数据处理及回归分析 ppt课件

合集下载

《minitab回归分析》课件

《minitab回归分析》课件
使用R方、调整R方、AIC等指标评估模型拟 合效果。
模型诊断
检查残差图、正态性等,确保模型假设满足 。
模型优化
根据评估结果调整模型,如添加或删除自变 量、改变模型类型等。
模型验证
使用验证集对优化后的模型进行验证,确保 泛化能力。
结果解读与报告编写
结果解读
解释回归系数、置信区间等,说明自变量对因变量的 影响。
通过散点图矩阵和多元散点图 观察多个变量之间的关系,并 使用拟合直线描述因变量与自 变量之间的关系。
案例三:逻辑回归分析
第一季度
第二季度
第三季度
第四季度
总结词
因变量的分类结果
详细描述
逻辑回归分析用于因变 量为分类结果的情况, 特别是因变量为二分类 的情况。通过计算概率 并使用逻辑函数将其转 化为分类结果,评估模
变量选择与模型建立
变量相关性分析
通过相关性分析确定自变量与因变量的关系。
选择自变量
基于相关性和业务逻辑选择关键自变量。
模型类型选择
根据数据特点和业务需求选择合适的回归模型,如线性回归、逻辑回归等。
模型建立
在Minitab中输入自变量和因变量,选择合适的回归分析命令进行模型建立。
模型评估与优化
模型评估指标
菜单栏 工具栏 工作区 状态栏
Minitab的菜单栏包含了所有可用的命令和功能,用户可以通过 菜单栏进行操作。
Minitab的工具栏包含了常用命令的快捷方式,方便用户快速执 行操作。
Minitab的工作区是用户进行数据分析和处理的主要区域,用户 可以在这里输入、编辑和整理数据,以及进行各种统计分析。
Minitab提供了丰富的统计分析工具,包括 回归分析、方差分析、质量控制等。

应用线性回归分析课件

应用线性回归分析课件

Part
03
线性回归模型建立与求解
一元线性回归模型建立步骤
绘制散点图
以自变量为横坐标,因变量为纵 坐标,绘制散点图,观察变量之 间的关系。
建立一元线性回归模型
如果散点图呈现出线性趋势,则 可以建立一元线性回归模型,即 y=β0+β1x+ε,其中β0和β1为待 估参数,ε为随机误差项。
参数估计
采用最小二乘法对模型参数进行 估计,得到β0和β1的估计值。
03
04
2. 构造检验统计量;
3. 根据显著性水平确定临界值;
05
06
4. 计算检验统计量的值并与临界值比较, 得出结论。
残差分析在模型诊断中应用
残差图
通过绘制残差与预测值或 解释变量的散点图,观察 是否存在非线性关系、异 方差性等问题。
残差自相关检验
通过检验残差是否存在自 相关性,判断模型是否违 反独立性假设。
数据转换
对连续型特征进行离散化(如分 箱处理),对类别型特征进行编 码(如独热编码)。
特征选择与提取技巧
单变量选择
基于模型的选择
计算每个特征与输出变量之间的统计量( 如相关系数、卡方值等),选择统计量较 高的特征。
使用逐步回归、LASSO回归等方法,在模 型训练过程中自动选择重要特征。
特征变换
特征交互
利用线性回归模型建立房价与影响因素之间的关 系,并通过统计指标(如R方值、均方误差等) 评估模型的拟合优度。
参数估计
采用最小二乘法对模型参数进行估计,得到β0, β1, ..., βk的 估计值。
模型检验
对模型进行统计检验,包括拟合优度检验、回归系数显著 性检验、多重共线性检验等,以判断模型是否有效。

相关性分析及回归分析PPT演示课件

相关性分析及回归分析PPT演示课件

^
(xi , yi )
^
y a bx
x x1
回归模型建立的步骤
12
获取自变量和因变量的观测值; 绘制XY散点图,观察自变量和因变量之间是否存
在线性关系;
写出带未知参数的回归方程;
工具-数据分析-回归。
回归方程检验;
R2判断回归方程的拟合优度; t 统计量及相伴概率值,自变量与因变量之间的关系; F统计量及相伴概率值,判断方程的回归效果显著性。
一元线形回归分析
11
回归基本上可视为一种拟
合过程,即用最恰当的数
学方程去拟合一组由一个
y
因变量和一个或多个自变
量所组成的原始数据。
最简单的形式是线性回归, 它有一个因变量和一个自
变量,因此就是用一个线 性方程y=a+bx+ε去拟合一 系列对变量x和y的数据观 察值的过程。
(xi , yi )
量值。
相关系数
5
相关系数:根据样本数据计算的两个变量之间线形相关程度 的统计量,用符号“r"来表示。
r
SS XY
(X X)(Y Y)
XY ( X )(Y ) n
(SSXX )(SSYY )
(X X)2 (Y Y)2
[ X 2 ( X )2 ][Y 2 (Y )2 ]
示例1-利用Excel数据分析计算相关系数 8
根据表中的数据计算不良贷款、贷款余额、累计 应收贷款、贷款项目个数、固定资产投资额之间 的相关系数
法1:数据/数据分析/相关系数/做如下图所示设置
可见,不良贷款与各项贷款余额的相关性最高
示例1-利用Excel数据分析计算相关系数 9

《回归分析 》课件

《回归分析 》课件
参数显著性检验
通过t检验或z检验等方法,检验模型中各个参数的显著性,以确定 哪些参数对模型有显著影响。
拟合优度检验
通过残差分析、R方值等方法,检验模型的拟合优度,以评估模型是 否能够很好地描述数据。
非线性回归模型的预测
预测的重要性
非线性回归模型的预测可以帮助我们了解未来趋势和进行 决策。
预测的步骤
线性回归模型是一种预测模型,用于描述因变 量和自变量之间的线性关系。
线性回归模型的公式
Y = β0 + β1X1 + β2X2 + ... + βpXp + ε
线性回归模型的适用范围
适用于因变量和自变量之间存在线性关系的情况。
线性回归模型的参数估计
最小二乘法
最小二乘法是一种常用的参数估计方法,通过最小化预测值与实 际值之间的平方误差来估计参数。
最大似然估计法
最大似然估计法是一种基于概率的参数估计方法,通过最大化似 然函数来估计参数。
梯度下降法
梯度下降法是一种迭代优化算法,通过不断迭代更新参数来最小 化损失函数。
线性回归模型的假设检验
线性假设检验
检验自变量与因变量之间是否存在线性关系 。
参数显著性检验
检验模型中的每个参数是否显著不为零。
残差分析
岭回归和套索回归
使用岭回归和套索回归等方法来处理多重共线性问题。
THANKS
感谢观看
04
回归分析的应用场景
经济学
研究经济指标之间的关系,如GDP与消费、 投资之间的关系。
市场营销
预测产品销量、客户行为等,帮助制定营销 策略。
生物统计学
研究生物学特征与疾病、健康状况之间的关 系。

医学统计学课件:回归分析

医学统计学课件:回归分析
利用逐步回归等方法,选择重要 的自变量,优化模型,提高预测 精度。
生存分析模型
生存分析模型概述
生存分析模型是用于研究生存时间与相关因素 之间关系的一种统计分析方法。
模型的建立与拟合
通过Cox比例风险模型等统计技术,拟合生存分 析模型,并评估模型的拟合效果。
生存曲线与影响因素
利用生存曲线描述生存时间与影响因素之间的关系,并评估不同因素对生存时 间的影响。
正态性
误差项应服从正态分布,即近似于钟形曲线。如 果误差项存在偏离正态分布的情况,需要采取措 施进行调整。
多重共线性诊断
定义:多重共线性是指自变量之间存在 较强的线性相关关系,导致模型估计失 真或不稳定。
特征值:如果特征值接近于0,则表明存 在严重的多重共线性问题。
条件指数:条件指数大于10表明模型受 到多重共线性的影响。
模型构建流程
数据清洗
对数据进行预处理,包括缺失值填充、异常值处理等,以确保数 据的质量和可靠性。
模型构建
根据已知的变量和因变量之间的关系,构建线性回归模型。
模型优化
通过逐步回归等方法对模型进行优化,以提高模型的预测精度和 稳定性。
模型评估指标
拟合优度
通过计算模型的R²值等指标,评估模型对数 据的拟合程度。
回归分析的分类
线性回归分析和非线性回归分析。
线性回归模型
线性回归模型的定义
线性回归模型是一种最常用的回归分析模型,其形式为Y = β0 + β1X1 + β2X2 + ... + βnXn。
线性回归模型的基本要素
因变量Y,自变量X1, X2, ..., Xn,以及模型中的系数β0, β1, ..., βn。

最新2019-《试验设计与数据处理》讲稿第4章试验数据的回归分析-PPT课件

最新2019-《试验设计与数据处理》讲稿第4章试验数据的回归分析-PPT课件

r Lxy Lxx Lxy
n
n
Lyy (yiy)2 yi2n(y)2
i1
i1
• 回归系数b 与相关系数r 的关系为:
r Lxy Lxy Lxx b Lxx
LxxLxy Lxx Lyy
Lyy
• b 与r 有相同的符号
• 决定系数——相关系数的平方r2
6
相关系数的特点: 0≤| r |≤1
为使SSe值到达极小,根据极值原理,只要对上式分 别对a,b求偏导数,并令其等于零,求解方程组即可 求得a,b之值————最小二乘法原理。
3
一元线性回归方程的建立(续)
根据最小二乘法,可以得到:


Q a
n
2 (yi
i1
a bxi ) 0

Q b

n
2
(3) 计算均方—— 离差平方和/自由度
回归平方和的均方
残差平方和的均方
MSR

SSR dfR
(4) F检验
F MSR M Se
M Se

SSe dfe
服从自由度为(dfR, dfe)的F 分布10
表4-3 一元线性回归方差分析表
差异源 SS 回归 SSR 误差 SSe 总和 SST
df
MS
F
显著性
1
MSR=SSR
MSR / MSe
n-2 MSe=SSe / (n-2)
n-1
1. 若F >F0.01(dfR, dfe),称 x与y有非常显著的线性关系, 用两个 “* *”号表示
2. 若F0.05 (dfR, dfe)<F <F0.01 (dfR, dfe),称 x与y有显著 的线性关系,用一个“*”号表示;

回归分析法PPT课件

回归分析法PPT课件

线性回归模型的参数估计
最小二乘法
通过最小化误差平方和的方法来估计 模型参数。
最大似然估计
通过最大化似然函数的方法来估计模 型参数。
参数估计的步骤
包括数据收集、模型设定、参数初值、 迭代计算等步骤。
参数估计的注意事项
包括异常值处理、多重共线性、自变 量间的交互作用等。
线性回归模型的假设检验
假设检验的基本原理
回归分析法的历史与发展
总结词
回归分析法自19世纪末诞生以来,经历 了多个发展阶段,不断完善和改进。
VS
详细描述
19世纪末,英国统计学家Francis Galton 在研究遗传学时提出了回归分析法的概念 。后来,统计学家R.A. Fisher对其进行了 改进和发展,提出了线性回归分析和方差 分析的方法。随着计算机技术的发展,回 归分析法的应用越来越广泛,并出现了多 种新的回归模型和技术,如多元回归、岭 回归、套索回归等。
回归分析法的应用场景
总结词
回归分析法广泛应用于各个领域,如经济学、金融学、生物学、医学等。
详细描述
在经济学中,回归分析法用于研究影响经济发展的各种因素,如GDP、消费、投资等;在金融学中,回归分析法 用于股票价格、收益率等金融变量的预测;在生物学和医学中,回归分析法用于研究疾病发生、药物疗效等因素 与结果之间的关系。
梯度下降法
基于目标函数对参数的偏导数, 通过不断更新参数值来最小化目 标函数,实现参数的迭代优化。
非线性回归模型的假设检验
1 2
模型检验
对非线性回归模型的适用性和有效性进行检验, 包括残差分析、正态性检验、异方差性检验等。
参数检验
通过t检验、z检验等方法对非线性回归模型的参 数进行假设检验,以验证参数的显著性和可信度。

《数据分析》课件

《数据分析》课件
关系型数据库、非关系型数据库等。
定期备份数据
本地备份、远程备份、增量备份等。
数据归档与过期处理
定期清理过期数据,释放存储空间。
03
CHAPTER
数据分析方法
总结词
描述性分析是数据分析的基础,它通过统计方法对数据进行整理和描述,以揭示数据的分布特征和规律。
详细描述
描述性分析主要关注数据的总体特征,如均值、中位数、众数、方差等统计量,以及数据的分布情况,如正态分布、泊松分布等。通过对数据的描述,可以初步了解数据的规律和趋势,为后续的数据分析提供基础。
数据科学教育将更加注重实践经验的积累,通过实际项目和实践课程提高学生的实际操作能力。
01
数据科学教育的重要性
随着数据分析行业的快速发展,数据科学教育将更加受到重视,培养更多具备专业素养的人才。
02
跨学科融合
数据科学教育将促进不同学科的融合,如计算机科学、统计学、经济学等,以培养具备综合素质的人才。
THANKS
R语言
02
CHAPTER
数据收集与整理
ห้องสมุดไป่ตู้
内部数据
市场调研、竞争对手分析、社交媒体数据等。
外部数据
实时数据
用户生成数据
01
02
04
03
用户调查、在线评论、社交媒体互动等。
公司内部数据库、CRM系统、销售数据等。
传感器、物联网设备、实时交易数据等。
选择合适的存储介质
硬盘、SSD、云存储等。
设计合理的数据库结构
Excel
普及度高的数据分析工具,内置数据可视化功能,适合初学者使用。
Power BI
基于云的商业智能工具,提供数据可视化、报表生成和数据分析功能。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档