线性代数第四章练习题集答案解析

合集下载

(完整版)线性代数练习册第四章习题及答案

(完整版)线性代数练习册第四章习题及答案

第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。

当0D ≠时,非齐次线性方程组只有唯一解;B 。

当0D ≠时,非齐次线性方程组有无穷多解;C 。

若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。

2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。

【最新试题库含答案】线性代数练习册第四章习题及答案

【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。

4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。

3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。

线性代数 课后习题详解 第四章

线性代数 课后习题详解 第四章

第四章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320;(3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--3403130212011312)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----174034301320 1312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫⎝⎛---310031001320 21233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫ ⎝⎛000031005010(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311 141312323~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311 )5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎪⎭⎫⎝⎛-----221002210022100343112423213~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛---00000000002210032011(4) ⎪⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫⎝⎛-----1187701298804202111110 141312782~r r r r r r --+⎪⎪⎪⎪⎪⎭⎫⎝⎛--4100041000202011111034221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102021 32~r r +⎪⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.在秩是r 的矩阵中,有没有等于0的1-r 阶子式?有没有等于0的r 阶 子式?解 在秩是r 的矩阵中,可能存在等于0的1-r 阶子式,也可能存在等 于0的r 阶子式.例如,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00000000010000100001α3)(=αR 同时存在等于0的3阶子式和2阶子式.3.从矩阵A 中划去一行得到矩阵B ,问B A ,的秩的关系怎样? 解 )(A R ≥)(B R设r B R =)(,且B 的某个r 阶子式0≠D r .矩阵B 是由矩阵A 划去一行得到的,所以在A 中能找到与D r 相同的r 阶子式D r ,由于0≠=D D r r , 故而)()(B R A R ≥.4.求作一个秩是4的方阵,它的两个行向量是)0,0,1,0,1(,)0,0,0,1,1(- 解 设54321,,,,ααααα为五维向量,且)0,0,1,0,1(1=α,)0,0,0,1,1(2-=α,则所求方阵可为,54321⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=αααααA 秩为4,不妨设⎪⎩⎪⎨⎧===)0,0,0,0,0(),0,0,0,0()0,,0,0,0(55443αααx x 取154==x x 故满足条件的一个方阵为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000100000100000011001015.求下列矩阵的秩,并求一个最高阶非零子式:(1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013; (2) ⎪⎪⎪⎭⎫⎝⎛-------815073131213123; (3) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---02301085235703273812.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛---443112112013r r 21~↔⎪⎪⎪⎭⎫ ⎝⎛---443120131211 ⎪⎪⎪⎭⎫⎝⎛------564056401211~12133r r r r 2000056401211~23秩为⎪⎪⎪⎭⎫ ⎝⎛----r r 二阶子式41113-=-.(2) ⎪⎪⎪⎭⎫⎝⎛-------815073131223123⎪⎪⎪⎭⎫ ⎝⎛---------152********117014431~27122113r r r r r r 200000591170144313~23秩为⎪⎪⎪⎭⎫ ⎝⎛-----r r .二阶子式71223-=-.(3) ⎪⎪⎪⎪⎪⎭⎫⎝⎛---02301085235703273812434241322~r r r r r r ---⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------023010********071210 131223~r r r r ++⎪⎪⎪⎪⎪⎭⎫⎝⎛-0230114000016000071210344314211614~r r r r r r r r -÷÷↔↔⎪⎪⎪⎪⎪⎭⎫⎝⎛-0000010*******002301秩为3 三阶子式07023855023085570≠=-=-.6.求解下列齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+++=-++=-++;0222,02,02432143214321x x x x x x x x x x x x (2)⎪⎩⎪⎨⎧=-++=--+=-++;05105,0363,02432143214321x x x x x x x x x x x x (3) ⎪⎪⎩⎪⎪⎨⎧=-+-=+-+=-++=+-+;0742,0634,0723,05324321432143214321x x x x x x x x x x x x x x x x (4)⎪⎪⎩⎪⎪⎨⎧=++-=+-+=-+-=+-+.0327,01613114,02332,075434321432143214321x x x x x x x x x x x x x x x x解 (1) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛--212211121211⎪⎪⎪⎪⎭⎫⎝⎛---3410013100101~即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-==4443424134334x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1343344321k x x x x(2) 对系数矩阵实施行变换:⎪⎪⎪⎭⎫ ⎝⎛----5110531631121⎪⎪⎪⎭⎫ ⎝⎛-000001001021~ 即得⎪⎪⎩⎪⎪⎨⎧===+-=4432242102x x x x x x x x 故方程组的解为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛10010*********k k x x x x(3) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----7421631472135132⎪⎪⎪⎪⎪⎭⎫⎝⎛1000010000100001~即得⎪⎪⎩⎪⎪⎨⎧====00004321x xx x故方程组的解为⎪⎪⎩⎪⎪⎨⎧====00004321x x x x(4) 对系数矩阵实施行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----3127161311423327543⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--000000001720171910171317301~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==-=-=4433432431172017191713173x x x x x x x x x x故方程组的解为⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛1017201713011719173214321k k x x x x7.求解下列非齐次线性方程组:(1) ⎪⎩⎪⎨⎧=+=+-=-+;8311,10213,22421321321x x x x x x x x (2) ⎪⎪⎩⎪⎪⎨⎧-=+-=-+-=+-=++;694,13283,542,432z y x z y x z y x z y x(3) ⎪⎩⎪⎨⎧=--+=+-+=+-+;12,2224,12w z y x w z y x w z y x (4) ⎪⎩⎪⎨⎧-=+-+=-+-=+-+;2534,4323,12w z y x w z y x w z y x解 (1) 对系数的增广矩阵施行行变换,有⎪⎪⎭⎫ ⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛--60003411100833180311102132124~2)(=A R 而3)(=B R ,故方程组无解.(2) 对系数的增广矩阵施行行变换:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----69141328354214132⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--0000000021101201~ 即得⎪⎩⎪⎨⎧=+=--=zz z y z x 212亦即⎪⎪⎪⎭⎫⎝⎛-+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛021112k z y x(3) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫ ⎝⎛----111122122411112⎪⎪⎪⎭⎫ ⎝⎛-000000100011112~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧===++-=0212121w z z y y z y x 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00021010210012121k k w z y x(4) 对系数的增广矩阵施行行变换:⎪⎪⎪⎭⎫⎝⎛----⎪⎪⎪⎭⎫ ⎝⎛-----000007579751025341253414312311112~⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----000007579751076717101~ 即得⎪⎪⎪⎩⎪⎪⎪⎨⎧==--=++=w w z z w z y w z x 757975767171 即⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛00757610797101757121k k w z y x8.λ取何值时,非齐次线性方程组 ⎪⎩⎪⎨⎧=++=++=++2321321321,,1λλλλλx x x x x x x x x (1)有唯一解;(2)无解;(3)有无穷多个解?解 (1) 0111111≠λλλ,即2,1-≠λ时方程组有唯一解.(2) )()(B R A R < ⎪⎪⎪⎭⎫ ⎝⎛=21111111λλλλλB ⎪⎪⎭⎫ ⎝⎛+-+----22)1)(1()2)(1(00)1(11011~λλλλλλλλλλ由0)1)(1(,0)2)(1(2≠+-=+-λλλλ 得2-=λ时,方程组无解.(3) 3)()(<=B R A R ,由0)1)(1()2)(1(2=+-=+-λλλλ, 得1=λ时,方程组有无穷多个解.9.非齐次线性方程组⎪⎩⎪⎨⎧=-+=+--=++-23213213212,2,22λλx x x x x x x x x 当λ取何值时有解?并求出它的解.解 ⎪⎪⎪⎪⎭⎫ ⎝⎛+-----⎪⎪⎪⎭⎫ ⎝⎛----=)2)(1(000)1(321101212111212112~2λλλλλλB方程组有解,须0)2)(1(=+-λλ得2,1-==λλ当1=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛001111321k x x x当2-=λ时,方程组解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛022111321k x x x10.设⎪⎩⎪⎨⎧--=-+--=--+=-+-,1)5(42,24)5(2,122)2(321321321λλλλx x x x x x x x x问λ为何值时,此方程组有唯一解、无解或有无穷多解?并在有无穷多解时求解.解 ⎪⎪⎪⎭⎫ ⎝⎛---------154224521222λλλλ初等行变换~⎪⎪⎪⎪⎪⎭⎫⎝⎛---------2)4)(1(2)10)(1(00111012251λλλλλλλλ 当0≠A ,即02)10()1(2≠--λλ 1≠∴λ且10≠λ时,有唯一解.当02)10)(1(=--λλ且02)4)(1(≠--λλ,即10=λ时,无解.当02)10)(1(=--λλ且02)4)(1(=--λλ,即1=λ时,有无穷多解.此时,增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛-000000001221原方程组的解为⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛00110201221321k k x x x (R k k ∈21,)11.试利用矩阵的初等变换,求下列方阵的逆矩阵:(1) ⎪⎪⎪⎭⎫⎝⎛323513123; (2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----1210232112201023. 解 (1)⎪⎪⎪⎭⎫ ⎝⎛100010001323513123⎪⎪⎪⎭⎫ ⎝⎛---101011001200410123~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----10121121023200010023~⎪⎪⎪⎪⎪⎭⎫⎝⎛----2102121129227100010003~⎪⎪⎪⎪⎪⎭⎫⎝⎛----21021211233267100010001~故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----21021211233267(2) ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----10000100001000011210232112201023 ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----00100301100001001220594012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--------20104301100001001200110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106124301100001001000110012102321~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----------10612631110`1022111000010000100021~ ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------106126311101042111000010000100001~ 故逆矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------1061263111010421112.(1) 设⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎭⎫ ⎝⎛--=132231,113122214B A ,求X 使B AX =;(2) 设⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛---=132321,433312120B A ,求X 使B XA =. 解 (1) ()⎪⎪⎪⎭⎫ ⎝⎛----=132231113122214B A 初等行变换~⎪⎪⎪⎭⎫ ⎝⎛--412315210100010001 ⎪⎪⎪⎭⎫ ⎝⎛--==∴-4123152101B A X (2) ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛132321433312120B A 初等列变换~⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---474112100010001 ⎪⎪⎭⎫ ⎝⎛---==∴-4741121BA X .。

线性代数习题详解(同济大学第四版第四章)

线性代数习题详解(同济大学第四版第四章)

⎜⎛ 25
⎜0
⎜ ⎜⎜⎝
0 0
31 1 1 1
17 2 3 3
43 ⎟⎞
3⎟
5 5
⎟ ⎟⎟⎠
~ r − r 43
⎜⎛ 25 ⎜0
r3

r2
⎜ ⎜⎜⎝
0 0
31 1 0 0
17 2 1 0
43 ⎟⎞
3⎟
3 0
⎟ ⎟⎟⎠
所以第 1、2、3 列构成一个最大无关组.
3
⎜⎛ 1
(2)
⎜0
⎜ ⎜⎜⎝
2 1
1 2 0 1
(2)
⎧ x1

a1
,
a2
,
a3
,
a4
线性无关,则
⎪⎪ ⎨ ⎪
x1 x2
⎪⎩ x3
+ + + +
x4 x2 x3 x4
= 0 ⎜⎛ 1
= = =
0 0 0

⎜ ⎜ ⎜⎜⎝
1 0 0
0 1 1 0
0 0 1 1
1⎟⎞⎜⎛ x1 ⎟⎞
0⎟⎜ 10 ⎟⎟⎟⎠⎜⎜⎜⎝
x2 x3 x4
⎟ ⎟ ⎟⎟⎠
=
0
1001
第四章 向量组的线性相关性
1.设 v1 = (1, 1, 0)T , v2 = (0, 1, 1)T , v3 = (3, 4, 0)T , 求 v1 − v2 及 3v1 + 2v2 − v3 . 解 v1 − v2 = (1, 1, 0)T − (0, 1, 1)T
= (1 − 0, 1 − 1, 0 − 1)T = (1, 0, − 1)T
因向量组 a1 ,a2 , ,ar 线性无关,故

线代第4章习题答案

线代第4章习题答案

第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。

线性代数 (清华大学出版)课后习题部分解答(第四章)

线性代数 (清华大学出版)课后习题部分解答(第四章)

第四章课后习题 及解答1. 证明:T )(1,1,1,11=α, T )(1,1,1,12--=α, T )(1,1,1,13--=α, T )(1,1,1,14--=α是4R 的一组基, 并求T )(1,1,2,1=β在这组基下的坐标.证明:0161111111111111111,,,4321≠-=------=)(αααα.R ,,,44321的一组基是αααα∴设β在这组基下的坐标为x ,则x )(4321,,,ααααβ=,从而 βαααα14321,,,-=)(x⎝⎛⎪⎪⎪⎪⎪⎭⎫--→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------4141414510001000010000111211111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛--=∴111541x 2. 已知3R 的两组基为.6,1,1,1,2,5,4,1,3,1,7,3,3,3,2,1,2,1T3T 2T 1T1T 2T 1)()()()()()(-======βββααα求:(1)向量T2,6,3)(=γ在基{}321,,ααα下的坐标; (2)基{}321,,ααα到基{}321,,βββ的过渡矩阵; (3)用公式(4.7)求γ在基{}321,,βββ下的坐标。

解:(1)设γ在基{}321,,ααα下的坐标为x ,则:x )(321,,αααγ=从而 γααα1321,,-=)(x⎪⎪⎪⎭⎫- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫112100010001263131732321 ⎪⎪⎪⎭⎫⎝⎛-=∴112x(2)设基{}321,,ααα到基{}321,,βββ的过渡矩阵为A ,则:A ,,,,321321)()(αααβββ=从而 )()(3211321,,,,A βββααα-= ⎪⎪⎪⎭⎫--- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫-8124920941712710010001614121153131732321 ⎪⎪⎪⎭⎫⎝⎛---=∴81249209417127A (3)设γ在基{}321,,βββ下的坐标为y ,则:x y 1A -= ⎪⎪⎪⎭⎫-⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫----4832534153100100111281249209417127⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴83106153414832534153y3. 已知4R 的两组基为.2,1,3,1,2,1,1,2,2,2,1,0,1,0,1,21,0,1,1,1,1,2,1,1,1,1,1,0,1,2,1T4T3T2T1T4T 3T 2T 1)()()()()()()()(=-===--=-=-=-=ββββαααα(1)求基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵;若γ在基{}4321,,,αααα下的坐标为T 0,0,0,1)(,求γ在基{}4321,,,ββββ下的坐标.(2)求基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵;若ξ在基{}4321,,,ββββ下的坐标为T 0,1,2,1)(-,求ξ在基{}4321,,,αααα下的坐标.(3)已知向量α在基{}4321,,,αααα下的坐标为T 0,1,2,1)(-,求它在基{}4321,,,ββββ下的坐标.解:(1)设基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵为A ,则:A ,,,,,,43214321)()(ααααββββ=从而 )()(432114321,,,,,,A ββββαααα-=⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------0111101011100110001000010000122211120311112021110011112121111 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴010111010111001A 设γ在基{}4321,,,ββββ下的坐标为y ,则:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001A 1-y⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫101-01000100001000010001010111010111001 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴101-0y(2) 设基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵为B ,则:B ,,,,,,43214321)()(ββββαααα= ),,,(),,,(432114321B ααααββββ-=⎪⎪⎪⎪⎪⎭⎫----⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------11111000001111101000100001000011110111121211112221112031111202⎪⎪⎪⎪⎪⎭⎫⎝⎛----=∴1111100000111110B设ξ在基{}4321,,,αααα下的坐标为x ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1131012101011101011100101-21A x(3)设α在基{}4321,,,ββββ下的坐标为z ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20130121111110000011111001-21B z 4. 在4R 中找一个向量γ,它在自然基{}4321,,,εεεε和基T4T3T2T13,1,6,6,1,2,3,5,0,1,3,0,1,1,1,2)()()()(===-=ββββ下有相同的坐标.解:设所求坐标为x ,则它满足:x x )()(43214321,,,,,,ββββεεεε= 即:0211111163216501=⎪⎪⎪⎪⎪⎭⎫⎝⎛-x⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110010101001211111163216501 ∴此齐次线性方程组的一般解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1111k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==∴1111,,,4321k x )(可取εεεεγ 5. 已知)()()(2,2,1,1,1,1,3,2,1,1,2,1---=-=-=γβα。

线性代数第四章习题答案

线性代数第四章习题答案

0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为

1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;

4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2


0


4
.
即线性方程组

线性代数第四章答案解析

线性代数第四章答案解析

线性代数第四章答案解析第四章向量组的线性相关性1. 设v 1=(1, 1, 0)T , v 2=(0, 1, 1)T , v 3=(3, 4, 0)T , 求v 1-v 2及3v 1+2v 2-v 3.解 v 1-v 2=(1, 1, 0)T -(0, 1, 1)T=(1-0, 1-1, 0-1)T=(1, 0, -1)T .3v 1+2v 2-v 3=3(1, 1, 0)T +2(0, 1, 1)T -(3, 4, 0)T =(3?1+2?0-3, 3?1+2?1-4, 3?0+2?1-0)T =(0, 1, 2)T .2. 设3(a 1-a )+2(a 2+a )=5(a 3+a ), 求a , 其中a 1=(2, 5, 1,3)T ,a 2=(10, 1, 5, 10)T , a 3=(4, 1, -1, 1)T .解由3(a 1-a )+2(a 2+a )=5(a 3+a )整理得)523(61321a a a a -+=])1 ,1 ,1 ,4(5)10 ,5 ,1 ,10(2)3 ,1 ,5 ,2(3[61TT T --+==(1, 2, 3, 4)T .3. 已知向量组A : a 1=(0, 1, 2, 3)T , a 2=(3, 0, 1, 2)T , a 3=(2, 3, 0, 1)T ;B : b 1=(2, 1, 1, 2)T , b 2=(0, -2, 1, 1)T , b 3=(4, 4, 1, 3)T , 证明B 组能由A 组线性表示, 但A 组不能由B 组线性表示. 证明由-=312123111012421301402230) ,(B A ????? ??-------971820751610402230421301~r ????? ?------531400251552000751610421301 ~r-----000000531400751610421301~r 知R (A )=R (A , B )=3, 所以B 组能由A 组线性表示.由-????? ??---????? ??-=000000110201110110220201312111421402~~r r B 知R (B )=2. 因为R(B )≠R (B , A ), 所以A 组不能由B 组线性表示.4. 已知向量组A : a 1=(0, 1, 1)T , a 2=(1, 1, 0)T ;B : b 1=(-1, 0, 1)T , b 2=(1, 2, 1)T , b 3=(3, 2, -1)T , 证明A 组与B 组等价. 证明由- ??- ??--=000001122010311112201122010311011111122010311) ,(~~r r A B ,知R (B )=R (B , A )=2. 显然在A 中有二阶非零子式, 故R (A )≥2, 又R (A )≤R (B , A )=2, 所以R (A )=2, 从而R (A )=R (B )=R (A , B ). 因此A 组与B 组等价.5. 已知R (a 1, a 2, a 3)=2, R (a 2, a 3, a 4)=3, 证明 (1) a 1能由a 2, a 3线性表示;(2) a 4不能由a 1, a 2, a 3线性表示.证明 (1)由R (a 2, a 3, a 4)=3知a 2, a 3, a 4线性无关, 故a 2, a 3也线性无关. 又由R (a 1,a 2, a 3)=2知a 1, a 2, a 3线性相关, 故a 1能由a 2, a 3线性表示.(2)假如a 4能由a 1, a 2, a 3线性表示, 则因为a 1能由a 2, a 3线性表示, 故a 4能由a 2, a 3线性表示, 从而a 2, a 3, a 4线性相关, 矛盾. 因此a 4不能由a 1, a 2, a 3线性表示.6. 判定下列向量组是线性相关还是线性无关: (1) (-1, 3, 1)T , (2, 1, 0)T , (1, 4, 1)T ; (2) (2, 3, 0)T , (-1, 4, 0)T , (0, 0, 2)T .解 (1)以所给向量为列向量的矩阵记为A . 因为-???? ??-???? ??-=000110121220770121101413121~~r r A , 所以R (A )=2小于向量的个数, 从而所给向量组线性相关. (2)以所给向量为列向量的矩阵记为B . 因为022200043012||≠=-=B ,所以R (B )=3等于向量的个数, 从而所给向量组线性相无关.7. 问a 取什么值时下列向量组线性相关? a 1=(a , 1, 1)T , a 2=(1,a , -1)T , a 3=(1, -1, a )T . 解以所给向量为列向量的矩阵记为A . 由aa aA 111111||--=如能使行列式等于0,则此时向量组线性相关.(具体看书后相应答案)8. 设a 1, a 2线性无关, a 1+b , a 2+b 线性相关, 求向量b 用a 1,a 2线性表示的表示式. 解因为a 1+b , a 2+b 线性相关, 故存在不全为零的数λ1, λ2使λ1(a 1+b )+λ2(a 2+b )=0, 由此得2211121122121211)1(a a a a b λλλλλλλλλλλλ+--+-=+-+-=,设211λλλ+-=c , 则b =c a 1-(1+c )a 2, c ∈R .9. 设a 1, a 2线性相关, b 1, b 2也线性相关, 问a 1+b 1, a 2+b 2是否一定线性相关?试举例说明之. (也可看书后答案)解不一定.例如, 当a 1=(1, 2)T , a 2=(2, 4)T , b 1=(-1, -1)T , b 2=(0, 0)T 时, 有 a 1+b 1=(1, 2)T +b 1=(0, 1)T , a 2+b 2=(2, 4)T +(0, 0)T =(2, 4)T , 而a 1+b 1, a 2+b 2的对应分量不成比例, 是线性无关的.10. 举例说明下列各命题是错误的:(1)若向量组a 1, a 2, ? ? ?, a m 是线性相关的, 则a 1可由a 2, ? ? ?,a m 线性表示. 解设a 1=e 1=(1, 0, 0, ? ? ?, 0), a 2=a 3= ? ? ? =a m =0, 则a 1, a 2, ? ? ?, a m 线性相关, 但a 1不能由a 2, ? ? ?, a m 线性表示.(2)若有不全为0的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0成立, 则a 1, a 2, ? ? ?, a m 线性相关, b 1, b 2, ? ? ?, b m 亦线性相关. 解有不全为零的数λ1, λ2, ? ? ?, λm 使λ1a 1+ ? ? ? +λm a m +λ1b 1+ ? ? ? +λm b m =0,原式可化为λ1(a1+b1)++λm(a m+b m)=0.取a1=e1=-b1,a2=e2=-b2,,a m=e m=-b m,其中e1,e2,,e m为单位坐标向量,则上式成立,而a1,a2,,a m和b1,b2,,b m均线性无关.(3)若只有当λ1,λ2,,λm全为0时,等式λ1a1++λm a m+λ1b1++λm b m=0才能成立,则a1,a2,,a m线性无关, b1,b2,,b m亦线性无关.解由于只有当λ1,λ2,,λm全为0时,等式由λ1a1++λm a m+λ1b1++λm b m=0成立,所以只有当λ1,λ2,,λm全为0时,等式λ1(a1+b1)+λ2(a2+b2)++λm(a m+b m)=0成立.因此a1+b1,a2+b2,,a m+b m线性无关.取a1=a2==a m=0,取b1,,b m为线性无关组,则它们满足以上条件,但a1,a2,,a m线性相关.(4)若a1,a2,,a m线性相关, b1,b2,,b m亦线性相关,则有不全为0的数,λ1,λ2,,λm使λ1a1++λm a m=0,λ1b1++λm b m=0同时成立.解a1=(1, 0)T,a2=(2, 0)T,b1=(0, 3)T,b2=(0, 4)T,λ1a1+λ2a2 =0?λ1=-2λ2,λ1b1+λ2b2 =0?λ1=-(3/4)λ2,λ1=λ2=0,与题设矛盾.11.设b1=a1+a2,b2=a2+a3, b3=a3+a4, b4=a4+a1,证明向量组b1,b2,b3,b4线性相关.证明由已知条件得a 1=b 1-a 2, a 2=b 2-a 3, a 3=b 3-a 4, a 4=b 4-a 1, 于是 a 1 =b 1-b 2+a 3 =b 1-b 2+b 3-a 4 =b 1-b 2+b 3-b 4+a 1, 从而 b 1-b 2+b 3-b 4=0,这说明向量组b 1, b 2, b 3, b 4线性相关.12. 设b 1=a 1, b 2=a 1+a 2, ? ? ?, b r =a 1+a 2+ ? ? ? +a r , 且向量组a 1, a 2, ? ? ? , a r 线性无关, 证明向量组b 1, b 2, ? ? ? , b r 线性无关. 证明已知的r 个等式可以写成=100110111) , , ,() , , ,(2121r r a a a b b b , 上式记为B =AK . 因为|K |=1≠0, K 可逆, 所以R (B )=R (A )=r , 从而向量组b 1, b 2, ? ? ? , b r 线性无关.13. 求下列向量组的秩, 并求一个最大无关组:(1)a 1=(1, 2, -1, 4)T , a 2=(9, 100, 10, 4)T , a 3=(-2, -4, 2, -8)T ; 解由-????? ??--????? ??----=000000010291032001900820291844210141002291) , ,(~~321r r a a a , 知R (a 1, a 2, a 3)=2. 因为向量a 1与a 2的分量不成比例, 故a 1, a 2线性无关, 所以a 1, a 2是一个最大无关组.(2)a 1T =(1, 2, 1, 3), a 2T =(4, -1, -5, -6), a 3T =(1, -3, -4, -7).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章二 次 型练习4、11、写出下列二次型的矩阵(1)),,(321x x x f =32312221242x x x x x x -+-;(2)),,,(4321x x x x f =434131212222x x x x x x x x +++。

解:(1)因为),,(321x x x f =),,(321x x x ⎪⎪⎪⎭⎫ ⎝⎛---012110202⎪⎪⎪⎭⎫ ⎝⎛321x x x ,所以二次型),,(321x x x f 的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛---012110202。

(2)因为),,,(4321x x x x f =),,,(4321x x x x ⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********1110⎪⎪⎪⎪⎪⎭⎫⎝⎛4321x x x x , 所以二次型),,,(4321x x x x f 的矩阵为:⎪⎪⎪⎪⎪⎭⎫⎝⎛010*********1110。

2、写出下列对称矩阵所对应的二次型:(1)⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2221202121211; (2)⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121210210211212112101210。

解:(1)设T321),,(x x x X =,则),,(321x x x f =X TAX =),,(321x x x ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----2221202121211⎪⎪⎪⎭⎫⎝⎛321x x x =323121232142x x x x x x x x -+-+。

(2)设T4321),,,(x x x x X =,则),,,(4321x x x x f =X T AX =),,,(4321x x x x ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---121210210211************⎪⎪⎪⎪⎪⎭⎫ ⎝⎛4321x x x x=434232312124222x x x x x x x x x x x x +++-++-。

练习4、21、用正交替换法将下列二次型化为标准形,并写出所作的线性替换。

(1)),,(321x x x f =32212221442x x x x x x --+;(2)),,(321x x x f =322122x x x x -;(3)),,(321x x x f =32212322214432x x x x x x x --++。

解:(1)二次型),,(321x x x f 的矩阵A =⎪⎪⎪⎭⎫⎝⎛----020212022。

A 的特征方程为)det(A E -λ=λλλ20212022--=)45)(2(2+-+λλλ=0,由此得到A 的特征值21-=λ,12=λ,43=λ。

对于21-=λ,求其线性方程组0)2(=--X A E ,可解得基础解系为T1)2,2,1(=α。

对于12=λ,求其线性方程组0)(=-X A E ,可解得基础解系为: T2)2,1,2(-=α。

对于43=λ,求其线性方程组0)4(=-X A E ,可解得基础解系为:T3)1,2,2(-=α。

将321,,ααα单位化,得 T 111)32,32,31(1==ααγ,T 222)32,31,32(1-==ααγ, T 333)31,32,32(1-==ααγ,令P =),,(321γγγ=⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛--313232323132323231,则 P TAP =diag(-2,1,4)=⎪⎪⎪⎭⎫ ⎝⎛-400010002。

作正交替换X=PY ,即⎪⎪⎪⎩⎪⎪⎪⎨⎧+-=-+=++=321332123211313232323132323231y y y x y y y x y y y x ,二次型),,(321x x x f 可化为标准形:23222142y y y ++-。

(2)类似题(1)方法可得:P =⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---21212121210212121,P T AP =⎪⎪⎪⎭⎫⎝⎛-20020000, 即得标准形:232222y y -。

(3)类似题(1)的方法可得:P =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---313232323231323132, P TAP =⎪⎪⎪⎭⎫⎝⎛-100050002, 即得标准形:23222152y y y -+。

2、用配方法将下列二次型化为标准形:(1)),,(321x x x f =32312123222162252x x x x x x x x x +++++;(2)),,(321x x x f =312142x x x x +;(3)),,(321x x x f =323121224x x x x x x ++-。

解:(1)先将含有1x 的项配方。

),,(321x x x f =21x +)(2321x x x ++232)(x x +-232)(x x ++222x +326x x +235x =2321)(x x x +++22x +324x x +234x ,再对后三项中含有2x 的项配方,则有),,(321x x x f =2321)(x x x +++22x +324x x +234x =2321)(x x x +++232)2(x x +。

设Y =T 321),,(y y y ,X =T321),,(x x x ,B =⎪⎪⎪⎭⎫ ⎝⎛000210111,令Y=BX ,则可将原二次型化为标准形2221y y +。

(2)此二次型没有平方项,只有混合项。

因此先作变换,使其有平方项,然后按题(1)的方法进行配方。

令⎪⎩⎪⎨⎧=-=+=33212211yx y y x y y x ,即⎪⎪⎪⎭⎫ ⎝⎛321x x x =⎪⎪⎪⎭⎫ ⎝⎛-100011011⎪⎪⎪⎭⎫ ⎝⎛321y y y 。

则原二次型化为),,(321x x x f =))((22121y y y y -++321)(4y y y +=212y -222y +314y y +324y y=231)(2y y +-232)(2y y -,设Y =T 321),,(y y y ,Z =T321),,(z z z ,B =⎪⎪⎪⎭⎫ ⎝⎛-000110101,令Z=BY ,则可将原二次型化为标准形222122z z -。

(3)类似题(2)的方法,可将原二次型化为标准形:23222144z z z ++-。

3、用初等变换法将下列二次型化为标准形:(1)),,(321x x x f =32212322214242x x x x x x x ++++; (2)),,(321x x x f =3231212322216223x x x x x x x x x ++-+-;(3)),,(321x x x f =323121624x x x x x x ++。

(此题与课本貌似而已,注意哈) 解:(1)二次型),,(321x x x f 的矩阵为A =⎪⎪⎪⎭⎫⎝⎛420221011。

于是⎪⎪⎭⎫ ⎝⎛E A =⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛100010001420221011−→−⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛100010001420210011−→−⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-100010011420210001−→−⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--100210211000010001。

令C =⎪⎪⎪⎭⎫⎝⎛--100210211,作可逆线性变换X=CY ,原二次型可化为标准形:),,(321x x x f =2221y y +。

(2)类似题(1)的方法,原二次型可化为标准形:),,(321x x x f = 2322214y y y +-。

(3)类似题(1)的方法,原二次型可化为标准形:),,(321x x x f = 2322216212y y y --。

4、已知二次型),,(321x x x f =32312123222166255x x x x x x cx x x -+-++的秩为2。

求参数c 的值,并将此二次型化为标准形。

解:二次型),,(321x x x f 的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛----c 33351315。

因为A 的秩为2,令det A =0,可得c =3。

即 ),,(321x x x f =323121232221662355x x x x x x x x x -+-++也就是A = ⎪⎪⎪⎭⎫ ⎝⎛----333351315,通过初等变换法,即可将其化为标准形:232294y y +。

5、设2n 元二次型),,,(221n x x x f Λ=112221+-+++n n n n x x x x x x Λ 试用可逆线性替换法将其化为标准形。

解:令⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧-=-=-=+=+=+=---++-n n n n n n n n n n n n yy x y y x y y x y y x yy x y y x 212122121111222211ΛΛ, P =⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛---10010110111101101001ΛΛO N M M M M NOΛΛ, 即作正交变换X=CY ,二次型),,,(221n x x x f Λ可化为标准型:2221221n n n y y y y ---+++ΛΛ。

6、已知二次型),,(321x x x f =322322212332x ax x x x +++(a>0)通过正交变换化为标准型23222152y y y f ++=,求a 的值及所作的正交替换矩阵。

解:因为原二次型可化为23222152y y y f ++=,可知原二次型的矩阵的特征值为1,2和5。

而原二次型的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛3030002a a 。

故A 的特征方程为)det(A E -λ=330002---λλλaa=)96)(2(22a -+--λλλ=0。

因此将此特征方程的解1,2,5代入得:a=2。

对于11=λ,求其线性方程组0)(=-X A E ,可解得基础解系为T 1)1,1,0(=α。

对于22=λ,求其线性方程组0)2(=-X A E ,可解得基础解系为: T2)0,0,1(=α。

对于53=λ,求其线性方程组0)5(=-X A E ,可解得基础解系为:T3)1,1,0(-=α。

将321,,ααα单位化,得 T 111)21,21,0(1==ααγ,T 222)0,0,1(1==ααγ,T 333)21,21,0(1-==ααγ,故正交替换矩阵为:P =),,(321γγγ=⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-2102121021010。

练习4、31、判别下列二次型是否为正定二次型:(1)),,(321x x x f =322123222144465x x x x x x x --++;(2)),,(321x x x f =32312123222128248210x x x x x x x x x -++++; (3)),,,(4321x x x x f =+-+++++3241312423222144674x x x x x x x x x x434242x x x x +。

相关文档
最新文档