开,剩余工作由二班单独整理15分钟才完成任务,求二班单独整理这批实验器材需要多少分钟?【答案】1分钟【分析】设二班单独整理这批实验器材需要x分钟,则根据甲的工作量+乙的工作量=1,列方程,求出x的值,再进行检验即可;【详解】解:设二班单独整理这批实验器材需要x 分钟,由题意得111515130x x⎛⎫++= ⎪⎝⎭, 解得x=1.经检验,x=1是原分式方程的根.答:二班单独整理这批实验器材需要1分钟;【点睛】本题考查的是分式方程的应用,根据题意列出关于x 的方程是解答此题的关键.24.计算(111|22-⎛⎫- ⎪⎝⎭(2)⎛÷ ⎝【答案】(2)143【分析】(1)先根据二次根式、绝对值和负整数指数幂的性质化简,然后再进行计算;(2)先化简各二次根式,然后再进行计算.【详解】解:(1)原式(22=+--=(2)原式143⎛=+÷=÷= ⎝. 【点睛】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.25.小明和爸爸从家步行去公园,爸爸先出发一直匀速前行,小明后出发.家到公园的距离为2500 m ,如图是小明和爸爸所走的路程s(m)与步行时间t(min)的函数图象.(1)直接写出小明所走路程s 与时间t 的函数关系式;(2)小明出发多少时间与爸爸第三次相遇?(3)在速度都不变的情况下,小明希望比爸爸早20 min 到达公园,则小明在步行过程中停留的时间需作怎样的调整?【答案】(1)s =50(020)1000(203050-5003060t t t t t ≤≤⎧⎪≤⎨⎪≤⎩)();(2)37.5;(3)小明在步行过程中停留的时间需减少5 min【解析】试题分析:(1)根据函数图形得到0≤t≤20、20<t≤30、30<t≤60时,小明所走路程s 与时间t 的函数关系式;(2)利用待定系数法求出小明的爸爸所走的路程s 与步行时间t 的函数关系式,列出二元一次方程组解答即可;(3)分别计算出小明的爸爸到达公园需要的时间、小明到达公园需要的时间,计算即可.试题解析:解:(1)s=50? (020)1000?(2030)50500?(3060)t t t t t ≤≤⎧⎪<≤⎨⎪-<≤⎩; (2)设小明的爸爸所走的路程s 与步行时间t 的函数关系式为:s=kt+b ,则251000250k b b +=⎧⎨=⎩,解得,30250k b =⎧⎨=⎩,则小明和爸爸所走的路程与步行时间的关系式为:s=30t+250,当50t ﹣500=30t+250,即t=37.5min 时,小明与爸爸第三次相遇;(3)30t+250=2500,解得,t=75,则小明的爸爸到达公园需要75min ,∵小明到达公园需要的时间是60min ,∴小明希望比爸爸早20min 到达公园,则小明在步行过程中停留的时间需减少5min .八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知一次函数y kx b =+的图象经过A (0,1)和B (2,0),当x >0时, y 的取值范围是( )A .1y <;B .0y <;C .1y >;D .2y <【答案】A 【分析】观察图象可知,y 随x 的增大而减小,而当x=0时,y=1,根据一次函数的增减性,得出结论.【详解】解:把A (0,1)和B (2,0)两点坐标代入y=kx+b 中,得120b k b =⎧⎨+=⎩,解得121k b ⎧=-⎪⎨⎪=⎩ ∴y=-12x+1, ∵-12<0,y 随x 的增大而减小, ∴当x >0时,y <1.故选A .【点睛】首先能够根据待定系数法正确求出直线的解析式.在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.2.若分式11x x -+的值为0,则x 的值为( ) A .1B .-1C .1或-1D .0 【答案】A【解析】根据分式的概念,分式有意义要求分母不为零,所以分式值为零,即分子为零即可. 【详解】101x x -=+ , 10x ∴-= ,1x ∴= ,故选:A .【点睛】考查分式的定义,理解定义以及有意义的条件是解题的关键.3.下列命题中,是真命题的是( )A .0的平方根是它本身B .1的算术平方根是﹣1C .12是最简二次根式D .有一个角等于60°的三角形是等边三角形【答案】A【分析】根据平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定逐一分析即可【详解】解:A 、0的平方根是它本身,本选项说法是真命题;B 、1的算术平方根是1,本选项说法是假命题;C 、1222=不是最简二次根式,本选项说法是假命题; D 、有一个角等于60°的等腰三角形是等边三角形,本选项说法是假命题;故选:A .【点睛】本题考查了平方根意义、算术平方根的定义、最简二次根式的定义、等边三角形的判定,熟练掌握相关知识是解题的关键4.如果两个三角形中两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是 ( )A .相等B .不相等C .互余或相等D .互补或相等【答案】D【分析】作出图形,然后利用“HL ”证明Rt △ABG 和Rt △DEH 全等,根据全等三角形对应角相等可得∠B=∠DEH ,再分∠E 是锐角和钝角两种情况讨论求解.【详解】如图,△ABC 和△DEF 中,AB=DE ,BC=EF ,AG 、DH 分别是△ABC 和△DEF 的高,且AG=DH ,在Rt △ABG 和Rt △DEH 中,AB DE AG DH=⎧⎨=⎩, ∴Rt △ABG ≌Rt △DEH (HL ),∴∠B=∠DEH ,∴若∠E 是锐角,则∠B=∠DEF ,若∠E 是钝角,则∠B+∠DEF=∠DEH+∠DEF=180°,故这两个三角形的第三边所对的角的关系是:互补或相等.故选D.5.若分式32x +有意义,则x 应满足的条件是( ) A .0x ≠B .2x ≠-C .2x ≥-D .2x -≤ 【答案】B【分析】根据分式有意义的条件:分母不为0解答即可.【详解】∵分式32x +有意义 ∴x+2≠0x≠-2故选:B【点睛】本题考查的是分式有意义的条件,掌握分式有意义的条件是分母不为0是关键.6.如图,在△ABC 中,以点B 为圆心,以BA 长为半径画弧交边BC 于点D ,连接AD .若∠B=40°,∠C=36°,则∠DAC 的度数是( )A .70°B .44°C .34°D .24°【答案】C 【分析】易得△ABD 为等腰三角形,根据顶角可算出底角,再用三角形外角性质可求出∠DAC【详解】∵AB=BD ,∠B=40°,∴∠ADB=70°,∵∠C=36°,∴∠DAC=∠ADB ﹣∠C=34°.故选C.【点睛】本题考查三角形的角度计算,熟练掌握三角形外角性质是解题的关键.7.如图是一张直角三角形的纸片,两直角边6,8AC cm BC cm ==,现将ABC 折叠,使点B 与点A 重合,折痕为DE ,则AD 的长为( )A .252cmB .254cmC .7cmD .9cm【答案】B【分析】首先设AD=xcm ,由折叠的性质得:BD=AD=xcm ,又由BC=8cm ,可得CD=8-x (cm ),然后在Rt △ACD中,利用勾股定理即可求得方程,解方程即可求得答案.【详解】设AD=xcm ,由折叠的性质得:BD=AD=xcm ,∵在Rt △ABC 中,AC=6cm ,BC=8cm ,∴CD=BC-BD=(8-x )cm ,在Rt △ACD 中,AC 2+CD 2=AD 2,即:62+(8-x )2=x 2,解得:x=254, ∴AD=254cm . 故选:B .【点睛】此题考查了折叠的性质与勾股定理的知识.此题难度适中,注意掌握数形结合思想与方程思想的应用,注意掌握折叠前后图形的对应关系.8.下列运算正确的是( )A .336x x x +=B .325(2)4x x x ⋅=C .322433x y xy x ÷=D .()22236a a -= 【答案】B【分析】根据整式的混合运算法则即可求解.【详解】A.3332x x x +=,故错误;B.325(2)4x x x ⋅=,正确;C.322233x y xy x ÷=,故错误;D.()22439a a -=,故错误;故选B .【点睛】此题主要考查整式的运算,解题的关键是熟知其运算法则.9.在平面直角坐标系中,一个智能机器人接到如下指令:从原点O 出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m .其行走路线如图所示,第1次移动到A 1,第2次移动到A 2,…,第n 次移动到A n .则△OA 2A 2018的面积是( )A .504m 2B .10092m 2C .10112m 2D .1009m 2【答案】A 【分析】由OA 4n =2n 知OA 2017=20162+1=1009,据此得出A 2A 2018=1009-1=1008,据此利用三角形的面积公式计算可得.【详解】由题意知OA 4n =2n , ∴OA 2016=2016÷2=1008,即A 2016坐标为(1008,0),∴A 2018坐标为(1009,1),则A 2A 2018=1009-1=1008(m),∴22018OA A S =12⨯A 2A 2018×A 1A 2=12×1008×1=504(m 2). 故选:A.【点睛】本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.10.计算(a)(a)32正确的是( )A .5aB .5a -C .6aD .6a - 【答案】B【分析】先计算积的乘方,再计算同底数幂的乘法即可得解.【详解】解:(a)(a)32 =32a a -=5a -.故选:B .【点睛】此题主要考查了积的乘方与同底数幂的乘法,熟练掌握运算法则是解答此题的关键.二、填空题11.如图,BD 是ABC 的角平分线,AE BD ⊥,垂足为F ,且交线段BC 于点E ,连结DE ,若50C ∠=︒,设 ABC x CDE y ∠=︒∠=︒,,则y 关于x 的函数表达式为_____________.【答案】80y x =-【分析】根据题意,由等腰三角形的性质可得BD 是AE 的垂直平分线,进而得到AD =ED ,求出BED ∠的度数即可得到y 关于x 的函数表达式.【详解】∵BD 是ABC ∆的角平分线,AE BD ⊥ ∴1122ABD EBD ABC x ∠=∠=∠=︒,90AFB EFB ∠=∠=︒ ∴1902BAF BEF x ∠=∠=︒-︒ ∴AB BE =∴AF EF =∴AD ED =∴DAF DEF ∠=∠∵180BAC ABC C ∠=︒-∠-∠,50C ∠=︒∴130BAC x ∠=︒-︒∴130BED BAD x ∠=∠=︒-︒∵CDE BED C ∠=∠-∠∴1305080y x x ︒=-︒-︒=︒-︒∴80y x =-,故答案为:80y x =-.【点睛】本题主要考查了等腰三角形的性质及判定,三角形的内角和定理,三角形外角定理,角的和差倍分等相关知识,熟练运用角的计算是解决本题的关键.12.已知等腰三角形一腰上的高与另一腰的夹角为50°,则等腰三角形的顶角度数为_________.【答案】40°或140°【分析】根据题意,对等腰三角形分为锐角等腰三角形和钝角等腰三角形进行解答.【详解】解:①如图1,若该等腰三角形为锐角三角形,由题意可知:在△ABC 中,AB=AC ,BD 为AC 边上的高,且∠ABD=50°,∴∠A=90°-50°=40°,②如图2,若该等腰三角形为钝角三角形,由题意可知:在△ABC 中,AB=AC ,BD 为AC 边上的高,且∠ABD=50°,∴∠BAD=90°-50°=40°,∴∠BAC=180°-40°=140°,综上所述:等腰三角形的顶角度数为40°或140°,故答案为:40°或140°.【点睛】本题考查了等腰三角形的分类讨论问题,以及三角形高的做法,解题的关键是对等腰三角形进行分类,利用数形结合思想进行解答.13.如图,在ABC 中,BD AD ⊥,15A ∠=︒,6AC BC ==,则CD 的长是_______.【答案】33【分析】由三角形外角性质,等腰三角形的性质得到∠BCD =30°,在直角三角形中,30度角所对的直角边等于斜边的一半,由此可求得BD 长,再利用勾股定理即可求得CD 长.【详解】解:∵在△ABC 中,∠A =15°,AC =BC ,∴∠A =∠CBA =15°,∴∠BCD =∠A+∠CBA =30°.又BD ⊥AD ,AC =BC =6,∴BD =12BC =12×6=3 ∴在Rt △BCD 中,CD 22226333BC BD --. 故答案是:33【点睛】本题考查了等腰三角形的性质、含30°的直角三角形的性质、勾股定理.熟练掌握含30°的直角三角形的性质及勾股定理是解决本题的关键.14.在Rt ABC ∆中,Rt C ∠=∠,1BC =,2AC =,则AB =________. 【答案】5 【分析】根据勾股定理直接求出AB 长即可.【详解】∵∠C=90°,BC=1,AC=2,∴AB=22BC +AC =5, 故答案为:5.【点睛】本题是对勾股定理的考查,熟练掌握勾股定理是解决本题的关键.15.如图所示,为估计池塘两岸边A ,B 两点间的距离,在池塘的一侧选取点C ,分别取CA 、CB 的中点E ,F ,测的18EF m =,则A ,B 两点间的距离是______m .【答案】36【分析】根据E 、F 是CA 、CB 的中点,即EF 是△CAB 的中位线,根据三角形的中位线定理:三角形的中位线平行于第三边且等于第三边的一半,即可求解.【详解】解:据E 、F 是CA 、CB 的中点,即EF 是△CAB 的中位线,∴EF=12AB , ∴AB=2EF=2×18=36.故答案为36.【点睛】本题考查了三角形的中位线定理应用,灵活应用三角形中位线定理是解题的关键.16.若点A (a ,﹣2)与点B (﹣3,b )关于x 轴对称,则a b =_____.【答案】1【分析】根据关于x 轴对称的点的坐标变化,横坐标不变,纵坐标互为相反数求a,b 的值,从而求解.【详解】解:∵点A (a ,﹣2)与点B (﹣3,b )关于x 轴对称,∴a =﹣3,b =2,∴a b =(﹣3)2=1.故答案为1.【点睛】熟练掌握关于坐标轴对称的点的坐标变化规律是本题的解题关键.点P(a,b)关于x 轴对称的点的坐标为(a,-b),关于y轴对称的点的坐标为(-a,b),关于原点对称的点的坐标为(-a,-b).17.已知:如图,在平面直角坐标系xOy中,一次函数y=34x+3的图象与x轴和y轴交于A、B两点将△AOB绕点O顺时针旋转90°后得到△A′OB′则直线A′B′的解析式是_____.【答案】443y x=-+【分析】根据y=34x+3求出点A、B的坐标,得到OA、OB的值,即可求出点A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,代入求值即可.【详解】由=34x+3,当y=0时,得x=-4,∴(﹣4,0),当x=0时,得y=3,∴B(0,3),∴OA=4,OB=3,∴OA′=OA=4,OB′=OB=3,∴A′(0,4),B′(3,0),设直线A′B′的解析式为y=kx+b,∴304k bb+=⎧⎨=⎩.解得434kb⎧=-⎪⎨⎪=⎩.∴直线A′B′的解析式是443y x=-+.故答案为:443y x=-+.【点睛】此题考查一次函数与坐标轴的交点坐标的求法,待定系数法求一次函数的解析式.三、解答题18.如图在△ABC中,∠B=50°,∠C=30°,分别以点A和点C为圆心,大于AC的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,(1)若△ABD的周长是19,AB=7,求BC的长;(2)求∠BAD 的度数.【答案】(1)BC=2;(2)∠BAD=70°【分析】(1)根据作图明确MN 是线段AC 的垂直平分线,得AD=DC ,结合△ABD 的周长和AB 的长度即可得出BC 的长度;(2)根据作图明确MN 是线段AC 的垂直平分线,得∠C=∠DAC=30°,利用内角和求出∠BAC=100°,进而求出∠BAD=70°.【详解】(1)由图可知MN 是AC 的垂直平分线∴AD=DC .∵△ABD 的周长=AB+AD+BD=1,AB=7∴7+DC+BD=7+BC=1.∴BC=2.(2)∵∠B=50°,∠C=30°∴∠BAC=100°.∵MN 是AC 的垂直平分线∴AD=DC .∴∠DAC=∠C=30°.∴∠BAD=∠BAC-∠DAC=100°-30°=70°.【点睛】本题考查了垂直平分线的性质,三角形的内角和,属于简单题,熟悉垂直平分线的作图方法是解题关键. 19.解方程:121x -=12-342x -. 【答案】3x =【分析】先确定最简公分母是42x -,将方程两边同时乘以最简公分母约去分母可得: 2213x =--,然后解一元一次方程,最后再代入最简公分母进行检验.【详解】去分母得:2213x =--,解得:3x =,经检验3x =是分式方程的解.【点睛】本题主要考查解分式方程的方法,解决本题的关键是要熟练掌握解分式方程的方法和步骤.20.()1已知2528322,n n =求n 的值;()2已知()21693n =,求n 的值;()3已知4, 3a b ab +==,求22a b +的值.【答案】(1)3n =; (2)4n =; (3)2210a b +=.【分析】(1)根据同底数幂的乘法法则,将2832n n 转换成812n +,即可求出n 的值;(2)根据同底数幂的乘法法则,将()29n 转换成43n ,即可求出n 的值;(3)利用完全平方公式将22a b +转换成()22a b ab +-,再代入求解即可.【详解】(1)358128322222n n n n n +==∵2528322n n =∴8125n +=解得3n =(2)()()2224933nn n == ∵()21693n =∴41633n =解得4n =(3)22a b +2222a ab b b a =++-()22a b ab =+-将4, 3a b ab +==代入原式中原式223166104-⨯=-== .【点睛】本题考查了同底数幂和代数式的运算,掌握同底数幂的运算法则、解代数式的方法是解题的关键. 21.雾霾天气持续笼罩我国大部分地区,困扰着广大市民的生活,口罩市场出现热销,小明的爸爸用12000元购进甲、乙两种型号的口罩在自家商店销售,销售完后共获利2700元,进价和售价如表:。

成都市某区县2018-2019学年度上期八年级期末试题

成都市某区县2018-2019学年度上期八年级期末试题

2018—2019学年度上期期末学业质量监测八年级数学试题注意事项:1、全卷分A 卷和B 卷,A 卷满分100分,B 卷满分50分;考试时间120分钟。

2、考生必须在答题卷上作答,答在试卷上、草稿纸上无效。

3、试卷中横线上及方框内注有“▲”的地方,是需要考生在答题卷上作答的内容或问题。

请按照题号在答题卷上各题目对应的答题区域内作答,超出答题区域书写的答案无效。

A 卷(100分)一、选择题(每小题3分,共30分)下列各小题给出的四个选项中,只有一个符合题目要求,请将正确选项前的字母填在答题卷上对应的表格内。

1.下列图形中,是中心对称图形的是( ▲ )A .B .C .D . 2.使函数x y -=6有意义的自变量x 的取值范围是( ▲ )A .x≥6B .x≥0C .x≤6D .x≤03.如图,象棋盘上,若“帅”位于点(﹣1,﹣2),“马”位于点(2,﹣2),则“炮”位于点( ▲ )A .(﹣3,1)B .(0,0)C .(﹣1,0)D .(1,﹣1)4.下列各组数据分别为三角形的三边长,不能组成直角三角形的是( ▲ )A .9,12,15B .7,24,25C .6,8,10D .3,5,75.已知点M (﹣1,3),则M 点关于x 轴对称点的坐标是( ▲ )A .(﹣1,﹣3)B .(1,3)C .(﹣3,1)D .(3,1)6.若a >b ,则下列不等式变形正确的是( ▲ )A .22bc ac >B .1>b aC .cb ca -<-D .c b c a ->-337.一次函数12--=x y 的图象大致是( ▲ )A .B .C .D .8.下列命题是假命题的为( ▲ )A .如果三角形三个内角的比是1:2:3,那么这个三角形是直角三角形B .锐角三角形的所有外角都是钝角C .内错角相等D .平行于同一直线的两条直线平行9.如图是根据某班40名同学一周体育锻炼情况绘制的统计图,这40名同学该周参加体育锻炼时间的中位数、众数分别是( ▲ )A .9小时,16小时B .8.5小时,16小时C .8.5小时,8小时D .9小时,8小时 9题图10.某生产车间共90名工人,每人每天平均能生产螺栓15个或螺帽24个,要使1个螺栓配套2个螺帽,应如何分配工人才能使每天生产的螺栓和螺帽刚好配套,设生产螺栓x 人,生产螺帽y 人,由题意列方程组( ▲ )A .⎩⎨⎧==+y x y x 241590B .⎩⎨⎧=⨯=x y y x 15242-90C .⎩⎨⎧=⨯=+y x y x 2415290D .⎪⎩⎪⎨⎧=+=y x y x 2421590 二.填空题(每小题4分,共20分)11.函数b x y +-=22是正比例函数,则b= ▲ .12.如图,∠1=∠2,∠3=125°,则∠4等于 ▲ .12题图 13题图 14题图13.如图,三个正方形中,其中两个正方形的面积分别是100,36,则字母A 代表的正方形的边长是 ▲ .14.如图,函数x y 21-=与32+=ax y 的图象相交于点A (m ,2),则关于x 的不等式32+≤-ax x 的解集是 ▲ .15.已知点M (3a ﹣2,a+6),点N (2,5),且直线MN ∥x 轴,则M 点的坐标为 ▲ .三.解答题(每小题6分,共18分)16.(1)解方程组:⎩⎨⎧=-=+1229310y x y x (2)解不等式组()⎩⎨⎧≥--+>+)()(2-----53321-----232x x x ,并把它的解集在数轴上表示出来.(3)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).①若△ABC经过平移后得到△A1B1C1,已知点C1的坐标为(4,0),在图(1)画出△A1B1C1,并直接写出顶点A1的坐标;②将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,在图(2)中画出△A2B2C2,并直接写出C2的坐标.图(1)图(2)四、解答题(每小题7分,共14分)17.如图,某开发区有一块四边形空地ABCD,现计划在空地上种植草皮,经测量,∠B=90°,AB=20m,BC=15m,CD=7m,AD=24m.若每平方米草皮需要200元,则种植这片草皮需要多少元?18.某校为了提升初中学生学习数学的兴趣,培养学生的创新精神,举办“玩转数学”比赛,现有甲、乙、丙三个小组进入决赛,评委从研究报告、小组展示、答辩三个方面为各小组打分,各项成绩均按百分制记录.甲、乙、丙三个小组各项得分如表:(1)计算各小组的平均成绩,并从高分到低分确定小组的排名顺序;(2)如果将研究报告、小组展示、答辩按照5:3:2的权重确定各小组的成绩,请计算各小组的成绩,哪个小组的成绩最高?五、解答题(19题8分,20题10分,共18分)19.如图,在长方形ABCD 中,放置9个形状,大小都相同的小长方形,相关数据如图所示.求图中阴影部分的面积.20.如图,在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴交点为A (﹣3,0),与y 轴交点为B ,且与正比例函数x y 34 的图象的交于点C (m ,4). (1)求一次函数y=kx+b 的表达式;(2)若点P 是y 轴上一点,且△BPC 的面积为6,请求出点P 的坐标.(3)在x 轴上求一点M ,使△MOC 为等腰三角形,请直接写出所有符合条件的点M 的坐标.B 卷(50分)一、填空题(每小题4分,共20分)21.小明同学参加某体育项目训练,近期的五次测试成绩得分情况如图所示。

四川省成都市2019年八年级上学期期末考试数学试卷及答案

四川省成都市2019年八年级上学期期末考试数学试卷及答案

教学质量测评试题八年级数学A 卷(共100分)题号 1 2 3 4 5 6 7 8 910答案 1.下列美丽的图案,既是轴对称图形又是中心对称图形的个数A. 4B. 3C. 2D. 12.在如图所示的直角坐标系中,M 、N 的坐标分别为A. M (-1,2),N (2, 1)B.M (2,-1),N (2,1)C.M (-1,2),N (1, 2)D.M (2,-1),N (1,2)3.下列各式中,正确的是A 16±4B 16327-= -3 D 2(4)-= - 44.如图,在水塔O 的东北方向32m 处有一抽水站A ,在水塔的东南方向 24m 处有一建筑物工地B ,在AB 间建一条直水管,则水管的长为 A.45m B.40m C.50m D.56m5.下列说法中正确的是A .矩形的对角线相互垂直B .菱形的对角线相等C .平行四边形是轴对称图形D .等腰梯形的对角线相等6.如图,正方形网格中的△ABC ,若小方格边长为1,则△ABC 的形状为A .锐角三角形B .直角三角形C .钝角三角形D .以上答案都不对7.对于一次函数y = x +6,下列结论错误的是A . 函数值随自变量增大而增大B .函数图象与x 轴正方向成45°角C . 函数图象不经过第四象限D .函数图象与x 轴交点坐标是(0,6) 8.如图,点O 是矩形ABCD 的对称中心,E 是AB 边上的点,沿CE 折叠后,点B 恰好与点O 重合,若BC =3,则折痕CE = A .2 3 B .332C . 3D .6题号A 卷A 卷B 卷B 卷 全卷一 1-10 二 11-15 三 16 四 17, 18 五19,20 一 21-25二 26 三 27 四28 得分NM y x3 2 1 -1-1 -2 -3 123 (第2题图)O(第4题图)CBA(第6题图)A BCD E O(第8题图)9. 已知一次函数y =kx +b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,则一次函数的解析式为A .y = x +2B .y = ﹣x +2C .y = x +2或y =﹣x +2D . y = - x +2或y = x -2 10.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x 元,包子每个y 元,则所列二元一次方程组正确的是 A.⎩⎨⎧⨯=++=+9.0186811035y x y x B .⎩⎨⎧÷=++=+9.0186811035y x y xC .⎩⎨⎧⨯=+-=+9.0186811035y x y x D.⎩⎨⎧÷=+-=+9.0186811035y x y x二、填空题(每小题3分,共15分)11.如图,已知直线y=ax+b 和直线y=kx 交于点P (-4,-2),则关于x ,y 的二元一次方程组,.y ax b y kx =+⎧⎨=⎩的解是________.12.若一个多边形的内角和等于900,则这个多边形的边数是_____.13.已知O (0, 0),A (-3, 0),B (-1, -2),则△AOB 的面积为______.14.小明家准备春节前举行80人的聚餐,需要去某餐馆订餐.据了解餐馆有10人坐和8人坐两种餐桌,要使所订的每个餐桌刚好坐满, 则订餐方案共有_____种.15.如图,正方形网格中每个小正方形边长都是1,任意连结这些小正方形顶点,可得到一些线段.请在图中画出线段1352===EF CD AB 、、.(要求将所画三条线段的端点标上对应的字母) 三、解答下列各题((每小题5分,共20分) 16.(1)计算:862⨯-82734⨯+ (2)计算:)62)(31(-+-2)132(-(3) 解方程组:⎩⎨⎧=-=+113032y x y x (4) 解方程组:⎩⎨⎧+=++=--+y x y x y x y x 3153)(43)(3)(2 四、解答题(共15分)17.在建立平面直角坐标系的方格纸中,每个小方格都是边长为1的小正方形,△ABC 的顶点均在格点上,点P 的坐标为(-1,0),请按要求画图与作答:(1)画出以点P 为对称中心,与△ABC 成中心对称的△A ′B ′C ′. (2)把△ABC 向右平移7个单位得△A ′′B ′′C ′′.(3)△A ′B ′C ′与△A ′′B ′′C ′′是否成中心对称?若是,画出对称中(第15题图)A C BPOPxy(第11题图)心P ′,并写出其坐标.18.如图,⊿ABC 中,AD 是边BC 上的中线,过点A 作AE ∥BC ,过点D 作DE ∥AB ,DE 与AC 、 AE 分别交于点O 、点E ,连接EC. (1)求证: AD=EC ;(2)当∠BAC =90°时,求证:四边形ADCE 是菱形.五、解答下列问题(共20分)19.甲、乙、丙三个家电厂家在广告中都声称,他们的某种电子产品在正常情况下的使用寿命都是8年,经质量检测部门对这三家销售的产品的使用寿命进行跟踪调查,统计结果如下:(单位:年)甲厂:4,5,5,5,5,7,9,12,13,15 乙厂:6,6,8,8,8,9,10,12,14,15 丙厂:4,4,4,6,7,9,13,15,16,16 请回答下面问题: (1)填空:平均数 众数 中位数 甲厂 6 乙厂 9.6 8.5 丙厂9.44(2)这三个厂家的销售广告分别利用了哪一种表示集中趋势的特征数? (3)你是顾客,你买三家中哪一家的电子产品?为什么?20.已知一次函数y=kx+b 的图象是过A (0,-4),B (2,-3)两点的一条直线. (1)求直线AB 的解析式;(2)将直线AB 向左平移6个单位,求平移后的直线的解析式. (3)将直线AB 向上平移6个单位,求原点到平移后的直线的距离.OAE BCDB 卷(共50分)一、填空题:(本大题共5小题,每小题4分,共20分)21. 则y+z= ______ .22.△ABC 中,AB =15,AC =13,高AD =12,则△ABC 的周长为__________. 23. 实数37-的整数部分a=_____,小数部分b=__________.24.在平面直角坐标系中,横坐标、纵坐标都为整数的点称为整点.请你观察图中正方形A 1B 1C 1D 1,A 2B 2C 2D 2,A 3B 3C 3D 3每个正方形四条边上的整点的个数.按此规律推算出正方形A 10B 10C 10D 10四条边上的整点共有 个.25.长为2,宽为a 的矩形纸片(1<a <2),如图那样折一下,剪下一个边长等于矩形宽度的正方形(称为第一次操作);再把剩下的矩形如图那样折一下,剪下一个边长等于此时矩形宽度的正方形(称为第二次操作);如此反复操作下去.若在第n 此操作后,剩下的矩形为正方形,则操作终止.当n =3时,a 的值为__________.二、解答题(8分)26.某服装厂接到生产一种工作服的订货任务,要求在规定期限内完成,按照这个服装厂原来的生产能力,每天可生产这种服装150套,按这样的生产进度在客户要求的期限内只能完成订货的45;现在工厂改进了人员组织结构和生产流程,每天可生产这种工作服200套,这样不仅比规定时间少用1天,而且比订货量多生产25套,求订做的工作服是几套?要求的期限是几天?,:已知⎪⎩⎪⎨⎧=++==27z y x 3:2z :y 2:1y x (第24题图) 第一次操作 第二次操作(第25题图)三、解答题(10分)27.如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.四、解答题(12分)28.如图,在Rt△OAB中,∠A=90°,∠ABO=30°,OB=334,边AB的垂直平分线CD 分别与AB、x轴、y轴交于点C、E、D.(1)求点E的坐标;(2)求直线CD的解析式;(3)在直线CD上和坐标平面内是否分别存在点Q、P,使得以O、D、P、Q为顶点的四边形是菱形?若存在,求出点Q的坐标;若不存在,请说明理由.八年级数学试卷参考答案及评分标准说明:本试卷分为A卷和B卷,其中A卷共100分,B卷共50分,满分150分,考试时间120分钟.二、填空题(每小题3分,共15分) 11. ⎩⎨⎧==2-y -4x ;12. 7;13. 3;14. 3;15.答案略.三、解答下列各题(每小题5分,共20分) 16.(1)计算:862⨯-82734⨯+ (2)计算:)62)(31(-+-2)132(- 解:原式=2233332-26⨯+(3分) 解:原式=()34-13-23-66-2+(4分) =66332-26+ (4分) =13-22-34(5分) =332-6213 (5分)(3) 解方程组:⎩⎨⎧=-=+113032y x y x (4) 计算:⎩⎨⎧+=++=--+yx y x y x y x 3153)(43)(3)(2解:由②得:y=3x-11 ③ (1分) 解:由②得:4(x+y )+3(x-y )=15 ③(1分)将③代入①:2x+9x-33=0 ①+③得x+y=3 ④(2分)x =3 , (3分) 把④代入①,得x-y=1 ⑤ (3分)则y= -2 (4分) ④+⑤得x=2,④-⑤得y=1 (4分)∴原方程组的解是⎩⎨⎧==2-3y x (5分) ∴原方程组的解是⎩⎨⎧==12y x (5分)四、解答题(共15分) 17. (7分)解:(1)、(2)如图所示; (4分)(3)△A ′B ′C ′与△A ′′B ′′C ′′成中心对称.(5分)P ′(2.5,0). (7分)18. (8分)证明:(1)解法1:∵DE//AB,AE//BC,所以四边形ABDE 是平行四边形,(1分)∴AE//BD 且AE=BD ,又∵AD 是边BC 上的中线,∴BD=CD ,(2分) ∴AE 平行且等于CD ,∴四边形ADCE 是平行四边形,(3分)∴AD=EC. (4分)解法2:∵DE//AB,AE//BC,∴四边形ABDE 是平行四边形,∠B=∠EDC∴AB=DE又AD BC 是边上的中线, ∴BD=CD ∴⊿ABD≌⊿EDC,∴AD=ED(2)解法1:证明:∠BAC=RT∠,AD是斜边BC 上的中线, ∴AD=BD=CD(6分)又四边形ADCE 是平行四边形, ∴四边形ADCE 是菱形 (8分)解法2:证明:∵DE//AB ,∠BAC=RT∠, ∴DE⊥AC又四边形ADCE 是平行四边形, ∴四边形ADCE 是菱形解法3:证明:Rt BAC AD BC ∠=∠,是斜边上的中线, ∴AD=BD=CD 四边形ABDE 是平行四边形, ∴AD=BD=CD∵AD=EC,∴AD=CD=CE=AE ∴四边形ADCE 是菱形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市郫都区2018-2019学年八年级上学期
期末数学试题
学校_________ 班级__________ 姓名__________ 学号__________
一、单选题
1. 8的立方根是()
A.±2B.2 C.﹣2 D.
2. 下列哪个点在第四象限()
A.(2,﹣1)B.(﹣1,2)C.(1,2)D.(﹣2,﹣1)3. 如图,点表示的实数是()
A.B.C.D.
4. 某射击小组有20人,教练根据他们某次射击命中环数的数据绘制成如图的统计图,则这组数据的众数和极差分别是()
A.10、6 B.10、5 C.7、6 D.7、5
5. 甲、乙、丙、丁四人进行射击测试,经过测试,平均成绩均为环,方差选手甲乙丙丁
方差
则在这四个选手中,成绩最稳定的是
A.甲B.乙C.丙D.丁
6. 如图,将△ABC放在正方形网格中(图中每个小正方形边长均为1)点A,B,C恰好在网格图中的格点上,那么∠ABC的度数为()
A.90°B.60°C.30°D.45°
7. 点A(﹣5,4)关于y轴的对称点A′的坐标为()
A.(﹣5,﹣4)B.(5,﹣4)C.(5,4)D.(﹣5,4)
8. 下列是二元一次方程的是:
A.5x-9=x B.5x=6y C.x-2y2=4 D.3x-2y=xy
9. 若一次函数y=kx+b的图象如图所示,则关于x的方程kx+b=0的解为()
A.x=﹣2 B.x=﹣0.5 C.x=﹣3 D.x=﹣4
10. 说明命题“若a2>b2,则a>b.”是假命题,举反例正确的是()A.a=2,b=3 B.a=﹣2,b=3 C.a=3,b=﹣2 D.a=﹣3,b=2 二、解答题
11. 如图所示,在象棋盘上建立平面直角坐标系,使使“马”位于点(2,2),“炮”位于点(﹣1,2),写出“兵”所在位置的坐
标.
三、填空题
12. 某校来自甲、乙、丙、丁四个社区的学生人数分布如图,若来自甲社区的
学生有120人,则该校学生总数为_____人.
13. 如图所示,若∠1+∠2=180°,∠3=100°,则∠4的大小为
_____.
14. 已知方程组和方程组有相同的解,则a2﹣2ab+b2的值为_____.
四、解答题
15. 计算:
(1)
(2)
16. 解方程组:.
17. 如图,已知一块四边形的草地ABCD,其中∠B=90°,AB=20m,BC=
15m,CD=7m,DA=24m,求这块草地的面积.
18. 如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.人体构造学的研究成果表明,一般情况下人的指距d和身高h成如下所示的关系.
指距d(cm)20 21 22 23
身高h(cm)160 169 178 187
(1)直接写出身高h与指距d的函数关系式;
(2)姚明的身高是226厘米,可预测他的指距约为多少?(精确到0.1厘米)19. 如图,已知直线y=kx+2与x轴、y轴分别相交于点A、点B,∠BAO=30°,若将△AOB沿直钱CD折叠,使点A与点B重合,折痕CD与x轴交于点C,与AB交于点D.
(1)求k的值;
(2)求点C的坐标;
(3)求直线CD的表达式.
20. 在△ABC中,AB=13,AC=5,BC边上的中线AD=6,点E在AD的延长线上,且ED=AD.
(1)求证:BE∥AC;
(2)求∠CAD的大小;
(3)求点A到BC的距离.
五、填空题
21. 分母有理化:=_____.
22. 如图,把一张长方形纸片折叠,如果∠2=64°,那么∠1=
_____.
23. 定义一种新的运算“※”,规定:x※y=mx+ny2,其中m、n为常数,已知2※3=﹣1,3※2=8,则m※n=_____.
24. 如图,有一棱长为3dm的正方体盒子,现要按图中箭头所指方向从点A到点D拉一条捆绑线绳,使线绳经过ABFE、BCGF、EFGH、CDHG四个面,则所需捆
绑线绳的长至少为_____dm.
25. 如图,点C为y轴正半轴上一点,点P(2,2)在直线y=x上,PD=PC,且PD⊥PC,过点D作直线AB⊥x轴于B,直线AB与直线y=x交于点A,直线
CD与直线y=x交于点Q,当∠CPA=∠PDB时,则点Q的坐标是
_____.
六、解答题
26. 学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y (米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t=分钟时甲乙两人相遇,乙的速度
为米/分钟;
(2)求点A的坐标.
27. 寒假即将到来,外出旅游的人数逐渐增多,对旅行包的需求也将增多,某店准备到生产厂家购买旅行包,该厂有甲、乙两种新型旅行包.若购进10个甲种旅行包和20个乙种旅行包共需5600元,若购进20个甲种旅行包和10个乙种旅行包共需5200元.
(1)甲、乙两种旅行包的进价分别是多少元?
(2)若该店恰好用了7000元购买旅行包;
①设该店购买了m个甲种旅行包,求该店购买乙种旅行包的个数;
②若该店将甲种旅行包的售价定为298元,乙种旅行包的售价定为325元,则当该店怎么样进货,才能获得最大利润,并求出最大利润.
28. 阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如3+2=(1+)2.善于思考的小明进行了以下探索:
若设a+b=(m+n)2=m2+2n2+2mn(其中a、b、m、n均为整数),
则有a=m2+2n2,b=2mn.
这样小明就找到了一种把类似a+b的式子化为平方式的方法.
请你仿照小明的方法探索并解决下列问题:
(1)若a+b=(m+n)2,当a、b、m、n均为整数时,用含m、n的式子分别表示a、b,得:a=,b=;
(2)若a+6=(m+n)2,且a、m、n均为正整数,求a的值;
(3)化简:.。

相关文档
最新文档