线性代数第四章习题答案
(完整版)线性代数练习册第四章习题及答案

第四章 线性方程组§4-1 克拉默法则一、选择题1.下列说法正确的是( C )A.n 元齐次线性方程组必有n 组解;B.n 元齐次线性方程组必有1n -组解;C.n 元齐次线性方程组至少有一组解,即零解;D.n 元齐次线性方程组除了零解外,再也没有其他解. 2.下列说法错误的是( B )A 。
当0D ≠时,非齐次线性方程组只有唯一解;B 。
当0D ≠时,非齐次线性方程组有无穷多解;C 。
若非齐次线性方程组至少有两个不同的解,则0D =; D.若非齐次线性方程组有无解,则0D =. 二、填空题1.已知齐次线性方程组1231231230020x x x x x x x x x λμμ++=⎧⎪++=⎨⎪++=⎩有非零解,则λ= 1 ,μ= 0 。
2.由克拉默法则可知,如果非齐次线性方程组的系数行列式0D ≠,则方程组有唯一解i x =iD D. 三、用克拉默法则求解下列方程组 1.832623x y x y +=⎧⎨+=⎩解:832062D ==-≠123532D ==-,2821263D ==-所以,125,62D Dx y D D====- 2.123123123222310x x x x x x x x x -+=-⎧⎪+-=⎨⎪-+-=⎩解:213112112122130355011101r r D r r ---=--=-≠+---11222100511321135011011D r r ---=-+-=---,212121505213221310101101D r r --=-+-=-----, 3121225002112211511110D r r --=+=---所以, 3121231,2,1D D Dx x x D D D ======3.21241832x z x y z x y z -=⎧⎪+-=⎨⎪-++=⎩解:132010012412041200183583D c c --=-+-=≠-13110110014114020283285D c c -=-+=,2322112102112100123125D c c -=-+=--, 31320101241204120182582D c c =-=--所以, 3121,0,1D D Dx y z D D D ====== 4.12341234123412345242235232110x x x x x x x x x x x x x x x x +++=⎧⎪+-+=-⎪⎨---=-⎪⎪+++=⎩解:2131412131111111111214012322315053733121102181231235537013814222180514r r D r r r r r r r r ---=------------+=----=-+---3214212325111511102221422518231523528110121101005110010525182733214210252823522c c D c c c c c c --------=----------+=-----=----212314113231511151112140723222150123733021101518723230132123733031284315181518r r D r r r r r r r r -----=--------------=----=------12342213111512151031224522182325111132283101101002510200251521852974265211228115127c c D c c c c c c -------=---------+=-----=----12432322111152115312125252223121135231200100215215552502714251152604c c D c c r r r r --------=----------+=----=---所以, 312412341,2,3,1D D D Dx x x x D D D D========-§4-2 齐次线性方程组一、选择题1.已知m n ⨯矩阵A 的秩为1n -,12,αα是齐次线性方程组0AX =的两个不同的解,k 为任意常数,则方程组0AX =的通解为( D )。
【最新试题库含答案】线性代数练习册第四章习题及答案

线性代数练习册第四章习题及答案:篇一:线代第四章习题解答第四章空间与向量运算习题4.14-1-1、已知空间中三个点A,B,C坐标如下:A?2,?1,1?,B?3,2,1?,C??2,2,1? (1)求向量,,的坐标,并在直角坐标系中作出它们的图形;(2)求点A与B之间的距离.解:(1) (1,3,0), (?5,0,0), (4,?3,0)(2)AB??4-1-2.利用坐标面上和坐标轴上点的坐标的特征,指出下列各点的特殊位置: A?3,4,0?; B?0,4,3? ; C?3,0,0? ;D?0,?1,0? 解: A (3,4,0) 在xoy面上 B(0,4,3)点在yoz面上C(3,0,0)在x轴上 D(0,-1,0)在y轴上 4-1-6. 设u?a?b?2c,v??3b?c,试用a、b、c表示3u?3v.解:3u-2v=3(a-b+2c)-2(-3b-c)=3a+3b+8c4-1-7. 试用向量证明:如果平面上的一个四边形的对角线互为平分,那么这个四边形是平行四边形.解:设四边形ABCD中AC与DB交于O,由已知AO=OC,DO=OB 因为AB =AO+OB=OC+DO=DC,AD=AO+OD=OC+BO=BC 所以ABCD为平行四边形。
4-1-8. 已知向量a的模是4,它与轴u的夹角60,求向量a在轴u上的投影.?解:.prju?u)?4*cos60=4?r?rcos(r。
3=23 24-1-9. 已知一向量的终点在点B?2,?1,7?,它在x轴、y轴、z轴上的投影依次为4、-4、7,求这向量起点A的坐标解:设起点A为(x,y,z)prjxAB?(2?x0)?4prjyAB?(?1?y)??4 prjzAB?(7?z0)?7解得:x??2y?3z0?04-1-12. 求下列向量的模与方向余弦,并求与这些向量同方向的单位。
线代第4章习题答案

第4章1.(1)是;(2)是;(3)是;(4)否.2. 证:(1)假设零向量不唯一,即存在两个零向量120,0,但1200≠,则由10αα+=和20αα+=推出1200=,这与假设矛盾. (2)类似(1)中证明. (3)0()0k k k k αααα=-=-=, (1)(01)01ααααα-=-=-=-, 0()0k k k k αααα=-=-=. 3.(1)是;(2)是;(3)否;(4)否. 4. 证:设11223344k A k A k A k A O +++=,则有12341234123412340,0,0,0,k k k k k k k k k k k k k k k k ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩系数矩阵11111111111101011111001111110001A --⎡⎤⎡⎤⎢⎥⎢⎥--⎢⎥⎢⎥=→⎢⎥⎢⎥--⎢⎥⎢⎥----⎣⎦⎣⎦,则()4r A =, 故12340k k k k ====,即1234,,,A A A A 线性无关.又对任意一个11122122a a A a a ⎡⎤=⎢⎥⎣⎦,若11223344k A k A k A k A A +++=, 则可得123411123412123421123422,,,,k k k k a k k k k a k k k k a k k k k a ++-=⎧⎪-++=⎪⎨+-+=⎪⎪---=⎩解得唯一一组解为:()()()()1111221222111221223111221224111221221,41,41,41,4k a a a a k a a a a k a a a a k a a a a ⎧=+++⎪⎪⎪=-+-⎪⎨⎪=+--⎪⎪⎪=-++-⎩即任意一个A 都可以由这组矩阵线性表出,且表达式唯一,则22dim()4R ⨯=,且1234,,,A A A A 构成22R ⨯的一组基.5. 解:令123110100,,000011A A A ⎡⎤⎡⎤⎡⎤===⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦,则由112233k A k A k A O ++=可解得1230k k k ===,即123,,A A A 线性无关. 又对任意一个A V ∈,a ab Ac c +⎡⎤=⎢⎥⎣⎦,若112233k A k A k A A ++=,可解得唯一一组解为: 123,,k a k b k c ===,即任意一个A 都可以由123,,A A A 线性表出,且表达式唯一,则dim()3V =,且123,,A A A 构成V 的一组基. 6. 解:2()65f x x x =-+,故在这组基下的坐标为[]6,5,1T-.7. 解:(1)根据过渡矩阵C 的3个列向量分别是21,1,(1)x x ++在基21,,x x 下的坐标,可得111012001C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦. (2)新的基为:21,1,2x x x -+-+. 8. 解:(1)显然对加法和数乘封闭.(2)令1100A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,2010A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,…,001n A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ . 若1122n n k A k A k A O ++= ,显然可推出120n k k k ==== ,即12,,,n A A A 线性无关.又对任意一矩阵12A n ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦ ,若 1122n n k A k A k A A ++= ,可解得唯一一组解为:121,2,,n k k k n === .即任意一个A W ∈都可以由12,,,n A A A 线性表出,且表达式唯一,则dim()W n =,且12,,,n A A A 构成W 的一组基. 9. 解:11211121211101111103001301170000A --⎡⎤⎡⎤⎢⎥⎢⎥---⎢⎥⎢⎥=→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦,则()3r A =,故由1234,,,αααα 生成的子空间维数是3,一组基为123,,ααα(或124,,ααα).11.解:过渡矩阵为:205133113C ⎡⎤⎢⎥=⎢⎥⎢⎥---⎣⎦,若有一非零向量[],,T w x y z =,满足w Cw =,则可得方程组25,33,3,x x z y x y z z x y z =+⎧⎪=++⎨⎪=---⎩对系数矩阵经初等行变换后得阶梯形方程组50,0,x z y z +=⎧⎨-=⎩ 可解得一般解为: [5,,]w c c c =-,c 为任一非零常数.12. 证:已知()()()()112112212211,,313b a a b a a b a a b αβ-⎛⎫⎛⎫==-+-+ ⎪ ⎪-⎝⎭⎝⎭, (1)()()()()112212,3,b a a b a a αββα=-+-+=;(2)()()()()()1112221122,33,,c a b a b c a b a b αβγαγβγ+=+--+--++=+; (3)()()()()112212,3,k kb a a kb a a k αβαβ=-+-+=;(4)()()()()22112212122,320a a a a a a a a a αα=-+-+=-+≥,若(),0αα=,当且仅当1220,0,a a a -=⎧⎨=⎩ 故120a a ==,即0α=.由于(),αβ满足定义4.6中的4个性质,故是2R 的内积.13. 解:(1)1||α=2||α=,3||α=.因为()2323,cos ||||10ααθαα==-,故arccos 10θ⎛⎫=- ⎪ ⎪⎝⎭. (2)设与123,,ααα都正交的向量为()1234,,,b b b b β=,则可得12341234123420,230,220,b b b b b b b b b b b b +-+=⎧⎪++-=⎨⎪---+=⎩ 经过初等行变换可得阶梯形矩阵:123423420,330,b b b b b b b +-+=⎧⎨-+-=⎩ 解得一般解为()34343455,33,,Tb b b b b b β=-+-,其中34,b b 为自由变量,或者通解表达式为1255331001k k β-⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥=+⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.14. 解:()111,0,1,1Tβα==,)1111,0,1,1||Tβγβ==. ()22211121,,1,,333Tβααγγ⎛⎫=-=-- ⎪⎝⎭,)2221,3,2,1||Tβγβ==--. ()()333113223112,,,,,5555Tβααγγαγγ⎛⎫=--=-- ⎪⎝⎭,)3333,1,1,2||Tβγβ==--. 15. 解:()110,0,1Tβα==,()10,0,1Tγ=. ()()22211,0,1,0T βααγγ=-=,()20,1,0Tγ=.()()()33311322,,1,0,0T βααγγαγγ=--=,()31,0,0Tγ=. 16. 证:(1)()()T T T T T AB AB B A AB B EB B B E ====.(2)A 正交,则||1A =±,*1*||A A A A -==±,则**1111()()()T T T A A A A A A E E ----====. 17. 解:已知1T X X =,则(2)(2)(2)(2)T T T T T T Q Q E XX E XX E XX E XX =--=-- 44()44T T T T T E XX X X X X E XX XX E =-+=-+=, 即Q 为正交矩阵.若T X =,则122122123221T Q E XX --⎡⎤⎢⎥=-=--⎢⎥⎢⎥--⎣⎦. 18. 解:73217737326a Q b c -⎡⎤⎢⎥=-⎢⎥⎢⎥--⎣⎦,通过T Q Q E =得 214960,1421180,621120,a bc abc -+-=⎧⎪-+=⎨⎪---=⎩解得626,,777a b c =-==-.19. 证:因为T Q Q E =,故对任意n X R ∈,有()()()22||,||TT T T QX QX QX QX QX X Q QX X X X =====,则一定有 ||||QX X =.20.(1)否;(2)是;(3)是;(4)否. 21. 解:(1)A 112(1,1,0)T εεε==+,A 212(1,1,0)T εεε=-=-, A 33(0,0,1)T εε==,所求矩阵为:110110001D ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦. (2) A ()12110T,,ηη==,A()212002T,,ηη==,A ()31232012T,,ηηηη==-+,故所求的矩阵为022101001⎛⎫⎪- ⎪ ⎪⎝⎭.22. 解:(1)A 1123(2,3,5)235T εεεε==++,A 2ε=A 110⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 1123(1,3,5)35T εεεε=---=---,A 2ε=A 111⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ A 2ε-A 1123(1,1,1)T εεεε=--=-+-,故所求的矩阵为211331551A --⎛⎫⎪=- ⎪ ⎪--⎝⎭.(2)已知1232αεεε=-+,则21124331110551114y AX --⎛⎫⎛⎫⎛⎫⎪⎪ ⎪==--= ⎪⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭.23. 解:010001000D ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦24. 证:必要性:因为12,,,n εεε 是V 的标准正交基,则(,),1,i j ij i j n εεδ=≤≤. 因为A 是正交变换,则(A ()i ε,A ()j ε)ij δ=, 1,i j n ≤≤. 即A ()i ε,A ()j ε,…,A ()n ε是V 的标准正交基. P 40.3.(作业册)解:211111111111011312240000---⎡⎤⎡⎤⎢⎥⎢⎥--→-⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦,解得4343423x x x X x x -⎡⎤⎢⎥+⎢⎥=⎢⎥⎢⎥⎣⎦,则解空间的解向量为[]10,1,1,0T α=,[]22,3,0,1Tα=-,通过Schmidt 标准正交化得]10,1,1,0T γ=,]24,3,3,2Tγ=--.。
线性代数 (清华大学出版)课后习题部分解答(第四章)

第四章课后习题 及解答1. 证明:T )(1,1,1,11=α, T )(1,1,1,12--=α, T )(1,1,1,13--=α, T )(1,1,1,14--=α是4R 的一组基, 并求T )(1,1,2,1=β在这组基下的坐标.证明:0161111111111111111,,,4321≠-=------=)(αααα.R ,,,44321的一组基是αααα∴设β在这组基下的坐标为x ,则x )(4321,,,ααααβ=,从而 βαααα14321,,,-=)(x⎝⎛⎪⎪⎪⎪⎪⎭⎫--→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------4141414510001000010000111211111111111111111⎪⎪⎪⎪⎪⎭⎫⎝⎛--=∴111541x 2. 已知3R 的两组基为.6,1,1,1,2,5,4,1,3,1,7,3,3,3,2,1,2,1T3T 2T 1T1T 2T 1)()()()()()(-======βββααα求:(1)向量T2,6,3)(=γ在基{}321,,ααα下的坐标; (2)基{}321,,ααα到基{}321,,βββ的过渡矩阵; (3)用公式(4.7)求γ在基{}321,,βββ下的坐标。
解:(1)设γ在基{}321,,ααα下的坐标为x ,则:x )(321,,αααγ=从而 γααα1321,,-=)(x⎪⎪⎪⎭⎫- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫112100010001263131732321 ⎪⎪⎪⎭⎫⎝⎛-=∴112x(2)设基{}321,,ααα到基{}321,,βββ的过渡矩阵为A ,则:A ,,,,321321)()(αααβββ=从而 )()(3211321,,,,A βββααα-= ⎪⎪⎪⎭⎫--- ⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫-8124920941712710010001614121153131732321 ⎪⎪⎪⎭⎫⎝⎛---=∴81249209417127A (3)设γ在基{}321,,βββ下的坐标为y ,则:x y 1A -= ⎪⎪⎪⎭⎫-⎝⎛→→ ⎝⎛⎪⎪⎪⎭⎫----4832534153100100111281249209417127⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∴83106153414832534153y3. 已知4R 的两组基为.2,1,3,1,2,1,1,2,2,2,1,0,1,0,1,21,0,1,1,1,1,2,1,1,1,1,1,0,1,2,1T4T3T2T1T4T 3T 2T 1)()()()()()()()(=-===--=-=-=-=ββββαααα(1)求基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵;若γ在基{}4321,,,αααα下的坐标为T 0,0,0,1)(,求γ在基{}4321,,,ββββ下的坐标.(2)求基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵;若ξ在基{}4321,,,ββββ下的坐标为T 0,1,2,1)(-,求ξ在基{}4321,,,αααα下的坐标.(3)已知向量α在基{}4321,,,αααα下的坐标为T 0,1,2,1)(-,求它在基{}4321,,,ββββ下的坐标.解:(1)设基{}4321,,,αααα到基{}4321,,,ββββ的过渡矩阵为A ,则:A ,,,,,,43214321)()(ααααββββ=从而 )()(432114321,,,,,,A ββββαααα-=⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------0111101011100110001000010000122211120311112021110011112121111 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴010111010111001A 设γ在基{}4321,,,ββββ下的坐标为y ,则:⎪⎪⎪⎪⎪⎭⎫⎝⎛=0001A 1-y⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫101-01000100001000010001010111010111001 ⎪⎪⎪⎪⎪⎭⎫⎝⎛=∴101-0y(2) 设基{}4321,,,ββββ到基{}4321,,,αααα的过渡矩阵为B ,则:B ,,,,,,43214321)()(ββββαααα= ),,,(),,,(432114321B ααααββββ-=⎪⎪⎪⎪⎪⎭⎫----⎝⎛→→⎝⎛⎪⎪⎪⎪⎪⎭⎫------11111000001111101000100001000011110111121211112221112031111202⎪⎪⎪⎪⎪⎭⎫⎝⎛----=∴1111100000111110B设ξ在基{}4321,,,αααα下的坐标为x ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=1131012101011101011100101-21A x(3)设α在基{}4321,,,ββββ下的坐标为z ,则:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎪⎪⎭⎫⎝⎛----=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=20130121111110000011111001-21B z 4. 在4R 中找一个向量γ,它在自然基{}4321,,,εεεε和基T4T3T2T13,1,6,6,1,2,3,5,0,1,3,0,1,1,1,2)()()()(===-=ββββ下有相同的坐标.解:设所求坐标为x ,则它满足:x x )()(43214321,,,,,,ββββεεεε= 即:0211111163216501=⎪⎪⎪⎪⎪⎭⎫⎝⎛-x⎪⎪⎪⎪⎪⎭⎫⎝⎛→→⎪⎪⎪⎪⎪⎭⎫⎝⎛-000110010101001211111163216501 ∴此齐次线性方程组的一般解为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1111k x ⎪⎪⎪⎪⎪⎭⎫⎝⎛---==∴1111,,,4321k x )(可取εεεεγ 5. 已知)()()(2,2,1,1,1,1,3,2,1,1,2,1---=-=-=γβα。
高等数学线性代数习题答案第四章

习题 4-11.验证函数f (x )=lnsin x 在[π5π,66]上满足罗尔定理的条件,并求出相应的ξ,使f ′(ξ)=0.解: 显然()lnsin f x x =在5π,66x ⎡⎤⎢⎥⎣⎦上连续,在π5π,66⎛⎫⎪⎝⎭内可导,且π5π()()ln 266f f ==-,满足罗尓定理的条件. 令cos ()cot 0sin x f x x x '===,则π2x =即存在ππ5π(,)66ξα=∈,使()0f ξ'=成立.2. 下列函数在指定区间上是否满足罗尔定理的三个条件?有没有满足定理结论中的ξ ?[][][]2(1)()1,;(2)(),;1,10,21sin ,0π(3)()0,π1,0e x f x f x x x x f x x =-=--<≤⎧=⎨=⎩解: (1) 2()1e x f x =-在[]1,1-上连续,在()1,1-内可导,且(1)1,(1)1,e e f f -=-=- 即 (1)(1)f f -=() f x ∴在[]1,1-上满足罗尓定理的三个条件. 令 2()20e x f x x '==得 0x =, 即存在0(1,1)ξ=∈-,使()0f ξ'=.(2) 101()1112x x f x x x x -≤<⎧==-⎨-≤≤⎩显然()f x 在(0,1),(1,2)内连续,又1111(10)lim ()lim(1)0,(10)lim ()lim(1)0,(10)(10)(1)0,即x x x x f f x x f f x x f f f --++→→→→-==-=+==-=-=+==所以()f x 在1x =处连续,而且22(00)lim ()lim(1)1(0),(20)lim ()lim(1)1(2),x x x x f f x x f f f x x f ++--→→→→+==-==-==-==即()f x 在0x =处右连续,在2x =处左连续,所以()f x 在[]0,2上连续.又1111()(1)1(1)lim lim 1,11()(1)1(1)lim lim 111x x x x f x f xf x x f x f xf x x --++-→→+→→--'===-----'===--(1)(1)() f f f x -+''∴≠∴在1x =处不可导,从而()f x 在(0,2)内不可导. 又 (0)(2)1f f == 又由 101()112x f x x -<<⎧'=⎨<<⎩知 ()0f x '≠综上所述,函数()f x 满足罗尓定理的条件(1),(3)不满足条件(2),没有满足定理结论的ξ.(3) 由0(00)lim sin 0(0)1x f x f +→+==≠=知()f x 在0x =不右连续, () f x ∴在[]0,π上不连续, 显然()f x 在()0,π上可导,又(0)1,(π)0f f ==,即(0)(π)f f ≠,且()cos (0,π) f x x x '=∈,取π(0,π)2ξ=∈,有π()cos cos 02f ξξ'===. 综上所述,函数()f x 满足罗尓定理的条件(2),不满足条件(1),(3),有满足定理结论的ξ,ξ=π2. 3. 不用求出函数()(1)(2)(3)f x x x x =---的导数,说明方程()0f x '=有几个实根,并指出它们所在的区间.解: 显然()f x 在[]1,2上连续,在()1,2内可导,且(1)(2)0f f ==,由罗尓定理知,在()1,2内至少存在一点1ξ,使1()0f ξ'=,即()0f x '=在()1,2内至少有一个实根.同理()0f x '=在()2,3内也至少有一个实根2ξ.又()0f x '=是二次方程,最多有两个实根,故()0f x '=有两个实根,分别在区间()1,2和()2,3内.4. 验证拉格朗日中值定理对函数3()2f x x x =+在区间[0,1]上的正确性.解: 显然3()2f x x x =+在[0,1]上连续,在()0,1内可导,满足拉格朗日中值定理的条件.若令2(1)(0)()32310f f f x x -'=+==-则33x =±,取33ξ=,即存在3(0,1)3ξ=∈,使得(1)(0)()10f f f ξ-=-成立. 从而拉格朗日中值定理对函数3()2f x x x =+在[0,1]上成立.5. 已知函数f (x )在[a ,b ]上连续,在(a ,b )内可导,且f (a )=f (b )=0,试证:在(a ,b )内至少存在一点ξ,使得f (ξ)+f ′(ξ) = 0,ξ∈(a ,b ). 证: 令()()e xF x f x =,则()()()e e xxF x f x f x ''=+由e x在(),-∞+∞上连续,可导,()f x 在[],a b 上连续,在(),a b 内可导,知()F x 在[],a b 上连续,在(),a b 内可导,而且()()0,()()0,()()e e 即abF a f a F b f b F a F b =====,由罗尓定理至少存在一点(,)a b ξ∈使()0F ξ'=.即 ()()0e e f f ξξξξ'+= 而0e ξ≠故 ()()0f f ξξ'+=即在(),a b 内至少存在一点ξ,使得()()0f f ξξ'+=. 6.若方程10110n n n a x a x a x --+++=有一个正根x 0,证明方程 12011(1)0n n n a nx a n x a ---+-++=必有一个小于0x 的正根.证: 令1011()…n n n f x a x a x a x --=+++,显然()f x 在[]00,x 连续,在()00,x 内可导,且(0)0f =,依题意知0()0f x =.即有0(0)()f f x =.由罗尓定理,至少存在一点0(0,)x ξ∈,使得()0f ξ'=成立,即12011(1)0…n n n a n a n a ξξ---+-++=成立,这就说明ξ是方程12011(1)0n n n a nx a n x a ---+-++=的一个小于0x 的正根.7. 设f (a ) = f (c ) = f (b ),且a <c <b , f ″(x )在[a ,b ]上存在,证明在(a ,b )内至少存在一点ξ,使f ″(ξ) = 0.证: 显然()f x 分别在[],a c 和[],c b 上满足罗尓定理的条件,从而至少存在1(,)a c ξ∈,2(,)c b ξ∈,使得12()()0f f ξξ''==.又由题意知()f x '在[]12,ξξ上满足罗尓定理的条件,从而至少存在一点12(,)(,)a b ξξξ∈⊂,使得()0f ξ''=.即在(,)a b 内至少存在一点ξ,使()0f ξ''=.习题4-21.利用洛必达法则求下列极限:(1) sin3lim tan5x xxπ→; (2) 0e 1lim (e 1)x x x x x →---;(3)lim m m n n x a x a x a →--; (4) 20()lim x xx a x a x→+-,(a >0); (5) 0ln lim cot x xx +→; (6) 0lim sin ln x x x +→;(7) 1ln(1)lim arccot x x x →+∞+; (8) 0e 1lim()e 1x x x x →--;(9) 1lim(1sin )xx x →+;(10) 2lim (arctan )πx x x →+∞(11) csc 03e lim()2x x x x →-+ ; (12) 2120lim e x x x →;(13) 332lim (1)x x x x x →+∞+++; (14) 1101lim (1)e xxx x →⎡⎤+⎢⎥⎣⎦. 解:222000011sin 33cos33(1)limlim lim cos3cos 5tan 55sec 5533(1)(1)5511(2)lim lim lim (1)111lim 22(3)lim lim lim πππe e e e e e e e e x x x x x xx x x xx xx x x x m m m n n n x a x a x a x x x x x x x x x x x x a mx x a nx →→→→→→→--→→→==⋅=⋅-⋅-=----==--+++==+-==-.m n m nm m x a n n --=2002220()ln ln()()(4)lim lim 21()()()ln ln()()lim2x x x x x x x x x x x a x a a a x a x a a x x xa x a x a x a a a x a x a x a x →→→⎡⎤+-++⎢⎥+-+⎣⎦=⎡⎤++++-++⎢⎥+++⎣⎦=[]2000221()ln ln 012 aa a a aa a a a ++-⋅+==2200000000001ln sin 2sin cos (5)lim lim lim lim cot csc 12sin 0cos 001ln sin (6)lim sin ln lim lim lim tan csc csc cot sin lim lim tan 100 x x x x x x x x x x x x x x x x x x x x x x x xx x x xxx x++++++++++→→→→→→→→→→==-=--=-⋅====-⋅-=-⋅=-⨯=222221111ln(1)111(7)lim lim lim lim 111cot 11arc x x x x xx x x x x x x x x→+∞→+∞→+∞→+∞-++++====+-++ 20002200001(1)(8)lim()lim lim 1(1)21443limlim 12022e e e e e e e e e e e e e e e e e e e x x x x x x x x x x x xxxxx x x x x x x xx x x x x x →→→→→-----==-------====+-++00022cos 11ln(1sin )cos 1sin ln(1sin )lim limlim 11sin 12112ln(arctan )arctan 1limlim 112ln(arctan )(9)lim(1sin )lim 2(10)lim (arctan )lim πππee =e ee ee eeπx x x x x xx xx x xxxxx x x x x x x x xxx x x x →→→→+∞→+∞++++→→⋅⋅+-→+∞→+∞+========2221lim12lim(1)arctan (1)arctan πe e ex x x x x xx →+∞→+∞--+-+===020033lnln322csc ln lim csc 2sin sin 0002(2)(3)33(2)limlim 1(3)(2)cos cos 3(11)lim()lim lim 21e e e e e e e e eee ee exxxx x x x x x x x x e e e x x x x xxxxx x x x x x x x xxx →→→---+++→→→+-+--⋅----+--+-===+====22221111220000221()(12)lim limlimlim 11()e eee x x x x x x x x x x x x→→→→'⋅====∞'2002332322332232323232311ln(1)1ln(1)1lim lim lim 01(13)lim (1)lim(1)111111lim3111111111(1)111(14)lim (1) eeee x x x x x x x x xx xxx x x x x x x x x x x x x x x x x x x x x x x x xx →→→+∞→+∞→+∞+-+-→+++++-=++++++++++===++++++++++⎡⎤===+⎢⎥⎣⎦00111211lim2(1)2eex x xx →→-+--+==2.设21lim1x x mx nx →++-=5,求常数m ,n 的值. 解: 1lim(1)0, x x →-= 而21lim51x x mx nx →++=- 21lim()0x x mx n →∴++=且21()lim5(1)x x mx n x →'++='- 即 10m n ++= 且 1lim(2)5x x m →+=即 1m n +=- 且 25m += 于是得 3,4m n ==-. 3.验证极限sin lim x x xx→∞+存在,但不能由洛必达法则得出.解: sin 1limlim(1sin )1x x x x x x x→∞→∞+=+=,极限存在,但若用洛必达法则,有sin limlim(1cos )x x x xx x→∞→∞+=+ 因lim cos x x →∞不存在,所以不能用洛必达法则得出.4.设f (x )二阶可导,求2()2()()limh f x h f x f x h h →+-+-.解: 这是型未定式,利用洛必达法则有 [][]200000()2()()()()limlim2()()()()1lim 21()()1()()11lim lim ()()2222().h h h h h f x h f x f x h f x h f x h h hf x h f x f x h f x hf x h f x f x h f x f x f x h h f x →→→→→''+-+-+--=''''-+---=''''+---''''=+=+-''= 5.设f (x )具有二阶连续导数,且f (0) = 0,试证g (x ) = (),0'(0),0f x x x f x ⎧≠⎪⎨⎪=⎩可导,且导函数连续. 证: 当0x ≠时,2()()()()()f x xf x f x g x x x'-''== 当0x =时,由200000()(0)()(0)()(0)lim lim lim 00()(0)1()(0)1lim lim (0)2202x x x x x f x f g x g f x xf x x x x f x f f x f f x x →→→→→'-'--==--''''--''===- 即 1(0)(0)2g f '''=所以 2()(),0()1(0),02xf x f x x xg x f x '-⎧≠⎪⎪'=⎨⎪''=⎪⎩由(),()f x f x '的连续性知()g x '在0x ≠处连续,又20000()()()()()lim ()limlim211lim ()(0)(0)22x x x x xf x f x f x xf x f x g x x xf x fg →→→→'''''-+-'=='''''===故()g x '在0x =处连续,所以()g x '在(),-∞+∞内处处连续.综上所述,(),0()(0),0f x xg x x f x ⎧≠⎪=⎨⎪'=⎩可导,且导函数连续.习题4-31.求函数f (x ) =e x x 的n 阶马克劳林公式.解:()()(1),()(1)(2),()()?…x x x x x x k x f x e xe e x f x e x e e x f x e k x '=+=+''=++=+=+()()(0)1(0),(1,2,3,)!!(1)!k k f k fk k k k k ∴====-又 (0)0f =321(1)()(01)2!(1)!(1)!n x n x x e n x f x x x x n n θθθ+++∴=+++++<<-+2.当01x =-时,求函数f (x ) = 1x的n 阶泰勒公式. 解:()()[]23()2341()1()112212!3!!()(1),()(1),()(1),,()(1)!(1)(1)!(1)(1)!1,(0,1,2,)!!(1)()(1)1(1)111(1) ? … n nn n n n n n n nn n f x f x f x f x x x x x n f n f n n n n x f x x x x x θ-++++''''''=-=-=-=-∴-=-⋅=----==-=+∴=-+-⎡⎤+++++++⎣⎦-++(01)θ<<3.按(4)x -的乘幂展开多项式432()53 4.f x x x x x =-+-+解: 函数432()534f x x x x x =-+-+,根据泰勒公式按(4)x -的幂的展开式是2(4)34(4)()(4)(4)(4)(4)2!(4)(4)(4)(4)3!4! f f x f f x x f f x x '''=+-+-'''+-+-而[][][]432324244(4)(4)454434456,(4)21,41523(4)137,123022!2(4)111,24303!3!(4)12414!4!x x x f f x x x f x x f x f ====-⨯+-⨯+=-'==-+-''==-+'''==-=⨯=所以,234()5621(4)37(4)11((4)(4)f x x x x x =-+-+-+-+-.4.利用泰勒公式求下列极限: (1)30sin limx x x x →-; (2) 21lim ln(1)x x x x →+∞⎡⎤-+⎢⎥⎣⎦. 解: (1) 利用泰勒公式,有34sin ()3!x x x o x =-+所以 343300430()sin 3!lim lim 1()1lim()66x x x x o x x x x x o x x →→→--==-= (2) 利用泰勒公式,有221111ln(1)()2o x x x x+=-+,所以222222221111lim lim ln(1)(())21()1111lim lim .()1222x x x x x x x x o x x x x o x x o x x →+∞→+∞→+∞→+∞⎡⎤⎡⎤=-+--+⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎢⎥⎡⎤==-=-⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦ 习题4-41. 求下面函数的单调区间与极值:(1)32()26187f x x x x =---; (2)()ln f x x x =-;(3)23()1(2)f x x =--; (4)()(4)f x x x =-. 解: (1) 2()612186(1)(3),f x x x x x '=--=+-令()0f x '=得驻点121,3,x x =-=-在()(),,13,-∞-+∞上,()0f x '>,在()1,3-上()0f x '<∴ ()f x 在(,1],[3,)-∞-+∞上单调增加,在[]1,3-上单调减少.当 1x =-时, ()f x 有极大值,极大值为(1)3f -=, 当 3x =时,()f x 有极小值,极小值为(3)61f =-.(2) 11()1x f x x x-'=-=,令()0f x '=得驻点1x =在()0,1上,()0f x '<;在()1,+∞上,()0f x '>∴ ()f x 在(0,1]上单调递减;在[1,)+∞上单调递增. 当1x =时,()f x 有极小值,极小值为(1)1f =. (3) 3()()032f x f x x ''=≠- 但当2x =时,()f x '不存在,在(,2)-∞上,()0f x '>;在(2,)+∞上,()0f x '<,∴ ()f x 在(,2]-∞上单调递增;在[2,)+∞上单调递减. 当2x =时, ()f x 有极大值,极大值为(2)1f =.(4) 2240()40x x x f x x x x ⎧-≥=⎨-+<⎩ ,则 240()240x x f x x x ->⎧'=⎨-+<⎩且当 0x =时,()f x '不存在,又令()0f x '=得2x =在(,0),(2,)-∞+∞上,()0f x '>,在(0,2)上()0f x '<∴ ()f x 在(,0],[2,)-∞+∞上单调递增;在[0,2]上单调递减; 当0x =时,()f x 有极大值,极大值为(0)0f =; 当2x =时, ()f x 有极小值,极小值为(2)4f =-.2. 试证方程sin x = x 只有一个根.证: 显然0x =是方程sin x x =得一个根(亦可将()sin f x x x =-运用零点定理).令()sin f x x x =-,则()cos 10f x x '=-≤,而()0f x '=的点不是单调区间的分界点,故()f x 在(,)-∞+∞内单调下降,所以()f x 在(,)-∞+∞内只有一个零点,即方程sin x x =只有0x =一个根.3. 已知()([0,))f x C ∈+∞,若f (0) = 0, f ′(x )在[0,)+∞内存在且单调增加,证明()f x x在[0,+∞)内也单调增加.解: 0 x ∀>,由题意知()f x 在[]0,x 上满足拉格朗日中值定理的条件,利用拉格朗日中值定理得,(0,) x ξ∃∈,使()(0)()f x f xf ξ'-=, 因 ()f x '在[0,)+∞单调增加,且(0)0f =,所以()()()f x xf xf x ξ''=≤ 即 ()()0xf x f x '-≥令 ()()(0) f x F x x x=>,则 2()()()0xf x f x F x x '-'=≥ 所以()F x 单调递增,即 ()f x x在(0,)+∞内单调增加.4. 证明下列不等式:(1) 1+12x 1x +x >0; (2)2ln(1)(0)2 x x x x x -<+<>. 证: (1) 令 1()112f x x x =+-+则1()(121f x x'=+, 当 0x >时1,()01f x x'<>+即()f x 单调递增,从而 ()(0)0f x f >=,故1112x x +>+. (2) 令 2()ln(1)2x f x x x =+-+,则 21()111x f x x x x'=-+=++当 0x >时,有()0f x '>,即()f x 单调递增,从而()(0)0f x f >= ,即2ln(1)2x x x +>-又令 ()ln(1)g x x x =-+,则1()111xg x x x'=-=++ 当 0x >时,()0g x '>,即 ()g x 单调递增,从而()(0)0g x g >=,即ln(1)x x >+.综上所述,当0x >时有2ln(1)2x x x x -<+<. 5. 试问a 为何值时,f (x ) = a sin x +13sin 3x 在x =3π处取得极值?是极大值还是极小值?并求出此极值.解: ()cos cos3f x a x x '=+若3πx =为极值点,则cos cos 03ππa +=,所以2a =. 又()2sin 3sin 3,()303πf x x x f ''''=--=-<故函数在3πx =处取得极大值,极大值为()33πf =.习题4 - 51. 某个体户以每条10元的价格购进一批牛仔裤,设此批牛仔裤的需求函数为402Q P =-,问该个体户应将销售价定为多少时,才能获得最大利润? 解: 利润2()10260400L P PQ Q P P =-=-+-, ()460L P P '=-+,令 ()0L P '=得 P =15所以应将销售价定为每条15元,才能获得最大利润. 2.设 f (x ) = cx α (c >0,0<α<1)为一生产函数,其中c 为效率因子,x 为投入量,产品的价格P 与原料价格Q 均为常量,问:投入量为多少时可使利润最大? 解: 依题意,总利润()()()L x Pf x Q x P cx Qx α=-=⋅- 则 1()L x Pc xQ αα-'=-令 ()0L x '=得 11Q x Pc αα-⎛⎫=⎪⎝⎭所以,投入量为11Q Pc αα-⎛⎫⎪⎝⎭时利润最大.3. 某产品的成本函数为23()156C Q Q Q Q =-+,(1) 生产数量为多少时,可使平均成本最小?(2) 求出边际成本,并验证边际成本等于平均成本时平均成本最小. 解: (1) 2()()156C Q C Q Q Q Q==-+ 令 260()Q C Q '=-=⎡⎤⎣⎦得Q =3 故 生产数量3Q =时,可使平均成本最小. (2) 2()15123MC C Q Q Q '==-+当 3Q =时,15123396MC =-⨯+⨯=2()156336C Q =-⨯+=即边际成本等于平均成本时平均成本最小. 4. 已知某厂生产Q 件产品的成本为C =25000+2000Q +1402Q (元). 问:(1) 要使平均成本最小,应生产多少件产品?(2) 若产品以每件5000元售出,要使利润最大,应生产多少件产品? 解: (1) 平均成本 250001()200040C Q Q Q =++ 边际成本1()200020C Q Q '=+. 当()()C Q C Q '=时,平均成本最小, 由()()C Q C Q '=即2500011200020004020Q Q Q ++=+ 得1000Q =(负值不合题意已舍去). 所以要使平均成本最小,应生产1000件产品.(2)221()5000()500025000200040130002500040L Q Q C Q Q Q Q Q Q =-=---=-+-令 1()3000020L Q Q '=-+=, 得60000Q =(件) 所以应生产60000件产品.5. 某厂全年消耗(需求)某种钢材5170吨,每次订购费用为5700元,每吨钢材单价为2400元,每吨钢材一年的库存维护费用为钢材单价的13.2%,求: (1) 最优订购批量; (2) 最优批次; (3) 最优进货周期; (4) 最小总费用.解: 由题意 215170,5700,1,240013.2%316.8 R C T C ====⨯= 则(1)最优订购批量*431.325q === (2)最优批次 5170*12*431.325R n q ==≈(次) (3)最优进货周期 36530.452*12T t n ===(天) (4)最小总费用*136643.9E ==≈(元)6. 用一块半径为R 的圆形铁皮,剪去一圆心角为α的扇形后,做成一个漏斗形容器,问α为何值时,容器的容积最大?解: 设漏斗的底面半径为r ,高为h ,为了计算方便令2ϕπα=-,则2,,2ππR r R r h ϕϕ====漏斗的容积2322123(83)πππV hr V ϕϕ==<<'=-令 0V '=得10ϕ=(舍之),2ϕ=34222237),40,9πππV V ϕϕϕ''=-+-⎫''=-<⎪⎭故当ϕ=时漏斗得容积最大.由2πϕα=-得2π2πα=-=,所以,当2ππ3α=-时,容积最大. 7. 工厂生产出的酒可即刻卖出,售价为k ;也可窖藏一个时期后再以较高的价格卖出.设售价V 为时间t 的函数V = k (k >0)为常数.若贮存成本为零,年利率为r ,则应何时将酒售出方获得最大利润(按连续复利计算). 解: ()e rt rtA t k k -=⋅=令()0rtr A t k ⎫'==⎪⎭得214t r = 所以,应窖藏214r 时以后售出可获得最大利润. 8. 若火车每小时所耗燃料费用与火车速度的三次方成正比,已知速度为20km/h ,每小时的燃料费用40元,其他费用每小时200元,求最经济的行驶速度. 解: 设火车每小时所耗燃料费为Q ,则 3Q kv = (k 为比例常数) 依题意得 34020k =⋅, 解得 1200k =, 又设火车行驶()km s 后,所耗费用为, 32200(200)()s E kv kv s v v=+⋅=+ 令 2200()0100v E s v'=-=, 得27.14v =≈ (km/h), 所以,最经济得行驶速度为27.14 km/h.习题 4-61. 讨论下列函数的凸性,并求曲线的拐点:(1) y =2x -3x ; (2) y = ln(1+2x ); (3) y = x e x; (4) y = 4(1)x ++e x; (5) y =2(3)x x +; (6) y=arctan e x. 解: (1)223,126,0.3令 得 y x x y x y x '=-''''=-==当13x <时,0y ''>; 当13x >时,0y ''<,且12()327f =所以,曲线23y x x =-在1(,)3-∞内是下凸的,在1(,)3+∞内是上凸的,点12(,)327是曲线的拐点.(2) 222222222(1)222(1),1(1)(1)x x x x x y y x x x +-⋅--'''===+++, 令0y ''=得,121,1x x =-=,这两点将定义域(,)-∞+∞分成三个部分区间,列表考察各部分区间上二阶导数得符号.所以,曲线2ln(1)y x =+在(,1)-∞-及(1,)+∞内是上凸的,在(1,1)-内是下凸的,点(1,ln 2)±是曲线的拐点.(3) 324(1),12(1)0xxy x e y x e '''=++=++> 所以,曲线在定义域(,)-∞+∞内处处下凸,没有拐点.(4) 343212,(3)(3)x x y y x x --'''==++,令 0y ''=得6x =当 6x <时,0y ''<,当6x >时,0y ''>;又2(6)27f =,函数的定义域为(,3)(3,)-∞--+∞;所以曲线在(,3),(3,6)-∞--内上凸,在(6,)+∞内下凸,点2(6,)27是拐点. (6)arctan 2arctan arctan arctan 2222221112(12)(1)(1)(1)x x x xy e x x x e y e e x x x '=⋅+-''=⋅-⋅=+++令 0y ''= 得 12x =当 12x <时,0y ''>,当12x >时,0y ''<,且 1arctan 21()2e f =,所以曲线在1(,)2-∞内向下凸,在1(,)2+∞内向上凸,点1arctan 21(,)2e是拐点.2. 利用函数的凸性证明下列不等式:(1) e e 2x y+>2e x y+, x ≠y ;(2) x ln x +y ln y >(x +y )ln2x y +,x >0,y >0,x ≠y .证: (1) 令()e xf x =,则()e xf x '=,()0e xf x ''=>,所以函数()f x 的曲线在定义域(,)-∞+∞内是严格下凸的,由曲线下凸的定义有: ()(),()()22x y f x f y x y f x y ++∀≠<≠ 即 22e e ex y x y ++< 即2()2e e e x yx y x y ++>≠. (2) 令()ln f x x x =,则1()1ln ,()f x x f x x'''=+=当 0x >时,恒有()0f x >,所以()f x 的曲线在(0,)+∞内是严格下凸的,由曲线下凸的定义有, 0,0,,x y x y ∀>>≠有()()()22f x f y x y f ++>即ln ln ()ln222x x y x y x y+++> 即 ln ln ()ln 2x yx x y y x y ++>+.3. 当a ,b 为何值时,点(1,3)为曲线y =a 3x +b 2x 的拐点. 解: 因为32y ax bx =+是二阶可导的,所以在拐点处0y ''=,而 232,62y ax bx y ax b '''=+=+ 所以 620a b +=又拐点(1,3)应是曲线上的点,所以3a b +=解方程6203a b a b +=⎧⎨+=⎩ 得 39,22a b =-=所以当39,22a b =-=时,点(1,3)为曲线32y ax bx =+的拐点. 4. 求下列曲线的渐近线:(1) y = ln x ; (2) 22x -;(3) y = 23xx-; (4) y = 221x x -. 解: (1) 0lim lim ln x x y x ++→→==-∞,所以ln y x =有垂直渐近线 0x =. 又 lim x y →+∞=+∞,但1ln lim lim lim 01x x x y xx y x x→+∞→+∞→+∞====,lim (0)x y x →+∞-⋅=∞,所以不存在水平或斜渐近线.(2) 220x x -=,所以有水平渐近线0y =,又22lim 0x x x y x -→∞→∞==,所以没有斜渐近线,又函数22x y -=没有间断点,因而也没有垂直渐近线.(3) 221limlim 0331x x xxx x→∞→∞==--,所以有水平渐近线0y =,又函数23xy x==-有两个间断点x x == 且22,,3x x xxx x=∞=∞--所以有两条垂直渐近线x =x = 又 21lim lim 3x x y x x →∞→∞==∞-,所以没有斜渐近线.(4) 2lim lim21x x x y x →∞→∞==∞-,所以没有水平渐近线, 又 函数221x y x =-有间断点12x =,且212lim21x x x →=∞-,所以有垂直渐近线12x =. 又1limlim 212x x y x x x →∞→∞==- 2111lim()lim()lim 22122(21)4x x x x x y x x x x →∞→∞→∞-=-==-- 所以有斜渐近线1124y x =+. 5.作出下列函数的图形:(1) f (x ) =21xx +; (2) ()2arctan f x x x =- (3) ()2,(0,)e xf x x x -=∈+∞. 解: (1) (i) 定义域为(,)-∞+∞.()()f x f x -=-,故曲线关于原点对称.(ii)21lim limlim 012x x x x y x x→∞→∞→∞===+,故曲线有渐近线0y =.(iii) 222222121,(1)(1)x x x x y x x +-⋅-'==++ 22223322423232(1)(1)2(1)222442(3)(1)(1)(1)x x x x x x x x x x x y x x x -+--⋅+⋅---+-''===+++,令0y '=即210x -=得驻点1x =±,又使0y ''=的点为0,3x =±.列表讨论如下x(,3)-∞-3-(3,1)--1-(1,0)-0 y′ - - - 0 + 1 y″- 0+++ 0 y34-拐点12-极小值x(0,1)1 (1,3)3(3,)+∞y′ + 0 - - - y″- -- 0+y12极大值34拐点作图如下:图4-1(2) (i) 定义域为(,)-∞+∞.又 ()arctan y x x x y -=-+=-,故为奇函数.(ii) 2arctan lim ,limlim (1)1,x x x y x y x x→±∞→±∞→±∞=∞=-=πlim ()lim (2arctan )(2)()π2x x y x x →±∞→±∞-=-=-±= 所以有渐近线πy x =.(iii) 222211,11x y x x -'=-=++ 2222222(1)(1)24,(1)(1)x x x x x y x x +--⋅''==++令 0y '=得驻点1x =±,又使0y ''=的点为0x =. 列表如下:x(,1)-∞-1-(1,0)-(0,1)1 (1,)+∞y′+ 0 - -1 - 0 + y″- --+ ++yπ12-+极大值拐点π12-极小值图4-2(3) (i) 定义域为(,)-∞+∞,且()((,))f x C ∈-∞+∞. (ii) ()2(1),()2(2),e e xxf x x f x x --'''=-=-由()0f x '=得1x =,由()0f x ''=得2x =,把定义域分为三个区间 (,1),(1,2),(2,);-∞+∞ (iii) 列表如下.x(,1)-∞1 (1,2)2 (2,)+∞f ′(x ) + 0 - - - f ″(x )- -- 0+ ()f x2e极大值24(2,)e 拐点(iv) lim ()0x f x →+∞=,故曲线()y f x =有渐近线0y =,lim ()x f x →+∞=-∞.(v) 补充点(0,0)并连点绘图,如图所示:图4-3(注:本资料素材和资料部分来自网络,仅供参考。
线性代数第四章习题答案

0 a+1 1 −1
1 − a2 = (a + 1)2 (a − 2). a
a −1 a
0 a + 1 −1 − a
1 −1
所以, a = −1 或 a = 2 时向量组线性相关. 更常规的思路是: 向量组 a1 , a2 , a3 线性相关, 则存在不全为零的数 k1 , k2 , k3 使得
k1 a1 + k2 a2 + k3 a3 = 0.
50
第四章 向量组的线性相关性 解: (1) 因为
A= −1 2 3 1 1 0 1 −1 0 0 2 7 2 1 7 2 −1 0 0 2 1 0 1 1 , 0
r2 + 3r1 4 r3 + r1 1
可见 R(A) = 2, 所以该向量组是线性相关的. 或者: 由 −1 2 1 3 + 1 = 4 1 0 1 知线性相关. (2) 因为
1 a3 = −1 1
4
.
解: 由 3(a1 − a) + 2(a2 + a) = 5(a3 + a) 得 2 10 1 1 5 + 1 1 a = (3a1 + 2a2 − 5a3 ) = 6 2 1 3 5 3= 3 0 1
2
;
4 −2 1 , b3 = B : b1 = , b2 = 1 1 1 3 1 2
2
0
4
.
即线性方程组
《线性代数》(陈维新)习题答案(第4章)

⇔ 矩阵 [α1 α 2 α 3 ] 的秩是否与矩阵 [α1 α 2 α 3
解 对矩阵 [α1
β ] 的秩相同.
α 2 α 3 β ] 作初等行变换化为阶梯形:
[α1
1 2 3 1 7 1 2 −1 α2 = α 3 β ] 3 7 −6 − 2 → 0 1 −3 − 5 . 5 8 1 a 0 0 0 a − 1 5
证明 设������ ≠ ������ ∈ ������ ,则������,2������, ⋯ ,������������, ⋯ ∈ ������ 。下证当������ ≠ ������时,������������ ≠ ������������。 (反证) 若������������ = ������������,则(������ − ������)������ = ������,因������ ≠ ������,则������ − ������ = 0,这与 ������ ≠ ������矛盾,所以������ 中 至少有无穷多个向量������,2������, ⋯ ,������������, ⋯。
第四章 线性空间和线性变换
习题 4.1
1.检验以下集合关于所指定的运算是否构成实数域������上的线性空间: (1) ������阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘; (2) 次数等于������(������ ≥ 1)的实系数一元多项式的全体,关于多项式的加法和实数与多项式 的数乘; (3) 有理数的全体������,关于数的加法和实数与有理数的乘法; : (4) 平面上全体向量������2 ,关于通常的向量加法和如下定义的数量乘法“∘” 解 (1) 是 因为任意两个������阶实对称矩阵和是������阶实对称矩阵, 任意一个实数乘以������阶实对称矩阵也 是������阶实对称矩阵,所以������阶实对称矩阵的全体关于矩阵的加法和实数与矩阵的数乘运算是 封闭的。下面验证八条运算规律成立。 记������阶零矩阵为������,显示������是实对称矩阵,且对任意的������阶实对称矩阵������都有������ + ������ = ������。 对任意的������阶实对称矩阵������,显然−������也是������阶实对称矩阵,且������ + (−������) = ������。 其它 6 条运算规律显然成立,这里就不证。 由此可知,������阶实对称矩阵的全体,关于矩阵的加法和实数与矩阵的数乘否构成实数域 ������上的线性空间。 (2) 否 因为零多项式的次数不是������,所以这个集合不含零向量,因此次数等于������(������ ≥ 1)的实系 数一元多项式的全体,关于多项式的加法和实数与多项式的数乘不能构成实数域������上的线性 空间。 或者说: 因为两个任意的次数等于������(������ ≥ 1)的实系数一元多项式和的多项式次数不一定等于������, 有可能小于������,所以关于多项式的加法不封闭,因此次数等于������(������ ≥ 1)的实系数一元多项式 的全体,关于多项式的加法和实数与多项式的数乘不能构成实数域������上的线性空间。 ������ ∘ ������ = ������,∀������ ∈ ������,∀������ ∈ ������2
线性代数第4章习题答案(48p)

由于 D = 1
2 −1
⇒ k ≠ 4且k ≠ −1. 故应选 (C) .
(2) 线性方程组 Am×n X = b 有唯一解的条件是 B ). 有唯一解的条件是( (B) R(A) = R(A b) = n ; (A) m = n ; ) 都不对. 都不对 (C) Ax = θ 只有零解 只有零解; (D) (A),(B),(C)都不对 解: 线性方程组 Am×n X = b 有唯一解的充要条件是其 系数矩阵的秩与增广矩阵的秩相等且为n 选项(A)只 系数矩阵的秩与增广矩阵的秩相等且为 . 选项 只 表明方程组中方程的个数与未知量个数相同, 表明方程组中方程的个数与未知量个数相同 此时系 数矩阵的秩与增广矩阵的秩未必相等且为n 数矩阵的秩与增广矩阵的秩未必相等且为 , 故选项 (A)不正确 选项 成立的条件是系数矩阵的秩为 , 不正确. 选项(C)成立的条件是系数矩阵的秩为 成立的条件是系数矩阵的秩为n 不正确 也不正确. 但此时增广矩阵的秩未必为n, 故选项(C)也不正确 但此时增广矩阵的秩未必为 故选项 也不正确 由排除法知选项(B)正确 因此应选(B). 由排除法知选项 正确, 因此应选 正确
四. 求方程组
x1 + 2 x2 + 3 x3 + 4 x4 = 5 的特解. x1 − x2 + x3 + x4 = 1 的特解
解: B = 1 2 3 4 5 → 1 2 3 4 5 1 −1 1 1 1 0 −3 −2 −3 −4
∴ R( A) = R( B) = 2 < 4 = n.
α 4. 设Ax = b为四元齐次线性方程组,R(A)=3,1 , α 2 , α 3 为四元齐次线性方程组, 为四元齐次线性方程组 ,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题四答案(A)1. 求下列矩阵的特征值与特征向量:(1) ⎪⎪⎭⎫ ⎝⎛--3113 (2) ⎪⎪⎪⎭⎫ ⎝⎛---122212221 (3) ⎪⎪⎪⎭⎫ ⎝⎛----020212022 (4)⎪⎪⎪⎭⎫ ⎝⎛--201034011 (5) ⎪⎪⎪⎭⎫ ⎝⎛--011102124 (6)⎪⎪⎪⎭⎫ ⎝⎛----533242111 解 (1)矩阵A 的特征多项式为=-A E λ)4)(2(3113--=--λλλλ,所以A 的特征值为4,221==λλ.对于21=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,1(1=αT ,所以A 的属于特征值2的全部特征向量为)1,1(111k k =αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,1(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,1(222-=k k αT(02≠k 为任意常数).(2)矩阵A 的特征多项式为=-A E λ)3)(1)(1(122212221--+=------λλλλλλ, 所以A 的特征值为11-=λ,12=λ,33=λ.对于11-=λ,解对应齐次线性方程组=--X A E )(O ,可得它的一个基础解系为)0,1,1(1-=αT ,所以A 的属于特征值-1的全部特征向量为)0,1,1(111-=k k αT (01≠k 为任意常数).对于12=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,1,1(2-=αT ,所以A 的属于特征值1的全部特征向量为)1,1,1(222-=k k αT (02≠k 为任意常数).对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,0(3-=αT ,所以A 的属于特征值3的全部特征向量为)1,1,0(333-=k k αT (03≠k 为任意常数).(3) 矩阵A 的特征多项式为=-A E λ)4)(1)(2(2021222--+=--λλλλλλ, 所以A 的特征值为11=λ,42=λ,23-=λ.对于11=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)2,1,2(1-=αT ,所以A 的属于特征值1的全部特征向量为)2,1,2(111-=k k αT (01≠k 为任意常数).对于42=λ,解对应齐次线性方程组=-X A E )4(O ,可得它的一个基础解系为)1,2,2(2-=αT ,所以A 的属于特征值4的全部特征向量为)1,2,2(222-=k k αT (02≠k 为任意常数).对于23-=λ,解对应齐次线性方程组=--X A E )2(O ,可得它的一个基础解系为)2,2,1(3=αT ,所以A 的属于特征值-2的全部特征向量为)2,2,1(333k k =αT (03≠k 为任意常数).(4)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为12,1=λ(二重),23=λ.对于12,1=λ,解对应齐次线性方程组=-X A E )(O ,可得它的一个基础解系为)1,2,1(1-=αT ,所以A 的属于特征值1的全部特征向量为)1,2,1(111-=k k αT (01≠k 为任意常数).对于23=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)1,0,0(2=αT ,所以A 的属于特征值2的全部特征向量为)1,0,0(222k k =αT (02≠k 为任意常数).(5)矩阵A 的特征多项式为=-A E λ2)2(11132124-=------λλλλλ, 所以A 的特征值为01=λ,23,2=λ(二重).对于01=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)2,1,1(1--=αT ,所以A 的属于特征值0的全部特征向量为)2,1,1(111--=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,所以A 的属于特征值2的全部特征向量为22αk )0,1,1(2-=k T (02≠k 为任意常数).(6)矩阵A 的特征多项式为=-A E λ)3()1(212123242--=------λλλλλ, 所以A 的特征值为61=λ,23,2=λ(二重).对于61=λ,解对应齐次线性方程组=-X A E )6(O ,可得它的一个基础解系为)3,2,1(1-=αT ,所以A 的属于特征值6的全部特征向量为)3,2,1(111-=k k αT (01≠k 为任意常数).对于23,2=λ,解对应齐次线性方程组=-X A E )2(O ,可得它的一个基础解系为)0,1,1(2-=αT ,)1,0,1(3=αT ,所以A 的属于特征值2的全部特征向量为3322ααk k +)0,1,1(2-=k T )1,0,1(3k +T (32,k k 为不全为零的任意常数).2. 设A 为n 阶矩阵, (1) 若O A ≠,且存在正整数k ,使得O A k=(A 称为幂零矩阵),证明:A 的特征值全为零;(2) 若A 满足A A =2(A 称为幂等矩阵),证明:A 的特征值只能是0或1;(3) 若A 满足E A =2(A 称为周期矩阵),证明: A 的特征值只能是1或1-. 证明:设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .(1)因αλαk k A =,而,O A k=故O k =αλ.又因O ≠α,故0=k λ,得.0=λ(2)因αλα22=A ,而,2A A =故αλααλα22===A A ,即.)(2O =-αλλ又因O ≠α,故02=-λλ,得0=λ或1.(3)同(2)可得αλααα22===A A ,即.)1(2O =-αλ又因O ≠α,故012=-λ,得1=λ或1-.3. 设21,αα分别为n 阶矩阵A 的属于不同特征值1λ和2λ的特征向量,证明:21αα+不是A 的特征向量.证明:反证法.若21αα+是A 的特征向量,相应的特征值为λ,则有)()(2121ααλαα+=+A ,即2121λαλααα+=+A A .又因21,αα分别为矩阵A 的属于特征值1λ和2λ的特征向量,即111αλα=A ,222αλα=A ,则2121λαλαλαλα+=+,即O =-+-2211)()(αλλαλλ.因21,αα是矩阵A 的属于不同特征值的特征向量,故21,αα线性无关,于是可得0,021=-=-λλλλ,即21λλλ==,矛盾.4. 证明定理4.4.若λ是n 阶矩阵A 的特征值,则(1)设m m x a x a a x f +++= 10)(,则)(λf 是)(A f 的特征值,其中m m A a A a E a A f +++= 10)()(N m ∈;(2)若A 可逆,则0≠λ,且λ1是1-A 的特征值,λ||A 是A 的伴随矩阵*A 的特征值.证明:设矩阵A 属于特征值λ的特征向量为α,即λαα=A .(1)因故)(λf 是)(A f 的特征值.(2)因A 可逆,故0||≠A .而||A 为A 的特征值之积,故A 的特征值0≠λ.用1-A 左乘λαα=A 两端得 αλλααα111---===A A A A .因0≠λ,故αλα11=-A ,即λ1是1-A 的特征值. 因1*||-=A A A ,故λ||A 是A 的伴随矩阵*A 的特征值.5. 证明:矩阵A 可逆的充分必要条件是A 的特征值全不等于零.证明:因矩阵A 可逆,故0||≠A .由n n A λλλλ,,(||11 =是A 的全部特征值)得01≠n λλ ,故),,1(0n i i =≠λ.6. 已知三阶矩阵A 的特征值为1,2,3,求*12,,3A A E A A -++的特征值. 解:由矩阵的特征值的性质得 A A 32+的特征值为41312=⨯+,102322=⨯+,183332=⨯+;1-+A E 的特征值为34311,23211,2111=+=+=+; 因6321||=⨯⨯=A *A 的特征值为236,326,616===. 7. A 是三阶矩阵,已知0|3|,0|2|,0||=-=-=+A E A E A E ,求|4|A E +.解:因,0||)1(||3=+-=--A E A E 0|3|,0|2|=-=-A E A E ,故三阶矩阵A 的全部特征值为-1,2, 3.因此A E +4的特征值为,734,624,3)1(4=+=+=-+于是126763|4|=⨯⨯=+A E .8. 已知向量)1,,1(k =αT 是矩阵⎪⎪⎪⎭⎫ ⎝⎛=211121112A 的逆矩阵1-A 的特征向量,求常数k 的值.解:因α是1-A 的特征向量,故也是A 的特征向量.设对应的特征值为λ,于是由λαα=A 可得⎪⎩⎪⎨⎧=++=++=++λλλ2112112k k k k ,解得2-=k 或1=k .9. 证明:如果矩阵A 可逆,则BA AB ~.证明:因BA BA A A A AB A ==--))(()(11,且A 可逆,则BA AB ~.10. 如果B A ~,证明:存在可逆矩阵P ,使得BP AP ~.证明:因B A ~,故存在可逆矩阵P ,使得AP P B 1-=.将上式两端右乘,P 得P AP P AP P BP )(11--==,即BP AP ~.11. 如果B A ~,D C ~,证明:⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~. 证明:因B A ~,D C ~,故存在可逆矩阵Q P ,,使得CQ Q D AP P B 11,--==.于是有⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---D O O B Q O O P C O O A Q OO P Q O O P C O O A Q O O P 111. 而⎪⎪⎭⎫ ⎝⎛Q O O P 可逆,故⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛D O O B C O O A ~.12. 已知A 为二阶矩阵,且0||<A ,证明:存在可逆矩阵P ,使得AP P 1-为对角矩阵.证明:A 为二阶矩阵,且0||<A ,故A 必有两个不等特征值,因此必存在可逆矩阵P ,使得AP P 1-为对角矩阵.13. 已知矩阵⎪⎪⎪⎭⎫ ⎝⎛--=x A 14020112与矩阵⎪⎪⎪⎭⎫ ⎝⎛-=21y B 相似,求(1) 常数x 和y 的值;(2) 可逆矩阵P ,使得B AP P =-1.解:(1)因B A ~,故B A 与有相同的特征值.而B 的特征值为2,,1y -,故-1,2也是A 的特征值.而=-A E λ]42)2()[2(140201122+--+-=-----+x x xλλλλλλ. 将1-=λ代入上式中得3=x .于是可得)1()2(2+-=-λλλA E ,故有A 的特征值为2,2,1-,因此2=y .(2)由(1)知A 的特征值为11-=λ,23,2=λ(二重).对应11-=λ的无关特征向量为)1,0,1(1=αT ,对应23,2=λ的无关特征向量为)0,4,1(2=αT ,)4,0,1(3=αT ,令⎪⎪⎪⎭⎫ ⎝⎛=401040111P ,则P 可逆,且B AP P =-1.14. 设三阶矩阵A 的特征值为1, 2, 3, 对应的特征向量分别为)1,1,1(T ,)1,0,1(T ,)1,1,0(T ,求(1)A ;(2)n A .解:(1)令⎪⎪⎪⎭⎫ ⎝⎛=111101011P ,则⎪⎪⎪⎭⎫ ⎝⎛=-3211AP P .而⎪⎪⎪⎭⎫ ⎝⎛---=-1011101111P 则⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎪⎭⎫ ⎝⎛=-4122121113211P P A . (2)因⎪⎪⎪⎭⎫ ⎝⎛==-3211ΛAP P ,所以1-=P P A Λ,故 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛==-1011101113211111010111n nn n P P A Λ⎪⎪⎪⎭⎫ ⎝⎛-+------=13221311313112211n n n n n n n n. 15. 判断第1题中各矩阵是否可以对角化?若可以对角化,求出可逆矩阵P ,使得AP P 1-为对角阵.解:由第1题结果知(1) 可以对角化, ⎪⎪⎭⎫ ⎝⎛-=1111P ; (2) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛---=110111011P ;(3) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=212221122P ; (4) (5) 不可以对角化;(6) 可以对角化, ⎪⎪⎪⎭⎫ ⎝⎛--=103012111P .16. 证明正交矩阵的实特征值只能是1或1-.证明:设A 为正交矩阵,则AA T E A A T ==.设矩阵A 的特征值为λ,对应的特征向量为α,即λαα=A .将上式两端取转置得TT T A λαα=.将上面两式左右相乘得ααλααT T T A A 2=,即ααλααT T 2=.而ααT 为非零常数,故1,12±==λλ.17. 设⎪⎪⎪⎭⎫ ⎝⎛=111111111A ,求正交矩阵P ,使得AP P 1-为对角阵.解:矩阵A 的特征多项式为=-A E λ)3(1111111112-=---------λλλλλ, 所以A 的特征值为02,1=λ(二重),33=λ.对于02,1=λ,解对应齐次线性方程组=-X A E )0(O ,可得它的一个基础解系为)0,1,1(1-=αT ,)1,0,1(2-=αT .将其正交化,取⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛-=-=1212101121101),(),(1111222ββββααβ, 再单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-==⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==366666,02222222111ββγββγ; 对于33=λ,解对应齐次线性方程组=-X A E )3(O ,可得它的一个基础解系为)1,1,1(3=αT.将其单位化,得⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==333333333ααγ. 令⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=33360336622336622P ,则⎪⎪⎪⎭⎫⎝⎛==-3001ΛAP P . 18. 设三阶实对称矩阵A 的特征值为1,23,21=-=λλ, 属于1λ的特征向量为)1,1,0(1=αT,求属于3,2λ的特征向量及矩阵A .解:设属于13,2=λ的无关特征向量为32,αα.因A 是实对称矩阵,故123,21=-=λλ的特征向量与的特征向量必正交,于是⎪⎩⎪⎨⎧==03121ααααTT , 即32,αα是齐次线性方程组O X T=1α的两个线性无关解向量.求得上述方程组的基础解系为)0,0,1(T ,)1,1,0(-T,故取)0,0,1(1=αT,)1,1,0(2-=αT,因此属于13,2=λ的全部特征向量为)0,0,1(1k T)1,1,0(2-+k T(21,k k 不全为零);令⎪⎪⎪⎭⎫⎝⎛-=101101010P ,则⎪⎪⎪⎭⎫ ⎝⎛-==-1121ΛAP P . 而⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-21210011212101P ,故⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛----==-21230232100011P P A Λ. (B)1. 设n 阶矩阵A 的各行元素之和为常数a ,证明:a =λ是矩阵A 的一个特征值,)1,,1,1( T是对应的特征向量.证明:设n n ij a A ⨯=)(,其中T nj ija a)1,,1,1(,1==∑=α.由知a =λ是矩阵A 的一个特征值,)1,,1,1( =αT是对应的特征向量.2. 设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n b b b a a a 2121,βα都是非零向量,且0=βαT,记αβ=A T ,求(1)2A ;(2)A 的特征值与特征向量.解:(1)由0=βαT得0)(==TTTβααβ,于是O A T T T T ===βαβααβαβ)())((2.(2)由A 组第2题(1)知A 的特征值为0.求A 的特征向量.⎪⎪⎪⎪⎪⎭⎫⎝⎛==n n n n n n Tb a b a b a b a b a b a b a b a b a A 212221212111αβ,因βα,都是非零向量,故必存在某个i a 和j b 不为零,因此A 中元素0≠j i b a ,不妨设011≠b a .将A 做初等行变换得⎪⎪⎪⎪⎪⎭⎫⎝⎛00000021n b b b ,即1)(=A r ,故齐次线性方程组O AX =-的基础解系含有1-n 个解向量.令T n x x x ),,,(21 为T b )0,,0,(1 ,T b )0,,,0(1 ,T b ),,0,0(,1 ,得T b b )0,,0,,(121 -=α,T b b )0,,,0,(132 -=α,T n n b b ),,0,0,(,11 -=-α,于是所求特征向量为T n n b b k ),,0,0,(111 ---++,121,,,(-n k k k 不全为零).3. 已知三阶矩阵A 的特征值为2, 3, 4, 对应的特征向量分别为)1,2,1(1-=αT ,)2,1,2(2-=αT ,)2,3,3(3-=αT .令向量=β)6,5,4(T ,(1)将β用321ααα,,线性表示;(2)求βnA (n 为正整数).解:(1)由得321234αααβ++=.(2)321321234)234(ααααααβnn n n n A A A A A ++=++=)23222212++++⨯+-n n n T .4. 设A 为三阶实对称矩阵,2)(=A r ,且满足条件O A A =+232,求矩阵A 的全部特征值.解:设矩阵A 的特征值为λ,则由O A A =+232得0223=+λλ,故0=λ或2-=λ.因A 为三阶实对称矩阵,故A 必与某三阶对角矩阵Λ相似.因2)(=A r ,故2)(=Λr ,所以Λ的对角线元素有两个-2和一个0.因此A 的全部特征值为22,1-=λ(二重),03=λ.5. 设四阶矩阵A 满足AAA E ,0|2|=+T0||,2<=A E ,求*A 的一个特征值.解:因0||<A ,故矩阵A 可逆.由E AA T 2=知422||=A 得4||-=A .因,0|2|)1(|2|4=+-=--A E A E 得2-=λ是矩阵A 的一个特征值,因此*A 的一个特征值为22.6. 设⎪⎪⎪⎭⎫⎝⎛=0011100y x A 有3个线性无关的特征向量,求x 与y 满足的条件.解:矩阵A 的特征多项式为=-A E λ2)1)(1(01110-+=-----λλλλλy x ,所以A 的特征值为11-=λ,13,2=λ(二重).因A 有3个线性无关的特征向量,故齐次线性方程组=-X A E )(O 的系数矩阵的秩为1,即1)(=-A E r .而⎪⎪⎪⎭⎫ ⎝⎛---→⎪⎪⎪⎭⎫ ⎝⎛----=-000001011010101y x y x A E ,于是0=+y x .7. 问n 阶矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛111111111 与⎪⎪⎪⎪⎪⎭⎫⎝⎛00100100 n 是否相似,为什么? 解:令⎪⎪⎪⎪⎪⎭⎫⎝⎛=111111111 A ,⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=00100100 n B ,则B A ~. 矩阵B 的特征值为1(01,,1-=-n n λ重),n n =λ.01,,1=-n λ对应的齐次线性方程组的系数矩阵为故属于01,,1=-n λ的无关特征向量有1-n 个;n n =λ对应的齐次线性方程组的系数矩阵为故属于n n =λ的无关特征向量有1个.因此矩阵B 有n 个线性无关的特征向量,故B 可对角化,且;00~⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n B Λ因为0||,11===++A trA n n λλλλ ,故A 的特征值必有0和非零数值.因1)()(==-A r A r ,故特征值0有1-n 个线性无关的特征向量,所以0的重数至少为1-n ,则A 的非零特征值为n ,因此矩阵A 的特征值为1(01,,1-=-n n λ重),n n =λ.因A 为实对称矩阵,故必可对角化,且⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n A 00~ Λ,于是B A ~.8. 设A 为n 阶矩阵, O A ≠,且存在正整数m ,使得O A m=,证明A 不能对角化.解:反证法.假设A 可对角化,由A 组第2题(1)知,A 的特征值都为0,故O A ~,即存在可逆矩阵P ,使得O AP P =-1,则O A =,矛盾.9. 设矩阵,22002100003000⎪⎪⎪⎪⎪⎭⎫⎝⎛-=B 矩阵B A ~,求)3()(E A r E A r -+-.解:矩阵B 的特征方程为=-B E λ0)3)(2(2=-+=λλλ,所以B 的特征值为01=λ,22-=λ,14,3=λ(二重).因矩阵B 是实对称矩阵,故属于14,3=λ的线性无关的特征向量必有2个,即224)3(=-=-B E r .因B A ~,则A 的特征值只有0,-2,3(二重),且属于3的线性无关的特征向量也有2个,即2)3(=-A E r .因1不是矩阵A 的特征值,故0||≠-A E ,即4)(=-A E r .因此6)3()(=-+-E A r E A r .。