浙江省湖州市长兴县2020-2021学年九年级上学期期末数学试题
2020-2021学年浙江省湖州市高二(上)期末数学试卷 (解析版)

2020-2021学年浙江省湖州市高二(上)期末数学试卷一、选择题(共10小题).1.点(﹣1,0)到直线x+y﹣1=0的距离是()A.B.C.1D.2.圆x2+y2﹣2x+2y+1=0的半径是()A.1B.C.D.23.在空间直角坐标系中,若直线l的方向向量为,平面α的法向量为,则()A.l∥αB.l⊥αC.l⊂α或l∥αD.l与α斜交4.“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,l∥α,则l⊥βB.若l∥α,l∥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,E是BC的中点,则直线ED1与直线BD所成角的余弦值是()A.B.C.D.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.18.过点(1,0)作斜率为﹣2的直线,与抛物线y2=8x交于A,B两点,则弦AB的长为()A.2B.2C.2D.29.在四棱柱ABCD﹣A1B1C1D1中,侧棱DD1⊥底面ABCD,点P为底面ABCD上的一个动点,当△D1PC的面积为定值时,点P的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分10.已知三条直线l1:mx+ny=0,l2:nx﹣my+3m﹣n=0,l3:ax+by+c=0,其中m,n,a,b,c为实数,m,n不同时为零,a,b,c不同时为零,且a+c=2b.设直线l1,l2交于点P,则点P到直线l3的距离的最大值是()A.B.C.D.二、填空题(共有7小题,其中多空题每空3分,单空题每空4分,共36分)11.双曲线的离心率是,渐近线方程是.(两条都写出)12.在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为,其外接球的表面积是.13.已知圆C的圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2),则圆C的方程为,它被直线3x﹣4y﹣9=0截得的弦长为.14.已知点F是椭圆的右焦点,AB为椭圆的一条过F的弦,点A在x轴上方.若直线AB与x轴垂直,则|AB|=;若|AF|=2|BF|,则直线AB的斜率是.15.过点(2,3)且与直线l:x﹣2y+1=0垂直的直线方程是.16.已知动点A,B分别在圆C1:x2+(y﹣2)2=1和圆C2:(x﹣4)2+y2=4上,动点P 在直线x+y+1=0上,则|PA|+|PB|的最小值是.17.已知三棱锥P﹣ABC的各棱长均相等,点E在棱BC上,且CE=2EB,动点Q在棱BP 上,设直线EQ与平面ABC所成角为θ,则sinθ的最大值是.三、解答题(共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.在平面直角坐标系xOy中,点A的坐标为(1,1),动点P满足.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)若直线l过点Q(4,6)且与轨迹C相切,求直线l的方程.19.在所有棱长均为2的直棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且∠BAD=60°,O,M分别为BD,B1C的中点.(Ⅰ)求证:直线OM∥平面DB1C1;(Ⅱ)求二面角D1﹣AC﹣D的余弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交C于A(x1,y1),B(x2,y2)两点,且x1x2+y1y2=﹣3.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C的弦PQ与以M(4,0)为圆心、半径为r(r>0)的圆M相切于点N (x0,1),且N恰为弦PQ的中点,求圆M的半径r的值.21.如图,四边形ABCD为梯形,AB∥CD,∠C=60°,AB=2,BC=3,CD=6,点M 在边CD上,且.现沿AM将△ADM折起至△AQM的位置,使QB=3.(Ⅰ)求证:QB⊥平面ABCM;(Ⅱ)求直线BM与平面AQM所成角的正弦值.22.在平面直角坐标系xOy中,已知椭圆的离心率是,且点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)将椭圆C上每点横坐标和纵坐标都扩大到原来的两倍,得到椭圆M的方程.直线y=kx+m(m≠0)与椭圆M交于A,B两点,与椭圆C的一个公共点为点P,连接PO,并延长PO至交椭圆M于点N.设△NAB的面积为S1,△OAB的面积为S2.(ⅰ)求的值;(ⅱ)求S1的最大值.参考答案一、选择题(共10小题).1.点(﹣1,0)到直线x+y﹣1=0的距离是()A.B.C.1D.解:由点到直线的距离公式可得:点(﹣1,0)到直线x+y﹣1=0的距离是d=.故选:A.2.圆x2+y2﹣2x+2y+1=0的半径是()A.1B.C.D.2解:根据题意,圆x2+y2﹣2x+2y+1=0即(x﹣)2+(y+1)2=3,则圆的半径为.故选:C.3.在空间直角坐标系中,若直线l的方向向量为,平面α的法向量为,则()A.l∥αB.l⊥αC.l⊂α或l∥αD.l与α斜交解:由=2×1+(﹣2)×3+1×4=0,可知⊥.∴l∥α或l⊂α.故选:C.4.“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行,所以,解得a=2或a=﹣3,故“a=2”是直线“l1:ax+2y+1=0与l2:3x+(a+1)y﹣3=0平行”的充分不必要条件.故选:A.5.设l为直线,α,β是两个不同的平面,下列命题中正确的是()A.若α⊥β,l∥α,则l⊥βB.若l∥α,l∥β,则α∥βC.若l⊥α,l∥β,则α∥βD.若l⊥α,l⊥β,则α∥β解:由l为直线,α,β是两个不同的平面,知:在A中,若α⊥β,l∥α,则l与β相交、平行或l⊂β,故A错误;在B中,若l∥α,l∥β,则α与β相交或平行,故B错误;在C中,若l⊥α,l∥β,则α与β相交或平行,故C错误;在D中,若l⊥α,l⊥β,则由面面平行的判定定理得α∥β,故D正确.故选:D.6.在长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=3,E是BC的中点,则直线ED1与直线BD所成角的余弦值是()A.B.C.D.解:连接B1D1,EB1,∵BB1∥DD1,BB1=DD1,∴四边形BB1D1D为平行四边形,∴BD∥B1D1,∴∠ED1B1或其补角为直线ED1与直线BD所成角,在△ED1B1中,B1D1=2,B1E=,D1E=,由余弦定理知,cos∠ED1B1===,∴直线ED1与直线BD所成角的余弦值是.故选:C.7.某三棱锥的三视图如图所示,则该三棱锥的体积为()A.B.C.D.1解:由已知中的三视图可得:该几何体是一个以俯视图为底面的三棱锥,棱锥的底面面积S=×1×1=,高为1,故棱锥的体积V==,故选:A.8.过点(1,0)作斜率为﹣2的直线,与抛物线y2=8x交于A,B两点,则弦AB的长为()A.2B.2C.2D.2解:不妨设A,B两点坐标分别为(x1,y1),(x2,y2),其中x1>x2.由直线AB斜率为﹣2,且过点(1,0),用点斜式求得直线AB的方程为y=﹣2(x﹣1).代入抛物线方程y2=8x,可得4(x﹣1)2=8x.整理得x2﹣4x+1=0,解得x1=2+,x2=2﹣,代入直线AB方程得y1=﹣2﹣2,y2=2﹣2.故A(2+,﹣2﹣2),B(2﹣,2﹣2).|AB|==2,故选:B.9.在四棱柱ABCD﹣A1B1C1D1中,侧棱DD1⊥底面ABCD,点P为底面ABCD上的一个动点,当△D1PC的面积为定值时,点P的轨迹为()A.圆的一部分B.椭圆的一部分C.双曲线的一部分D.抛物线的一部分解:∵侧棱DD1⊥底面ABCD,P为底面ABCD内的一个动点,△D1PC的面积为定值,∴点P到线段D1C的距离为定值,则点P在以D1C所在直线为轴,固定长为底面半径的圆柱的侧面与平面ABCD的交线上,∴运动轨迹为椭圆的一部分.故选:B.10.已知三条直线l1:mx+ny=0,l2:nx﹣my+3m﹣n=0,l3:ax+by+c=0,其中m,n,a,b,c为实数,m,n不同时为零,a,b,c不同时为零,且a+c=2b.设直线l1,l2交于点P,则点P到直线l3的距离的最大值是()A.B.C.D.解:由题可知:a+c=2b,∴直线l3:ax+y+c=0过定点E(1,﹣2),直线l1,l2交点P(,),点P到直线l3的距离的最大值为P到定点的距离,即|PE|,|PE|==,当m=0时,|PE|=2,当n=0时,|PE|=,设=t,当m≠0时,|PE|==,令y=26﹣,由判别式法可得:(4﹣y)t2﹣4t+26﹣y=0,则△=16﹣4(4﹣y)(26﹣y)≥0,解得y≤15+5,∴|PE|≤+.故选:D.二、填空题(本题共有7小题,其中多空题每空3分,单空题每空4分,共36分)11.双曲线的离心率是,渐近线方程是y=±2x.(两条都写出)解:双曲线,可知a=1,b=2,所以双曲线的离心率是==.渐近线方程为:y=±x,即y=±2x.故答案为:;y=±2x.12.在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为5,其外接球的表面积是50π.解:∵在长方体ABCD﹣A1B1C1D1中,AB=5,BC=4,AA1=3,则这个长方体的体对角线长为:=5,故其外接球的直径为:5,∴其外接球的表面积是4π•()2=50π.故答案为:5,50π.13.已知圆C的圆心在直线y=﹣4x上,且与直线l:x+y﹣1=0相切于点P(3,﹣2),则圆C的方程为(x﹣1)2+(y+4)2=8,它被直线3x﹣4y﹣9=0截得的弦长为4.解:过切点P(3,2)且与x+y﹣1=0垂直的直线为y+2=x﹣3,即y=x﹣5,与直线y=﹣4x联立,解得x=1,y=﹣4,∴圆心为(1,﹣4),∴半径r=,∴所求圆的方程为(x﹣1)2+(y+4)2=8;圆心(1,﹣4)到直线3x﹣4y﹣9=0的距离d=,∴圆被直线3x﹣4y﹣9=0截得的弦长为.故答案为:(x﹣1)2+(y+4)2=8;4.14.已知点F是椭圆的右焦点,AB为椭圆的一条过F的弦,点A在x轴上方.若直线AB与x轴垂直,则|AB|=;若|AF|=2|BF|,则直线AB的斜率是.解:由椭圆的方程可得:a=3,b=,c=2,所以F(2,0),当直线AB⊥x轴时,A(2,y),且y>0,所以,解得y=,所以|AB|=,当|AF|=2|BF|,设直线AB的方程为:x=my+2,(m<0),代入椭圆方程可得:(9+5m2)y2+20my﹣25=0,设A(x1,y1),B(x2,y2),则y,y,由|AF|=2|BF|可得:y1=﹣2y2,所以联立方程解得m=﹣,所以直线AB的方程为:x=﹣,即y=﹣,故直线AB的斜率为﹣,故答案为:.15.过点(2,3)且与直线l:x﹣2y+1=0垂直的直线方程是2x+y﹣7=0.解:设所求直线的方程为2x+y+m=0,将点(2,3)代入方程,可得m=﹣7,故所求直线方程为2x+y﹣7=0.故答案为:2x+y﹣7=0.16.已知动点A,B分别在圆C1:x2+(y﹣2)2=1和圆C2:(x﹣4)2+y2=4上,动点P 在直线x+y+1=0上,则|PA|+|PB|的最小值是5﹣3.解:根据题意,圆C1:x2+(y﹣2)2=1的圆心C1为(0,2),半径R=1,圆C2:(x﹣4)2+y2=4,其圆心C2为(4,0),半径r=2,设圆N与圆C1:x2+(y﹣2)2=1关于直线x+y+1=0对称,其圆心N的坐标为(a,b),则有,解可得,即N(﹣3,﹣1),|NC2|==5,当P在线段NC2上时,|PA|+|PB|取得最小值,则|PA|+|PB|的最小值为|NC2|﹣R﹣r=5﹣3,故答案为:5﹣3.17.已知三棱锥P﹣ABC的各棱长均相等,点E在棱BC上,且CE=2EB,动点Q在棱BP 上,设直线EQ与平面ABC所成角为θ,则sinθ的最大值是.解:设棱长为3a,QB=x(0<x≤3a),由余弦定理得QE=.则正四面体的高PO==a,设P到平面BCD的距离为h,则,x=,∴sinθ===,∴x=2a时,sinθ的最大值为.故答案为:.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤)18.在平面直角坐标系xOy中,点A的坐标为(1,1),动点P满足.(Ⅰ)求动点P的轨迹C的方程;(Ⅱ)若直线l过点Q(4,6)且与轨迹C相切,求直线l的方程.【解答】解(Ⅰ)设P(x,y),∵点A的坐标为(1,1),则由,得,∴动点P的轨迹C的方程为(x﹣2)2+(y﹣2)2=4.(Ⅱ)当直线l的斜率存在时,设l:y﹣6=k(x﹣4),即kx﹣y+6﹣4k=0,∵直线l过点Q(4,6)且与轨迹C相切,∴圆心C(2,2)到l的距离d=,当直线l的斜率不存在时,l的方程为x=4,显然满足条件,∴l的方程为x=4或3x﹣4y+12=0.19.在所有棱长均为2的直棱柱ABCD﹣A1B1C1D1中,底面ABCD是菱形,且∠BAD=60°,O,M分别为BD,B1C的中点.(Ⅰ)求证:直线OM∥平面DB1C1;(Ⅱ)求二面角D1﹣AC﹣D的余弦值.【解答】(Ⅰ)证明:连BC1,则M为BC1的中点,又O为BD的中点,所以OM∥C1D,因为OM⊄平面DB1C1,C1D⊂平面DC1B1,所以直线OM∥平面DB1C1;(Ⅱ)解:连D1O,因为ABCD是菱形,所以DO⊥AC,又ABCD﹣A1B1C1D1为直棱柱,所以D1A=D1C,而O为AC中点,所以D1O⊥AC,所以∠D1OD为二面角D1﹣AC﹣D的平面角,因为ABCD是边长为2的菱形,且∠BAD=60°,所以DO=1,又DO=2,所以,所以.二面角D1﹣AC﹣D的余弦值.20.过抛物线C:y2=2px(p>0)的焦点F的直线交C于A(x1,y1),B(x2,y2)两点,且x1x2+y1y2=﹣3.(Ⅰ)求抛物线C的方程;(Ⅱ)若抛物线C的弦PQ与以M(4,0)为圆心、半径为r(r>0)的圆M相切于点N (x0,1),且N恰为弦PQ的中点,求圆M的半径r的值.解:(Ⅰ)抛物线C的焦点,可设直线,代入y2=2px,得y2﹣2pty﹣p2=0,已知A(x1,y1),B(x2,y2),则y1+y2=2pt,,∴,解得p=2,∴抛物线C的方程为y2=4x;(Ⅱ)设P(x3,y3),Q(x4,y4),则依题知x3+x4=2x0,y3+y4=2,由,得(y3+y4)(y3﹣y4)=4(x3﹣x4),即2(y3﹣y4)=4(x3﹣x4),得,∵MN⊥PQ,∴MN的斜率为,得x0=2,∴圆M的半径.21.如图,四边形ABCD为梯形,AB∥CD,∠C=60°,AB=2,BC=3,CD=6,点M 在边CD上,且.现沿AM将△ADM折起至△AQM的位置,使QB=3.(Ⅰ)求证:QB⊥平面ABCM;(Ⅱ)求直线BM与平面AQM所成角的正弦值.解:(Ⅰ)证明:因为BC=3,CD=6,∠C=60°,所以由余弦定理得,从而BD2+BC2=CD2,所以DB⊥BC,由已知得AB=MC,AB∥MC,所以ABCM为平行四边形,所以DB⊥AM,设DB∩AM=O,则折后可得AM⊥平面QOB,所以QB⊥AM,因为,即QB2+BO2=QO2,所以QB⊥BO,因为AM∩BO=O,AM,BO⊂平面ABCM,所以QB⊥平面ABCM;(Ⅱ)作BP⊥QO于P,则由AM⊥平面QOB知BP⊥平面AQM,连MP,则MP是BM在平面AQM上的射影,所以∠BMP即是BM与平面AQM所成的角.因为,BM===,所以.∴直线BM与平面AQM所成角的正弦值为.22.在平面直角坐标系xOy中,已知椭圆的离心率是,且点在椭圆C上.(Ⅰ)求椭圆C的方程;(Ⅱ)将椭圆C上每点横坐标和纵坐标都扩大到原来的两倍,得到椭圆M的方程.直线y=kx+m(m≠0)与椭圆M交于A,B两点,与椭圆C的一个公共点为点P,连接PO,并延长PO至交椭圆M于点N.设△NAB的面积为S1,△OAB的面积为S2.(ⅰ)求的值;(ⅱ)求S1的最大值.解:(Ⅰ)由题意得,所以a2=4,b2=1,即椭圆C的方程为.(Ⅱ)(ⅰ)依题意得椭圆M的方程为,从而O到AB的距离是N到AB距离的,所以.(ⅱ)联立,得(1+4k2)x2+8kmx+4m2﹣16=0,设A(x1,y1),B(x2,y2),则,所以,所以.联立,得(1+4k2)x2+8kmx+4m2﹣4=0,由,所以,即(当且仅当时取得等号),从而.。
专练08 方程与函数类应用题(20题)2020~2021学年九年级数学上期末考点必杀题(试题解析)

专练08 方程与函数类应用题(20题)1.(2019·山东九年级期末)某电子厂商投产一种新型电子产品,每件制造成本为16元,每月销售量y (万件)与销售单价x (元)之间的函数关系如下表格所示:(1)求每月的利润W (万元)与销售单价x (元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的总利润为480万元?(3)如果厂商每月的制造成本不超过480万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?【答案】(1)221321600W x x =-+-;(2)26元或40元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元.(1)由表格可知,y 与x 之间的函数关系是一次函数, 设y 与x 之间的函数关系式为y kx b =+, 将(30,40)和(40,20)代入得:30404020k b k b +=⎧⎨+=⎩,解得2100k b =-⎧⎨=⎩,则y 与x 之间的函数关系式为2100y x =-+, 因此,(16)(16)(2100)W x y x x =-=--+, 即221321600W x x =-+-;(2)由题意得:221321600480x x -+-=, 整理得:26610400x x -+=, 解得26x =或40x =,答:当销售单价为26元或40元时,厂商每月获得的总利润为480万元; (3)由题意得:48003016y ≤≤=, 则0210030x ≤-+≤, 解得3550x ≤≤,将二次函数221321600W x x =-+-化成顶点式为22(33)578W x =--+, 由二次函数的性质可知,在3550x ≤≤范围内,W 随x 的增大而减小, 则当35x =时,W 取得最大值,最大值为22(3533)578570-⨯-+=(万元), 答:当销售单价为35元时,厂商每月获得的利润最大,最大利润为570万元. 【点睛】本题考查了利用待定系数法求一次函数的解析式、二次函数的性质、解一元二次方程、解一元一次不等式组等知识点,较难的是题(3),熟练掌握二次函数的性质是解题关键.2.(2020·迁安市迁安镇第一初级中学九年级期末)某商店代销一批季节性服装,每套代销成本40元,第一个月每套销售定价为52元时,可售出180套;应市场变化调整第一个月的销售价,预计销售定价每增加1元,销售量将减少10套.(1)若设第二个月的销售定价每套增加x 元,填写下表.(2)若商店预计要在这两个月的代销中获利4160元,则第二个月销售定价每套多少; (3)求当4≤x≤6时第二个月销售利润的最大值.【答案】(1)52;52+x ;180;180-10x ;(2)60元;(3)2240元 解:(1)若设第二个月的销售定价每套增加x 元,填写下表:故答案为:52;52+x ;180;180-10x(2)若设第二个月的销售定价每套增加x 元,根据题意得: (52-40)×180+(52+x-40)(180-10x )=4160, 解得:x 1=-2(舍去),x 2=8, 当x=-2时,52+x=50(舍去),当x=8时,52+x=60.答:第二个月销售定价每套应为60元. (3)设第二个月利润为y 元. 由题意得到:y=(52+x-40)(180-10x ) =-10x 2+60x+2160 =-10(x-3)2+2250 ∵-10<0∴当4≤x≤6时,y 随x 的增大而减小, ∴当x=4时,y 取最大值,此时y=2240, ∴52+x=52+4=56,即要使第二个月利润达到最大,应定价为56元,此时第二个月的最大利润是2240元. 【点睛】本题考查了二次函数的应用,解题的关键是明确题意,列出相应的关系式,找出所求问题需要的条件. 3.(2019·山东九年级期末)如图,一个圆形水池的中央垂直于水面安装了一个柱形喷水装置OA ,顶端A 处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.建立如图所示的直角坐标系,水流喷出的高度y (m )与水平距离x (m )之间的关系式可以用2y x bx c =-++表示,且抛物线经过点B 15,22⎛⎫ ⎪⎝⎭,C 72,4⎛⎫ ⎪⎝⎭;(1)求抛物线的函数关系式,并确定喷水装置OA 的高度; (2)喷出的水流距水面的最大高度是多少米?(3)若不计其他因素,水池的半径至少要多少米,才能使喷出的水流不至于落在池外?【答案】(1)2724y x x =-++,74米;(2)114米;(3)至少要1⎛+ ⎝⎭米.(1)由题意,将点157,,2,224B C ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭代入得:1154227424b c b c ⎧-++=⎪⎪⎨⎪-++=⎪⎩,解得274b c =⎧⎪⎨=⎪⎩,则抛物线的函数关系式为2724y x x =-++, 当0x =时,74y =, 故喷水装置OA 的高度74米; (2)将2724y x x =-++化成顶点式为211(1)4y x =--+,则当1x =时,y 取得最大值,最大值为114,故喷出的水流距水面的最大高度是114米;(3)当0y =时,211(1)04x --+=,解得12x =+或102x =-<(不符题意,舍去),故水池的半径至少要12⎛⎫+⎪ ⎪⎝⎭米,才能使喷出的水流不至于落在池外. 【点睛】本题考查了二次函数的实际应用,熟练掌握待定系数法和二次函数的性质是解题关键.4.(2020·保定市第二十一中学九年级期末)某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨1元,就会少售出10件玩具.(1)不妨设该种品牌玩具的销售单价为x (元)()40x >,请你分别用含x 的代数式来表示销售量y (件)和销售该品牌玩具获得利润w (元),并把结果填写在表格中:(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x 应定为多少元. (3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于540件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?【答案】(1)1000-10x ,-10x 2+1300x-30000;(2)玩具销售单价为50元或80元时,可获得10000元销售利润;(3)商场销售该品牌玩具获得的最大利润为8640元. 解:(1)∵根据销售单价每涨1元,就会少售出10件玩具, ∵销售量y (件)为:600-10(x-40)=1000-10x ;销售玩具获得利润w (元)为: [600-10(x-40)](x-30) =-10x 2+1300x-30000 故答案为:1000-10x ,-10x 2+1300x-30000;(2)令-10x 2+1300x-30000=10000,解得:x=50 或x=80答:玩具销售单价为50元或80元时,可获得10000元销售利润; (3)根据题意得:10001054044x x -≥⎧⎨≥⎩解得:44≤x≤46由w=-10x 2+1300x-30000=-10(x-65)2+12250 ∵-10<0,对称轴是直线x=65. ∵当44≤x≤46时,w 随增大而增大 ∵当x=46时,W 最大值=8640(元).答:商场销售该品牌玩具获得的最大利润为8640元. 【点睛】本题主要考查了二次函数的应用、不等式组的应用等知识点,灵活运用二次函数的性质以及二次函数求最大值是解答本题的关键.5.(2020·河北九年级期末)某种蔬菜的售价1y (元)与销售月份x 之间的关系如图所示,成本2y (元)与销售月份x 之间的关系如图所示.(图的图象是线段,图的图象是抛物线)(1)已知6月份这种蔬菜的成本最低,此时出售每千克的利润是多少元?(利润=售价-成本) (2)设每千克该蔬菜销售利润为P ,请列出P 与x 之间的函数关系式,并求出哪个月出售这种蔬菜每千克的利润最大,最大利润是多少?(3)已知市场部销售该种蔬菜4、5两个月的总利润为22万元,且5月份的销售量比4月份的销售量多2万千克.4、5两个月的销售量分别是多少万千克?【答案】(1)6月份出售这种蔬菜每千克的利润是2元;(2)P=2110633x x -+-,5月份出售这种蔬菜,每千克的收益最大为73元;(3)4月份的销售量为40000千克,5月份的销售量为60000千克. (1)当x=6时,y 1=3,y 2=1, ∵y 1-y 2=3-1=2,∵6月份出售这种蔬菜每千克的利润是2元; (2)设y 1=mx+n ,y 2=a(x-6)2+1,将(3,5)、(6,3)分别代入y 1=mx+n ,得3563m n m n +=⎧⎨+=⎩, 解得:237m n ⎧=-⎪⎨⎪=⎩,∴1273=-+y x ; 将(3,4)代入y 2=a(x-6)2+1,得, 4=a (3-6)2+1, 解得:a=13, ∵()222116141333y x x x =-+=-+,∵P=12y y -=()2222111017741365333333x x x x x x ⎛⎫-+--+=-+-=--+ ⎪⎝⎭, ∵103-<, ∵当x=5时,P 取最大值,最大值为73, 即5月份出售这种蔬菜,每千克的收益最大,最大值为73元; (3)当x=4时,P=2110633x x -+-=2, 设4月份的销售量为t 千克,则5月份的销售量为(t+20000)千克, 根据题意得:()72200002200003t t ++=, 解得:t=40000, ∴t+20000=60000,答:4月份的销售量为40000千克,5月份的销售量为60000千克. 【点睛】本题考查了一次函数的应用,二次函数的应用,涉及了待定系数法,二次函数的性质等知识,综合性较强,弄清题意,读懂图象,灵活运用相关知识是解题的关键.6.(2020·福建九年级期末)某学校为了美化校园环境,向园林公司购买一批树苗.公司规定:若购买树苗不超过60棵,则每棵树售价120元;若购买树苗超过60棵,则每增加1棵,每棵树售价均降低0.5元,且每棵树苗的售价降到100元后,不管购买多少棵树苗,每棵售价均为100元. (1)若该学校购买50棵树苗,求这所学校需向园林公司支付的树苗款; (2)若该学校向园林公司支付树苗款8800元,求这所学校购买了多少棵树苗.【答案】(1)这所学校需向园林公司支付的树苗款为6000元;(2)这所中学购买了80棵树苗. 解:(1)∵50<60, ∵120506000⨯=(元),∵答:这所学校需向园林公司支付的树苗款为6000元.(2)∵购买60棵树苗时所需支付的树苗款为120607200⨯=元8800<元, ∵该中学购买的树苗超过60棵. 又∵120100601000.5-+=,∵购买100棵树苗时每棵树苗的售价恰好降至100元.∵购买树苗超过100棵后,每棵树苗的售价仍为100元, 此时所需支付的树苗款超过10000元,而100008800>, ∵该中学购买的树苗不超过100棵. 设购买了()60100x x <≤棵树苗, 依题意,得()1200.5608800x x --=⎡⎤⎣⎦, 化简,得2300176000x x -+=, 解得1220100x =>(舍去),280x =. 答:这所中学购买了80棵树苗. 【点睛】本题考查一元二次方程的实际应用,理解题意弄清题目中的等量关系是本题的解题关键.7.(2020·四川九年级期末)如图,要利用一面足够长的墙为一边,其余三边用总长33m 的围栏建两个面积相同的生态园,为了出入方便,每个生态园在平行于墙的一边各留了一个宽1.5米的门,能够建生态园的场地垂直于墙的一边长不超过6米(围栏宽忽略不计).()1每个生态园的面积为48平方米,求每个生态园的边长;()2每个生态园的面积_ (填“能”或“不能”)达到108平方米.(直接填答案)【答案】(1)每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米;理由见详解(2)不能,理由见详解.(1)解:设每个生态园垂直于墙的边长为x 米, 根据题意得:()33+1.523482x x ⨯-=⨯整理,得:212320x x +=﹣, 解得:1=4x 、2=8x (不合题意,舍去),∴ 当=4x 时,33+1.523363424x ⨯-=-⨯=,∴242=12÷.答:每个生态园的面积为48平方米时,每个生态园垂直于墙的边长为4米,平行于墙的边长为12米. (2)由(1)及题意可知:()33+1.5231082x x ⨯-=⨯整理得:212720x x +=﹣()22=41241721440b ac ∆-=--⨯⨯=-<∴原方程无实数根∴每个生态园的面积不能达到108平方米.故答案为:不能. 【点睛】本题主要考查一元二次方程的实际应用,关键是通过题意设出未知数得到平行于墙的边长,要注意每个生态园开有1.5m 的门,然后根据题意列出一元二次方程即可;在解第二问时要注意利用一元二次方程根的判别式来分析.8.(2018·河北新河中学九年级期末)如图,在矩形 ABCD 中,AB =6cm ,BC =8cm ,动点 P 以 2cm /s 的速度从点 A 出发,沿AC 向点 C 移动,同时动点 Q 以 1cm /s 的速度从点 C 出发,沿 CB 向点 B 移动,设 P 、Q 两点移动 ts (0<t <5)后,△CQP 的面积为 Scm 2.在 P 、Q 两点移动的过程中,△CQP 的面积能否等于 3.6cm 2?若能,求出此时 t 的值;若不能,请说明理由.【答案】2 或 3 解:在矩形 ABCD 中, ∵AB =6cm ,BC =8cm ,∴AC =10cm ,AP =2tcm ,PC =(10﹣2t )cm , CQ =tcm ,过点 P 作 PH ⊥BC 于点 H ,易知:PH PC AB AC ==10210t-,∴PH =35(10﹣2t )cm , 根据题意,得12t •35(10﹣2t )=3.6, 解得:t 1=2,t 2=3.答:△CQP 的面积等于 3.6cm 2 时,t 的值为 2 或 3.【点睛】本题考查的是相似三角形的判定与性质,解题关键是对这些知识的熟练掌握及灵活运用.9.(2021·安徽九年级月考)教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10C ︒,待加热到100C ︒,饮水机自动停止加热,水温开始下降.水温()C y ︒和通电时间()min x 成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20C ︒,接通电源后,水温()C y ︒和通电时间()min x 之间的关系如图所示,回答下列问题:(1)分别求出当08x ≤≤和8x a <≤时,y 和x 之间的函数关系式; (2)求出图中a 的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40C ︒的开水,则他需要在什么时间段内接水?【答案】(1)08x ≤≤时,1020y x =+;8x a <≤时,800y x=;(2)40;(3)7:38到7:50之间 解:(1)当08x ≤≤时,设1y k x b =+,将(0,20),(8,100)的坐标分别代入1y k x b =+得1208100b k b =⎧⎨+=⎩, 解得110k =,20b =.∴当08x ≤≤时,1020y x =+. 当8x a <≤时,设2k y x=, 将(8,100)的坐标代入2k y x =, 得2800k =.∴当8x a <≤时,800y x=. 综上,当08x ≤≤时,1020y x =+;当8x a <≤时,800y x =; (2)将20y =代入800y x=,解得40x =, 即40a =; (3)当40y =时,8002040x ==. ∴要想喝到不低于40C ︒的开水,x 需满足820x ≤≤, 即李老师要在7:38到7:50之间接水.【点睛】此题主要考查了反比例函数的应用,正确求出函数解析式是解题关键.10.(2020·内蒙古和林格尔县第三中学九年级月考)某气象研究中心观测到一场沙尘暴从发生到减弱的全过程.开始一段时间风速平均每小时增加2千米,4小时后,沙尘暴经过开阔荒漠地,风速变为平均每小时增加4千米,然后风速不变,当沙尘暴遇到绿色植被区时,风速y (千米/小时)与时间x (小时)成反比例函数关系缓慢减弱.(1)这场沙尘暴的最高风速是__________千米/小时,最高风速维持了__________小时;(2)当20x ≥时,求出风速y (千米/小时)与时间x (小时)的函数关系式;(3)在这次沙尘暴形成的过程中,当风速不超过10千米/小时称为“安全时刻”,其余时刻为“危险时刻”,那么在沙尘暴整个过程中,求“危险时刻”共有几小时.【答案】(1)32,10;(2)640y x=;(3)共有59.5小时 解:(1)0~4时,风速平均每小时增加2千米,所以4时风速为8千米/时;4~10时,风速变为平均每小时增加4千米,10时达到最高风速,为8+6×4=32千米/时,10~20时,风速不变,最高风速维持时间为20-10=10小时;故答案为:32,10.(2)设k y x=,将()20,32代入,得:3220k =, 解得:640k =. 所以当20x ≥时,风速y (千米/小时)与时间x (小时)之间的函数关系为:640y x =. (3)∵4时风速为8千米/时,而4小时后,风速变为平均每小时增加4千米,∴4.5时风速为10千米/时.将10y =代入640y x =, 得64010x=,解得64x =, 64 4.559.5-=(小时)故在沙尘暴整个过程中,“危险时刻”共有59.5小时.【点睛】 本题考查反比例函数的应用,待定系数法求函数的解析式,学生阅读图象获取信息的能力,理解题意,读懂图象是解决本题的关键.11.(2020·浙江九年级一模)2020年4月,学校复学后,为确保学生的安全,某校对各教室进行“84”消毒液消毒,如下左图描述了防疫人员消毒阶段室内每立方米空气中含药量()mg y 与时间()min x 的关系:表格记录了消毒结束后室内每立方米空气中含药量()mg y 与时间()min x 的部分数据.(1)求前3分钟消毒阶段y 关于x 的函数表达式;(2)在给出的平面直角坐标系中,根据表中数据画出消毒后y 关于x 的函数图象,并求出该函数表达式;(3)研究表明,当每立方米空气中含药量低于1.2mg 时,对人体无毒害作用,那么在哪个时段学生不能停留在教室里?【答案】(1)y=83x (0≤x≤3);(2)图像见详解,y=24x (x >3);(3)在920分钟到20分钟内不能停留在教室解:(1)设前3分钟消毒阶段的解析式为y=kx ,将(3,8)代入得8=3k ,解得k=83, ∴解析式为:y=83x (0≤x≤3);(2)图像如下:设函数表达式为y=k x, 将(6,4)代入得k=24,∴解析式为:y=24x(x >3); (3)当y=1.2时,在前三分钟内:得1.2=83x (0≤x≤3), 解得x=920, 在后期1.2=24x (x >3), 解得x=20, ∴920<x <20 ∴在920<x <20这段时间内不能回教室. 【点睛】本题考查了反比例函数和一次函数的综合,求出解析式是解题关键.12.(2020·河南九年级其他模拟)某校科技小组进行野外考察,途中遇到一片湿地,为了人员和设备能够安全迅速地通过这片湿地,他们沿着前进路线铺了若干块大小不同的木板,构筑成一条临时通道.根据学习函数的经验,该小组对木板对地面的压强与木板的面积之间的关系进行探究.已知当压力不变时,木板对地面的压强()P Pa 与木板面积()2S m的对应值如下表:(1)求P 与S 之间满足的函数关系式;(2)在平面直角坐标系中,描出以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象; (3)结合图形,如果要求压强不超过4000Pa ,木板的面积至少要多大?【答案】(1)600Sp =;(2)见解析;(3)当压强不超过4000Pa 时,木板面积至少20.15m 解:(1)1600154002300600⨯=⨯=⨯=.,600Sp ∴=; (2)如图所示,(3)当4000p =时,20.15s m =.答:当压强不超过4000Pa 时,木板面积至少20.15m .【点睛】本题主要考查反比例函数在实际生活中的应用,解题的关键是从实际问题中整理出函数模型,用反比例函数的知识解决实际问题,要认真观察图象得出正确的结果.13.(2020·广东深圳实验学校九年级期中)如图1,大桥桥型为低塔斜拉桥,图2是从图1抽象出的平面示意图,现测得拉索AB 与水平桥面的夹角是30°,拉索CD 与水平桥面的夹角是60°,两拉索顶端的距离B C 为4米,两拉索底端距离AD 为20米,试求立柱BE 的长.(结果精确到0.1 1.732≈)【答案】立柱BE 的长约为15.3米如图2,设BE=x 米,由BC=4米得CE=(x-4)米,在Rt △ABE 中 ∵tan BE A AE=,∠A=30°∴tan tan 30BE x AE A ===︒米; 在Rt △DCE 中 ∵tan CDE CE DE∠=,∠CDE=60°∴4D 4)tan tan 60CE x E x CDE -===-∠︒米 由AE-DE=20米,得4)20x -=解之得215.3x =≈.答:立柱BE 的长为15.3米.【点睛】此题考查三角函数的实际应用.此题关键是要分别在两个直角形内运用三角函数列关系式,再据题意例方程求解.14.(2020·长春吉大附中力旺实验中学九年级月考)数学爱好小组要测量5G 信号基站高度,一名同学站在距离5G 信号基站30m 的点E 处,测得基站项部的仰角52ACD ∠=°,已知测角仪的高度15m CE =..求这个5G 信号基站的高AB (精确到1m ).(参考数据:sin520.79,cos520.62,tan52 1.28===)【答案】40解:如图,过点C 作CD AB ⊥,垂足为D .则四边形CEBD 是矩形,15m BD CE ==.,在Rt ACD △中,30m,52CD EB ACD ==∠=︒ ∵tan AD ACE CD∠=, ∴tan 30 1.2838.4(m)AD CD ACD ∠=⋅≈⨯=.∴38.4 1.540(m)AB AD BD =+=+≈.答:这个5G 信号基站的高AB 约为40m .【点睛】本题主要考查锐角三角函数的应用.通过做辅助线,分割图形,构建直角三角形,并解直角三角形是解答本题的关键.15.(2020·潍坊市寒亭区教学研究室九年级一模)数学活动课上,小明和小红要测量小河对岸大树BC 的高度,小红在点A 测得大树顶端B 的仰角为45︒,小明从A 点出发沿斜坡走D ,在此处测得树顶端点B 的仰角为31︒,且斜坡AF 的坡比为1:2.(1)求小明从点A 到点D 的过程中,他上升的高度;(2)依据他们测量的数据能否求出大树BC 的高度?若能,请计算:若不能,请说明理由.(参考数据:sin310.52︒≈,cos310.86︒≈,tan310.60︒≈)【答案】(1)4米 (2)能;22米解:(1)作DH AE ⊥于H ,如图所示:在Rt ADH ∆中, ∵12DH AH =, ∴2AH DH =,∵222AH DH AD +=,∴()(2222DH DH +=, ∴4DH =.答:小明从点A 到点D 的过程中,他上升的高度为4米.(2)如图所示:过点D 作DG BC ⊥于点G ,设BC xm =,在Rt ABC ∆中,45BAC ∠=︒,∴AC BC x ==,由(1)得28AH DH ==,在矩形DGCH 中,4DH CG ==,8DG CH AH AC x ==+=+,在Rt BDG ∆中,由4tan 0.68BG x BAG DG x ∠-==≈+, 解得:22x =答:大树的高度约为22米.【点睛】本题考查的是解直角三角形的应用−仰角俯角问题,掌握锐角三角函数的定义、仰角俯角的概念是解题的关键.16.(2020·浙江九年级一模)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米.(1)求点D 到BC 的距离;(2)求E 、E '两点的距离.【答案】(1)点D′到BC 的距离为()厘米;(2)E∵E′两点的距离是 解:(1)过点D′作D′H ⊥BC ,垂足为点H ,交AD 于点F ,如图3所示.由题意,得:AD′=AD=90厘米,∠DAD′=60°.∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠AFD′=∠BHD′=90°.在Rt △AD′F 中,D′F=AD′•sin ∠DAD′=90×sin60°=453厘米.又∵CE=40厘米,DE=30厘米,∴FH=DC=DE+CE=70厘米,∴D′H=D′F+FH=(453+70)厘米.答:点D′到BC 的距离为(453+70)厘米.(2)连接AE ,AE′,EE′,如图4所示.由题意,得:AE′=AE ,∠EAE′=60°,∴△AEE′是等边三角形,∴EE′=AE .∵四边形ABCD 是矩形,∴∠ADE=90°.在Rt △ADE 中,AD=90厘米,DE=30厘米, ∴223010AE AD DE =+=厘米,∴EE′=3010厘米.答:E 、E′两点的距离是3010厘米.【点睛】本题考查了解直角三角形的应用、矩形的性质、等边三角形的判定与性质以及勾股定理,解题的关键是:(1)通过解直角三角形求出D′F 的长度;(2)利用勾股定理求出AE 的长度.17.(2019·甘州中学九年级月考)如图,从一个建筑物的A 处测得对面楼BC 的顶部B 的仰角为32º,底部C 的俯角为45º,观测点与楼的水平距离AD 为31m ,则楼BC 的高度大约为多少米?(结果取整数).(参考数据:sin 320.5︒≈,cos320.8︒≈,tan 320.6︒≈)【答案】50.解:在Rt △ABD 中, ∵AD =31,∠BAD =32°, ∴BD =AD ⋅tan32°=31×0.6=18.6, 在Rt △ACD 中, ∵∠DAC =45°, ∴CD =AD =31,∴BC =BD +CD =18.6+31≈50m . 答:楼BC 的高度大约为50米. 【点睛】本题考查了仰角与俯角的知识,注意能借助仰角与俯角构造直角三角形并解直角三角形是解此题的关键. 18.(2020·浙江九年级一模)如图,小区内有一条南北方向的小路MN ,快递员从小路旁的A 处出发沿南偏东53°方向行走200m 将快递送至B 楼,又继续从B 楼沿南偏西30°方向行走120m 将快递送至C 楼,求此时快递员到小路MN 的距离.(计算结果精确到1m .参考数据:sin530.80,cos530.60,tan53 1.33︒≈︒≈︒≈)【答案】120m如图,过B 作BD ⊥MN 于D ,过C 作CE ⊥MN 于E ,过B 作BF ⊥EC 于F , 则四边形DEFB 是矩形, ∴BD =EF ,在Rt △ABD 中,ADB 90∠=︒ ,53DAB ∠=︒,AB =200m , ∴sin532000.8160BD AB =︒=⨯=m ,在Rt △BCF 中,90BFC ∠=︒ ,3CBF 0∠=︒,BC =120m , ∴1602CF BC ==m , ∴16060100CE EF CF =-=-=m , 答:快递员到小路MN 的距离是100m .【点睛】此题主要考查了解直角三角形的应用-方向角问题,正确把握定义是解题关键.19.(2020·浙江省临海市回浦实验中学九年级期中)在我市开展的创建文明城市活动中,某居民小区要在一块一边靠墙(墙长18m )的空地上修建一个矩形花园ABCD ,花园的一边靠墙,另三边用总长为40m 的栅栏围成(如图所示).若设花园的BC 边长为()x m ,花园的面积为2()y m(1)求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(2)满足条件的花园面积能达到2200m 吗?若能,求出此时x 的值;若不能,说明理由; (3)当x 取何值时,花园的面积最大?最大面积为多少?【答案】(1)2240(1120)y x x x =-+≤<;(2)不能,理由见解析;(3)当x 取11米时,花园的面积最大,最大面积是2198m . 解:(1)由题意可得,()2402240y x x x x =⋅-=-+,0040218x x >⎧⎨<-≤⎩解不等式得11≤x <20即2240(1120)y x x x =-+≤<; (2)不能,理由:将200y =代入2240y x x =-+, 得2200240x x =-+, 解得,121011x x ==<,答:花园面积不能达到2200m ;(3)∵222402(10)200y x x x =-+=--+,∴函数图象的顶点为()10,200,开口向下,当10x <时,y 随x 的增大而增大,当10x >时,y 随x 的增大而减小,由题意可知,1120x ≤<,∴当11x =时,y 最大,此时198y =,答:当x 取11米时,花园的面积最大,最大面积是2198m . 【点睛】本题考查了二次函数的应用,结合实际问题并从中抽象出函数模型,借助二次函数解决实际问题是解决本题的关键.20.(2020·浙江九年级其他模拟)如图1,皮皮小朋友燃放一种手持烟花,这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径和爆炸时的高度均相同.皮皮小朋友发射出的第一发花弹的飞行高度h (米)随飞行时间t (秒)变化的规律如下表:(1)根据这些数据在图2的直角坐标系中画出相应的点,选择适当的函数表示h (米)与t (秒)之间的关系,并求出相应的函数表达式;(2)当第一发花弹发射2秒后,第二发花弹达到的高度为多少米?(3)为了安全,要求花弹爆炸时的高度不低于18米.皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,请分析花弹的爆炸高度是否符合安全要求?【答案】(1)h=-2(t-3)2+19.8;(2)6.28米;(3)花弹的爆炸高度符合安全要求,理由见详解解:(1)描点如下图所示,其图象近似为抛物线,故可设其解析式为:h=a(t-3)2+19.8,把点(0,1.8)代入得:1.8=a(0-3)2+19.8,∴a=-2,∴h=-2(t-3)2+19.8,故相应的函数解析式为:h=-2(t-3)2+19.8,(2)∵花每隔1.6秒发射一发花弹∴当第一发花弹发射2秒后,第二发已经飞行了0.4秒,∴把t=0.4代入关系式h=-2(t-3)2+19.8即h=-2(0.4-3)2+19.8=6.28米,∴当第一发花弹发射2秒后,第二发花弹达到的高度为6.28米(3)∵这种烟花每隔1.6秒发射一发花弹,每一发花弹的飞行路径,爆炸时的高度均相同,皮皮小朋友发射出的第一发花弹的函数解析式为:h=-2(t-3)2+19.8,∴第二发花弹的函数解析式为:h′=-2(t-4.6)2+19.8,皮皮发现在第一发花弹爆炸的同时,第二发花弹与它处于同一高度,则令h=h′得-2(t-3)2+19.8=-2(t-4.6)2+19.8∴t=3.8秒,此时h=h′=18.52米>18米,答:花弹的爆炸高度不符合安全要求.【点睛】本题是二次函数的应用题,需要先根据表格中数据描点,得出函数图象,再求出其解析式,分析变化趋势,可以代值验算,第三问需要从实际问题分析转变成数学模型,从而得解.。
2018-2019学年浙江省湖州市长兴县九年级(上)期末数学试卷(解析版)

2018-2019学年浙江省湖州市长兴县九年级(上)期末数学试卷一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的请选出各题中一个最符合题意的选项,并在答题卷上将相应题号中对应字母的方框涂黑不选、多选、错选均不给分1.(3分)下列事件中,必然事件是()A.掷一枚硬币,着地时反面向上B.星期天一定是晴天C.打开电视机,正在播放动画片D.在标准大气压下,水加热到100℃会沸腾2.(3分)已知=,则的值是()A.B.C.D.3.(3分)把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2 4.(3分)一个不透明的布袋里装有7个球.其中3个红球,4个白球,它们除颜色外都相同,从布袋中随机摸出一个球摸出的球是红球的概率是()A.B.C.D.5.(3分)如图,PA,PB分别切⊙O于点A,B,PA=12,CD切⊙O于点E,交PA,PB 于点C,D两点,则△PCD的周长是()A.12B.18C.24D.306.(3分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB 为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m7.(3分)如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是()A.(4,2)B.(6,0)C.(6,4)D.(6,5)8.(3分)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7B.8C.8或17D.7或179.(3分)超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为()A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm 10.(3分)已知AD、BE、CF为△ABC的三条高(D、E、F为垂足),∠ABC=45°,∠C=60°,则的值是()A.B.C.D.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为cm(结果保留根号).12.(4分)某人沿坡度为1:的斜坡前进了10米,则他所在的位置比原来升高了米.13.(4分)如图,在⊙O中,=,∠AOB=40°,点D在⊙O上,连结CD,AD,则∠ADC的度数是.14.(4分)如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离AA′=.15.(4分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为.16.(4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=时,⊙C与直线AB相切.三、解答題(本题有8小题,共66分)17.(6分)计算:4sin60°+tan45°﹣2sin30°18.(6分)已知:如图,△ABC中,AD是角平分线,点E在AC上,∠ADE=∠B,求证:AD2=AE•AB.19.(6分)已知抛物线的顶点坐标为(﹣1,2),且过点(1,0)(1)求抛物线的函数表达式;(2)求抛物线与坐标轴的交点坐标.20.(8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°,已知原传送带AB长为3米(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2.5米的通道,请判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(参考数据:≈1.4,≈1.7.)21.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.22.(10分)如图,在△ABC中,BE是它的角平分线,∠C=90°,点D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sin A=,⊙O的半径为3,求图中阴影部分的面积.23.(10分)定义:有一个角是其对角两倍的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形(1)求美角∠C的度数;(2)如图1,若⊙O的半径为2,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.24.(12分)如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC 相似,请直接写出△ABC的面积.2018-2019学年浙江省湖州市长兴县九年级(上)期末数学试卷参考答案与试题解析一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的请选出各题中一个最符合题意的选项,并在答题卷上将相应题号中对应字母的方框涂黑不选、多选、错选均不给分1.(3分)下列事件中,必然事件是()A.掷一枚硬币,着地时反面向上B.星期天一定是晴天C.打开电视机,正在播放动画片D.在标准大气压下,水加热到100℃会沸腾【分析】根据必然事件的定义就是一定发生的事件,即可作出判断.【解答】解:A、是随机事件,可能发生也可能不发生,故选项错误;B、是随机事件,可能发生也可能不发生,故选项错误;C、是随机事件,可能发生也可能不发生,故选项错误;D、必然事件,故选项正确.故选:D.【点评】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2.(3分)已知=,则的值是()A.B.C.D.【分析】依据=,即可得出a=b,进而得到的值.【解答】解:∵=,∴a=b,∴==,故选:A.【点评】本题主要考查了比例的性质,解题时注意:内项之积等于外项之积.3.(3分)把抛物线y=x2向右平移1个单位,所得抛物线的函数表达式为()A.y=x2+1B.y=(x+1)2C.y=x2﹣1D.y=(x﹣1)2【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向右平移1个单位,那么新抛物线的顶点为(1,0);可设新抛物线的解析式为y=(x﹣h)2+k代入得:y=(x﹣1)2,故选:D.【点评】抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.4.(3分)一个不透明的布袋里装有7个球.其中3个红球,4个白球,它们除颜色外都相同,从布袋中随机摸出一个球摸出的球是红球的概率是()A.B.C.D.【分析】直接根据概率公式求解即可.【解答】解:∵从布袋中随机摸出一个球共有7种等可能结果,其中摸出的球是红球的有3种可能,∴从布袋中随机摸出一个球摸出的球是红球的概率是,故选:B.【点评】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键.5.(3分)如图,PA,PB分别切⊙O于点A,B,PA=12,CD切⊙O于点E,交PA,PB 于点C,D两点,则△PCD的周长是()A.12B.18C.24D.30【分析】由切线长定理可求得PA=PB,AC=CE,BD=ED,则可求得答案.【解答】解:∵PA、PB分别切⊙O于点A、B,CD切⊙O于点E,∴PA=PB=12,AC=EC,BD=ED,∴PC+CD+PD=PC+CE+DE+PD=PA+AC+PD+BD=PA+PB=12+12=24,即△PCD的周长为24,故选:C.【点评】本题主要考查切线的性质,利用切线长定理求得PA=PB、AC=CE和BD=ED 是解题的关键.6.(3分)乌镇是著名的水乡,如图,圆拱桥的拱顶到水面的距离CD为8m,水面宽AB 为8m,则桥拱半径OC为()A.4m B.5m C.6m D.8m【分析】连接OA,设OB=OC=x,则OD=8﹣x,根据垂径定理得出BD,然后根据勾股定理得出关于x的方程,解方程即可得出答案.【解答】解:连接BO,由题意可得:AD=BD=4m,设B半径OC=xm,则DO=(8﹣x)m,由勾股定理可得:x2=(8﹣x)2+42,解得:x=5.故选:B.【点评】此题考查了垂径定理的应用,关键是根据题意做出辅助线,用到的知识点是垂径定理、勾股定理.7.(3分)如图,点A、B、C、D的坐标分别是(1,7)、(1,1)、(4,1)、(6,1),若△CDE与△ABC相似,则点E的坐标不可能是()A.(4,2)B.(6,0)C.(6,4)D.(6,5)【分析】根据相似三角形的判定:两边对应成比例且夹角相等的两三角形相似即可判断.【解答】解:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=2.A、当点E的坐标为(4,2)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,0)时,∠CDE=90°,CD=2,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;C、当点E的坐标为(6,4)时,∠CDE=90°,CD=2,DE=3,则AB:BC≠DE:CD,△EDC与△ABC不相似,故本选项符合题意;D、当点E的坐标为(6,5)时,∠CDE=90°,CD=2,DE=4,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;故选:C.【点评】本题考查了相似三角形的判定,难度中等.牢记相似三角形的判定定理是解题的关键.8.(3分)在△ABC中,AB=12,AC=13,cos∠B=,则BC边长为()A.7B.8C.8或17D.7或17【分析】首先根据特殊角的三角函数值求得∠B的度数,然后分锐角三角形和钝角三角形分别求得BD和CD的长后即可求得线段BC的长.【解答】解:∵cos∠B=,∴∠B=45°,当△ABC为钝角三角形时,如图1,∵AB=12,∠B=45°,∴AD=BD=12,∵AC=13,∴由勾股定理得CD=5,∴BC=BD﹣CD=12﹣5=7;当△ABC为锐角三角形时,如图2,BC=BD+CD=12+5=17,故选:D.【点评】本题考查了解直角三角形的知识,能从中整理出直角三角形是解答本题的关键,难点为分类讨论,难点中等.9.(3分)超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为()A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm 【分析】设:左侧抛物线的方程为:y=ax2,点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将y=2代入抛物线表达式,即可求解.【解答】解:设左侧抛物线的方程为:y=ax2,点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,则抛物线的表达式为:y=x2,由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,将y=2代入抛物线表达式得:2=x2,解得:x=(负值已舍去),则AD=2AH+2x=6+3,故选:A.【点评】本题考查了二次函数的性质在实际生活中的应用.首先要吃透题意,确定变量,建立函数模型,然后求解.10.(3分)已知AD、BE、CF为△ABC的三条高(D、E、F为垂足),∠ABC=45°,∠C=60°,则的值是()A.B.C.D.【分析】判断出△ABD与△BCF均是等腰直角三角形,据此得到==,∠ABC=∠ABC,从而知道△BFD∽△BCA,据此推出=,然后根据△CDE∽△CBA,求出==,将转化为,根据等腰直角三角形的性质,得出AD=a,则AB=a,AC=,代入即可求解.【解答】解:∵∠ABC=45°,∴∠BAD=45°,∠BCF=45°,∴△ABD与△BCF均是等腰直角三角形,∵==,∠ABC=∠ABC,∴△BFD∽△BCA,∴=,同理可得,△CDE∽△CBA,∴==,故DF=AC,DE=AB,∴==,设AD=a,则AB=a,AC=,===.【点评】本题考查了相似三角形的判定与性质,利用图中的等腰直角三角形找到相关相似三角形是解答的关键.二、填空题(本题有6小题,每小题4分,共24分)11.(4分)若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为3(﹣1)cm(结果保留根号).【分析】把一条线段分成两部分,使其中较长的线段为全线段与较短线段的比例中项,这样的线段分割叫做黄金分割,他们的比值()叫做黄金比.【解答】解:根据黄金分割点的概念和AC>BC,得:AC=AB=3(﹣1).故本题答案为:3(﹣1).【点评】此题考查了黄金分割点的概念,要熟记黄金比的值.12.(4分)某人沿坡度为1:的斜坡前进了10米,则他所在的位置比原来升高了5米.【分析】已知了坡度,可求出坡角的度数,进而根据坡面长求出铅直高度即此人垂直升高的距离.【解答】解:如图.Rt△ABC中,AB=10,tan A=,∴∠A=30°,BC=AB=5.即此人所在的位置比原来升高了5米.【点评】此题主要考查学生对坡度坡角的掌握及三角函数的运用能力.13.(4分)如图,在⊙O中,=,∠AOB=40°,点D在⊙O上,连结CD,AD,则∠ADC的度数是20°.【分析】根据等弧所对的圆周角相等,求出∠AOC即可解决问题.【解答】解:连接OC.∵=,∴∠AOB=∠AOC=40°,∴∠ADC=∠AOC=20°,故答案为20°【点评】本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.14.(4分)如图,把△ABC沿AB边平移到△A′B′C′的位置,它们的重叠部分(即图中的阴影部分)的面积是△ABC的面积的一半,若AB=,则此三角形移动的距离AA′=.【分析】利用相似三角形面积的比等于相似比的平方先求出A′B,再求AA′就可以了.【解答】解:设BC与A′C′交于点E,由平移的性质知,AC∥A′C′,∴△BEA′∽△BCA,∴S△BEA′:S△BCA=A′B2:AB2=1:2,∵AB=,∴A′B=1,∴AA′=AB﹣A′B=,故答案为:.【点评】本题利用了相似三角形的判定和性质及平移的性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.15.(4分)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,则a的值为﹣1.【分析】根据题目中的函数解析式可以求得该函数的对称轴,然后根据当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,可以判断a的正负,得到关于a的方程,从而可以求得a的值.【解答】解:∵二次函数y=ax2+2ax+3a2+3=a(x+1)2+3a2﹣a+3,∴该函数的对称轴为直线x=﹣1,∵当x≥2时,y随x的增大而减小,且﹣4≤x≤1时,y的最大值为7,∴a<0,当x=﹣1时,y=7,∴7=a(x+1)2+3a2﹣a+3,解得,a1=﹣1,a2=(舍去),故答案为:﹣1.【点评】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.16.(4分)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=4.若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=或时,⊙C与直线AB相切.【分析】求出AB上的高,CH,即可得出圆的半径,证△ADE∽△ACB得出比例式,代入求出即可.【解答】解:过C作CH⊥AB于H,∵∠ACB=90°,BC=2,AB=4,AC=6,∴由三角形面积公式得:BC•AC=AB•CH,CH=3,分为两种情况:①如图1,∵CF=CH=3,∴AF=6﹣3=3,∵A和F关于D对称,∴DF=AD=,∵DE∥BC,∴△ADE∽△ACB,∴,∴,DE =②如图2,∵CF =CH =3, ∴AF =6+3=9, ∵A 和F 关于D 对称, ∴DF =AD =4.5, ∵DE ∥BC , ∴△ADE ∽△ACB ,∴,∴,DE =;故答案为:或【点评】本题考查了三角形的中位线,含30度角的直角三角形性质,相似三角形的性质和判定等知识点的应用,主要考查学生综合运用定理进行推理和计算的能力. 三、解答題(本题有8小题,共66分) 17.(6分)计算:4sin60°+tan45°﹣2sin30°【分析】直接利用特殊角的三角函数值进而代入求出答案.【解答】解:原式=4×+1﹣2×=2+1﹣1=2.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键. 18.(6分)已知:如图,△ABC 中,AD 是角平分线,点E 在AC 上,∠ADE =∠B ,求证:AD 2=AE •AB .【分析】证明△ABD∽△ADE,根据相似三角形的性质列出比例式,计算即可证明.【解答】证明:∵AD是角平分线,∴∠BAD=∠DAC,又∵∠ADE=∠B,∴△ABD∽△ADE,∴=,∴AD2=AE•AB.【点评】本题考查的是相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理是解题的关键.19.(6分)已知抛物线的顶点坐标为(﹣1,2),且过点(1,0)(1)求抛物线的函数表达式;(2)求抛物线与坐标轴的交点坐标.【分析】(1)设顶点式y=a(x+1)2+2,然后把(1,0)代入求出a即可;(2)计算自变量为0对应的函数值得到抛物线与y轴的交点坐标;解方程﹣(x+1)2+2=0得抛物线与x轴的交点坐标为(﹣3,0),(1,0).【解答】解:(1)设抛物线解析式为y=a(x+1)2+2,把(1,0)代入得a•(1+1)2+2=0,解得a=﹣,所以抛物线解析式为y=﹣(x+1)2+2;(2)当x=0时,y=﹣(x+1)2+2=,则抛物线与y轴的交点坐标为(0,);当y=0时,﹣(x+1)2+2=0,解得x1=﹣3,x2=1,则抛物线与x轴的交点坐标为(﹣3,0),(1,0).【点评】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化为解关于x的一元二次方程.也考查了二次函数的性质.20.(8分)如图是某货站传送货物的平面示意图.为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°,已知原传送带AB长为3米(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2.5米的通道,请判断距离B点5米的货物MNQP是否需要挪走,并说明理由.(参考数据:≈1.4,≈1.7.)【分析】(1)根据正弦的定义求出AD,根据勾股定理求出AC;(2)根据勾股定理求出CD,求出PC的长度,比较大小得到答案.【解答】解:(1)在Rt△ABD中,sin∠ABD=,∴AD=AB×sin∠ABD=3×=3,∵∠ADC=90°,∠ACD=30°,∴AC=2AD=6,答:新传送带AC的长度为6米;(2)距离B点5米的货物MNQP不需要挪走,理由如下:在Rt△ABD中,∠ABD=45°,∴BD=AD=3,由勾股定理得,CD==3≈5.1,∴CB=CD﹣BD≈2.1,PC=PB﹣CB≈2.9,∵2.9>2.5,∴距离B点5米的货物MNQP不需要挪走.【点评】本题考查的是解直角三角形的应用﹣坡度坡角问题,掌握锐角三角函数的定义、坡度坡角的概念是解题的关键.21.(8分)为弘扬中华优秀传统文化,某校开展“经典诵读”比赛活动,诵读材料有《论语》、《大学》、《中庸》(依次用字母A,B,C表示这三个材料),将A,B,C分别写在3张完全相同的不透明卡片的正面上,背面朝上洗匀后放在桌面上,比赛时小礼先从中随机抽取一张卡片,记下内容后放回,洗匀后,再由小智从中随机抽取一张卡片,他俩按各自抽取的内容进行诵读比赛.(1)小礼诵读《论语》的概率是;(直接写出答案)(2)请用列表或画树状图的方法求他俩诵读两个不同材料的概率.【分析】(1)直接利用概率公式计算;(2)画树状图展示所有9种等可能的结果数,再找出小红和小亮诵读两个不同材料的结果数,然后根据概率公式计算.【解答】解:(1)小红诵读《论语》的概率=;故答案为.(2)画树状图为:共有9种等可能的结果数,其中小红和小亮诵读两个不同材料的结果数为6,所以小红和小亮诵读两个不同材料的概率==.【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.22.(10分)如图,在△ABC中,BE是它的角平分线,∠C=90°,点D在AB边上,以DB为直径的半圆O经过点E,交BC于点F.(1)求证:AC是⊙O的切线;(2)已知sin A=,⊙O的半径为3,求图中阴影部分的面积.【分析】(1)连接OE.根据OB=OE得到∠OBE=∠OEB,然后再根据BE是△ABC 的角平分线得到∠OEB=∠EBC,从而判定OE∥BC,最后根据∠C=90°得到∠AEO=∠C=90°证得结论AC是⊙O的切线.(2)连接OF,利用S阴影部分=S梯形OECF﹣S扇形EOF求解即可.【解答】解:(1)证明:连接OE.∵OB =OE∴∠OBE =∠OEB∵BE 是∠ABC 的角平分线∴∠OBE =∠EBC∴∠OEB =∠EBC∴OE ∥BC∵∠C =90°∴∠AEO =∠C =90°∴AC 是⊙O 的切线;(2)连接OF .∵sin A =,∴∠A =30°∵⊙O 的半径为3,∴AO =2OE =6,∴AE =3,∠AOE =60°,∴AB =9,∴BC =AB =4.5,AC =4.5,∴CE =AC ﹣AE =1.5, ∵OB =OF ,∠ABC =60°,∴△OBF 是正三角形.∴∠FOB =60°,CF =4.5﹣3=1.5,∴∠EOF =60°.∴S 梯形OECF =(3+1.5)×=4.5,S 扇形EOF ==1.5π,∴S 阴影部分=S 梯形OECF ﹣S 扇形EOF =4.5﹣1.5π.【点评】本题主要考查了切线的判定与性质及扇形面积的计算,解题的关键是连接圆心和切点,利用过切点且垂直于过切点的半径来判定切线.23.(10分)定义:有一个角是其对角两倍的圆的内接四边形叫做圆美四边形,其中这个角叫做美角.已知四边形ABCD是圆美四边形(1)求美角∠C的度数;(2)如图1,若⊙O的半径为2,求BD的长;(3)如图2,若CA平分∠BCD,求证:BC+CD=AC.【分析】(1)先判断出∠C=2∠A,再判断出∠A+∠C=180°,即可得出结论;(2)先求出∠E=60°,再求出DE,最后用锐角三角函数即可得出结论;(3)作出辅助线,判断出△BCF是等边三角形,得出∠AFB=∠BCD,进而判断出△ABF ≌△DBC,得出AF=CD,即可得出结论.【解答】解:(1)∵四边形ABCD是圆美四边形,∴∠C=2∠A,∵四边形ABCD是圆内接四边形,∴∠A+∠C=180°,∴∠A+2∠A=180°,∴∠A=60°,∴∠C=120°;(2)由(1)知,∠A=60°,如图1,连接DO并延长交⊙O于E,连接BE,∴∠E=∠A=60°,∵⊙O的半径为2,∴DE=2×2=4,在Rt△DBE中,BD=DE•sin E=4×=6;(3)如图2,在CA上截取CF=CB,由(1)知,∠BCD=120°,∵CA平分∠BCD,∴∠BCA=∠ACD=∠BCD=60°,∴△BCF是等边三角形,∴BC=BF,∠BFC=60°,∴∠AFB=120°,∠AFB=∠BCD,在△ABF和△BCD中,,∴△ABF≌△DBC(AAS),∴AF=DC,∴AC=CF+AF=BC+CD.【点评】此题是圆的综合题,主要考查了圆周角定理,锐角三角函数,等边三角形的判定和性质,全等三角形的判定和性质,正确作出辅助线是解本题的关键.24.(12分)如图,已知抛物线y=x2﹣x﹣k(k为常数,且k>0)与x轴从左至右依次交于A,B两点,与y轴交于点C过点B的直线y=﹣x+b与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)过D点向x轴作垂线,垂足为点M,连结AD,若∠MDA=∠ABD,求点D的坐标;(3)若在第一象限的抛物线上有一点P,使得以点A,B,P为顶点的三角形与△ABC 相似,请直接写出△ABC的面积.【分析】(1)求出A、B的坐标,把点B坐标代入直线表达式即可求解;(2)利用△AMD∽△DMB,=,即可求解;(3)分△ABC∽△APB、△ABC∽△PAB两种情况,分别求解即可.【解答】解:(1)抛物线y=x2﹣x﹣k=(x+2)(x﹣4),令y=0,则x=﹣2或4,即点A、B的坐标分别为(﹣2,0)、(4,0),把点B坐标代入直线y=﹣x+b得:﹣×4+b=0,解得:b=,∴直线BD的表达式为:y=﹣x+,当x=﹣5时,y=3,∴D(﹣5,3),把点D的坐标代入抛物线表达式得:(﹣5+2)(﹣5﹣4)=3,k=,∴抛物线的表达式为:y=x2﹣x﹣;(2)设点D的坐标为(x,﹣x+),则:DM=﹣x+,BM=4﹣x,AM=﹣2﹣x,∵∠MDA=∠ABD,∠AMD=∠DMB,∴△AMD∽△DMB,∴=,即:(﹣x+)2=(4﹣x)(﹣2﹣x),解得:x=﹣5或4(舍去x=4),∴点D的坐标为(﹣5,3);(3)由抛物线的表达式,令x=0,则y=﹣k,∴点C的坐标为(0,﹣k),OC=k,①当△ABC∽△APB时,则∠BAC=∠PAB,设点P的坐标为(x,y),过点P作PN⊥x轴交于点N,则ON=x,PN=y,tan∠BAC=tan∠PAB,即:,∴y=kx+k,把点P(x,)代入抛物线表达式并解得:x=8或﹣2(舍去﹣2),故点P的坐标为(8,5k),∵△ABC∽△APB,∴AB2=AC•AP,即:62=,解得:k=,S=AB•OC==;△ABC②△ABC∽△PAB时,同理可得:k=,S=AB•OC==3,△ABC故:△ABC的面积为=或3.【点评】本题考查的是二次函数综合运用,涉及到三角形相似、解直角三角形等,(2)(3)的关键是通过相似确定线段间的比例关系.。
浙江省湖州市长兴县2020-2021学年七年级上学期知识点检测(一)数学试题

浙江省湖州市长兴县2020-2021学年七年级上学期知识点检测(一)数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.如果收入10元记作10+元,那么支出10元记作( )A .10+元B .10-元C .20+元D .20-元 3.下列所表示的数轴正确的是( )A .B .C .D .4.一实验室检测A 、B 、C 、D 四个元件的质量(单位:克),超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的元件是( )A .B .C .D . 5.计算1(5)5-÷的结果等于( ) A .25- B .1- C .1 D .25 6.气温由6℃下降了8℃,下降后的气温是( )A .14-℃B .8-℃C .2-℃D .2℃ 7.算式3344⎛⎫-⨯ ⎪⎝⎭的值与下列选项值相等的是( )A .33444-⨯-⨯B .343-⨯⨯C .33444-⨯+⨯D .333-⨯- 8.如图,将刻度尺放在数轴上(数轴的单位长度是1cm),刻度尺上“0cm”和“3cm”分别对应数轴上的3和0,那么刻度尺上“5.4cm”对应数轴上的数为( )A .5.4B .-2.4C .-2.6D .-1.69.六个互不相等整数的积为36-,则和为( )A .36B .6C .0D .3-10.某届世界杯的小组比赛规则:四个球队进行单循环比赛(每两队赛一场),胜一场得3分,平一场得1分,负一场得0分.某小组比赛结束后,甲、乙、丙、丁四队分别获得第一、二、三、四名,各队的总得分恰好是四个连续奇数,则与乙打平的球队是( ) A .甲B .甲与丁C .丙D .丙与丁二、填空题11.2的倒数是_____.12.计算()25⨯-的结果是__________.13.大于 4.6-而小于3的整数共有______个.14.数轴的单位长度为1,如果点A 表示的数是-2,那么点B 表示的数是_________.15.若一组数据2-,53-,4,□中,最大的数与最小的数的差是8,则□表示的数是______. 16.已知一列数:1,2-,3,4-,5,6-,7,…将这列数排成下列形式:第1行 1第2行 2- 3第3行 4- 5 6-第4行 7 8- 9 10-第5行 11 12- 13 14- 15… …按照上述规律排下去,那么第100行从左边数第6个数是______.三、解答题17.把下列各数的序号填到相应的横线上:①15,②12-,③3-,④0,⑤31-.,⑥3.14.正有理数:______;负分数:______.18.把下列各数在数轴上表示,并用“<”号把它们连接起来.0, 1.5,3,4--19.计算:(1)()55-- (2)()37725-÷-⨯. 20.列式计算:(1)一个数与34-的差为12,求这个数; (2)94-除以一个数的商为9-,求这个数. 21.已知23x =,12y =. (1)直接写出一组符合上述条件的x 和y 值;(2)若0x y <<,求()6x y ÷-的值.22.桐梓四中体育器材室共有60个篮球,在学校体育艺术节活动中,有3个班级分别计划借篮球总数的12,13和14,请你算一算,这60个篮球够借吗?如果够了,还能剩几个篮球?如果不够,还差多少个?23.钟同学有7张写着不同数字的卡片,他想从中取出若干张卡片,将卡片上的数字进行有理数的运算.(1)若取出2张卡片,应该抽取哪2张使得数字之积最大,积最大是多少呢?(请列式计算)(2)若取出3张卡片,应该抽取哪3张使得数字之积最小,积最小是多少呢?(请列式计算)24.2020年的“新冠肺炎”疫情的蔓延,使得医用口罩销量大幅增加,某口罩厂为满足市场需求计划每天生产5000个,由于各种原因实际每天生产量相比有出入,下表是二月份某一周的生产情况(超产为正,减产为负,单位:个)(1)根据记录可知前三天共生产多少个口罩?(2)产量最多的一天比产量最少的一天多生产多少个?(3)该口罩加工厂实行计件工资制,每生产一个口罩0.2元,本周口罩加工厂应支付工人的工资总额是金额元?参考答案1.B【分析】根据相反数的定义直接求解即可.【详解】,解:2020的相反数是2020故选:B.【点睛】本题考查求一个数的相反数,掌握相反数的定义是解题的关键.2.B【分析】根据正负数的含义,可得:收入记作“+”,则支出记作“-”,据此求解即可.【详解】如果收入10元记作+10元,那么支出10元记作-10元.故选:B.【点睛】此题主要考查了正负数在实际生活中的应用,要熟练掌握,解答此题的关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.3.D【分析】根据数轴的三要素即可判断.【详解】解:∵数轴是规定了原点,正方向及单位长度的直线.∴数轴的三要素为:原点,单位长度,正方向,A、没有正方向,故错误;B、没有原点,故错误;C、单位长度不一,故错误;故选:D.【点睛】此题主要考查数轴的三要素,学生对这些概念性的知识要牢固掌握.4.D【分析】分别求出每个数的绝对值,根据绝对值的大小找出绝对值最小的数即可.【详解】∵|+1.2|=1.2,|-2.3|=2.3,|+0.9|=0.9,|-0.8|=0.8,0.8<0.9<1.2<2.3,∴从轻重的角度看,最接近标准的是选项D中的元件,故选D.【点睛】本题考查了绝对值以及正数和负数的应用,掌握正数和负数的概念和绝对值的性质是解题的关键,主要考查学生的理解能力,题目具有一定的代表性,难度也不大.5.A【分析】直接利用有理数的除法运算法则计算得出答案.【详解】解:原式=-5×5=-25.故答案为:A.【点睛】此题主要考查了有理数的除法运算,正确掌握相关运算法则是解题关键.6.C【分析】用原来的气温减去下降的温度,求出下降后的气温是多少即可.【详解】解:6-8=-2(℃),故选:C.【点睛】此题主要考查了有理数的减法的运算方法,要熟练掌握运算法则.7.A【分析】。
浙江省湖州市长兴县2019-2020学年九年级上学期期末数学试题(解析版)

【答案】D
【解析】
分析:根据垂径定理得出OE的长,进而利用勾股定理得出BC的长,再利用相似三角形的判定和性质解答即可.
详解:连接OB,
∵AC是⊙O的直径,弦BD⊥AO于E,BD=8cm,AE=2cm.
在Rt△OEB中,OE2+BE2=OB2,即OE2+42=(OE+2)2
4.在Rt△ABC中,∠C=90°,AC=4,BC=3,则 是
A. B. C. D.
【答案】A
【解析】
【分析】
根据题意画出图形,由勾股定理求出AB的长,再根据三角函数的定义解答即可.
【详解】如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,
∴AB= =5,
∴sinA= ,
故选A.
【点睛】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦பைடு நூலகம்邻边比斜边,正切为对边比邻边.
【详解】解:由题意,抛物线沿着射线 方向平移 个单位,点A向右平移4个单位,向上平移2个单位,
∵抛物线 =(x+1) ²-1的顶点坐标为(-1,-1),设抛物线向右平移a个单位,则向上平移 a个单位,
抛物线的解析式为y=(x+1-a) ²-1+ a
令x=2,y=(3-a) ²-1+ a,
∴y=(a- )²+ ,
A.8B.10C.12D.16
【答案】C
【解析】
【分析】
连接 ,如图,先利用圆周角定理证明 得到 ,再根据正弦的定义计算出 ,则 , ,接着证明 ,利用相似比得到 ,所以 ,然后在 中利用正弦定义计算出 的长.
【详解】连接 ,如图,
2020-2021学年北师大版九年级上册数学期末复习试卷(有答案)

2020-2021学年北师大新版九年级上册数学期末复习试卷一.选择题(共10小题,满分20分,每小题2分)1.方程x2﹣6x+5=0较小的根为p,方程5x2﹣4x﹣1=0较大的根为q,则p+q等于()A.3B.2C.1D.22.如图所示几何体的左视图正确的是()A.B.C.D.3.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A.在“石头、剪刀、布”的游戏中,小时随机出的是“剪刀”B.掷一个质地均匀的正六面体骰子,向上的面点数是偶数C.袋子中有1个红球和2个黄球,它们只有颜色上的区别,从中任取一球是黄球D.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌花色是红桃4.一元二次方程x2﹣2x+1=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定5.将抛物线y=2x2向左平移3个单位得到的抛物线的解析式是()A.y=2x2+3B.y=2x2﹣3C.y=2(x+3)2D.y=2(x﹣3)2 6.若,则的值为()A.1B.C.D.7.如图,在平面直角坐标系中,Rt△ABC的顶点A,B分别在y轴、x轴上,OA=2,OB =1,斜边AC∥x轴.若反比例函数y=(k>0,x>0)的图象经过AC的中点D,则k的值为()A.4B.5C.6D.88.如图,在△ABC中,中线AD,BE相交于点F,EG∥BC,交AD于点G,下列说法:①BD =2GE;②AF=2FD;③△AGE与△BDF面积相等;④△ABF与四边形DCEF面积相等,结论正确的是()A.①③④B.②③④C.①②③D.①②④9.如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D右边),对称轴为直线x=,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=ADC.a=﹣D.OC•OD=1610.正方形ABCD的边长AB=2,E为AB的中点,F为BC的中点,AF分别与DE、BD相交于点M,N,则MN的长为()A.B.C.D.二.填空题(共6小题,满分18分,每小题3分)11.小明想知道学校旗杆的高,他在某一时刻测得直立的标杆高1米时影长0.9米,此时他测旗杆影长时,因为旗杆靠近建筑物,影子不全落在地面上,有一部分影子在墙上,他测得落在地面上的影长BC为2.7米,又测得墙上影高CD为1.2米,旗杆AB的高度为米.12.如图,在平面直角坐标系中,以原点O为位似中心,将△ABO扩大到原来的2倍,得到△A'B'O.若点A的坐标是(1,2),则点A'的坐标是.13.在一个布袋里放有1个白球和2个红球,它们除颜色外其余都相同,从布袋里摸出1个球,记下颜色后放回,搅匀,再摸出1个球.将2个红球分别记为红Ⅰ,红Ⅱ,两次摸球的所有可能的结果如表所示,则两次摸出的球都是红球的概率是.14.如图,某小区有一块长为30m,宽为24m的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为480m2,两块绿地之间及周边有宽度相等的人行通道,设人行通道的宽度为xm,则可列方程为.15.如图,在菱形ABCD中,∠C=60°,E、F分别是AB、AD的中点,若EF=5,则菱形ABCD的周长为.16.如图,在△ABC中,AB=AC=9,过点B、C分别作AB、BC的垂线相交于点D,延长AC、BD相交于点E,若tan∠BDC=2,则DE=.三.解答题(共3小题,满分22分)17.计算:2cos45°tan30°cos30°+sin260°.18.如图,是一个可以自由转动的转盘,转盘被分成面积相等的三个扇形,每个扇形上分别标上,1,﹣1三个数字.小明转动转盘,小亮猜结果,如果转盘停止后指针指向的结果与小亮所猜的结果相同,则小亮获胜,否则小明获胜.(1)如果小明转动转盘一次,小亮猜的结果是“正数”,那么小亮获胜的概率是.(2)如果小明连续转动转盘两次,小亮猜两次的结果都是“正数”,请用画树状图或列表法求出小亮获胜的概率.19.如图,在菱形ABCD中,对角线AC和BD交于点O,分别过点B、C作BE∥AC,CE ∥BD,BE与CE交于点E.(1)求证:四边形OBEC是矩形;(2)当∠ABD=60°,AD=2时,求BE的长.四.解答题(共1小题,满分8分,每小题8分)20.某无人机兴趣小组在操场上开展活动(如图),此时无人机在离地面30米的D处,无人机测得操控者A的俯角为37°,测得点C处的俯角为45°.又经过人工测量操控者A 和教学楼BC距离为57米,求教学楼BC的高度.(注:点A,B,C,D都在同一平面上.参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)五.解答题(共1小题,满分10分,每小题10分)21.小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量y(本)与销售单价x(元)之间满足一次函数关系,三对对应值如下表:销售单价x(元)121416每周的销售量y(本)500400300(1)求y与x之间的函数关系式;(2)通过与其他网店对比,小红将这款笔记本的单价定为x元(12≤x≤15,且x为整数),设每周销售该款笔记本所获利润为w元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?六.解答题(共3小题,满分34分)22.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式及点B的坐标;(2)若点P为x轴上一点,且满足△ACP是等腰三角形,请直接写出符合条件的所有点P的坐标.23.【方法提炼】解答几何问题常常需要添辅助线,其中平移图形是重要的添辅助线策略.【问题情境】如图1,在正方形ABCD中,E,F,G分别是BC,AB,CD上的点,FG⊥AE于点Q.求证:AE=FG.小明在分析解题思路时想到了两种平移法:方法1:平移线段FG使点F与点B重合,构造全等三角形;方法2:平移线段BC使点B与点F重合,构造全等三角形;【尝试应用】(1)请按照小明的思路,选择其中一种方法进行证明;(2)如图2,正方形网格中,点A,B,C,D为格点,AB交CD于点O.求tan∠AOC 的值;(3)如图3,点P是线段AB上的动点,分别以AP,BP为边在AB的同侧作正方形APCD 与正方形PBEF,连结DE分别交线段BC,PC于点M,N.①求∠DMC的度数;②连结AC交DE于点H,求的值.24.如图,已知二次函数y=x2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C.(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标.参考答案与试题解析一.选择题(共10小题,满分20分,每小题2分)1.解:方程x2﹣6x+5=0较小的根为p=1,方程5x2﹣4x﹣1=0较大的根为q=1,则p+q=2,故选:B.2.解:从几何体的左面看所得到的图形是:故选:A.3.解:A、在“石关、剪刀、布”的游戏中,小时随机出的是“剪刀”为,不符合这一结果,故此选项错误;B、掷一个质地均匀的正六面体骰子,向上的面点数是偶数的概率是==0.5,符合这一结果,故此选项正确;C、从一个装有1个红球2个黄球的袋子中任取一球,取到的是黄球的概率为:,不符合这一结果,故此选项错误;D、一副去掉大小王的扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为:0.25,不符合这一结果,故此选项错误;故选:B.4.解:由题意可知:△=(﹣2)2﹣4×1×1=0,故选:B.5.解:将抛物线y=2x2向左平移3个单位所得直线解析式为:y=2(x+3)2;故选:C.6.解:∵,∴=2=2﹣=;故选:B.7.解:作CE⊥x轴于E,∵AC∥x轴,OA=2,OB=1,∴OA=CE=2,∵∠ABO+∠CBE=90°=∠OAB+∠ABO,∴∠OAB=∠CBE,∵∠AOB=∠BEC,∴△AOB∽△BEC,∴=,即=,∴BE=4,∴OE=5,∵点D是AB的中点,∴D(,2).∵反比例函数y=(k>0,x>0)的图象经过点D,∴k=×2=5.故选:B.8.解:∵中线AD,BE相交于点F,∴BD=CD,AE=CE,BF=2EF,AF=2FD,②正确;∵EG∥BC,∴△BDF∽△EGF,∴==2,∴BD=2GE,①正确;∵AF=2FD,∴△ABF的面积=2△BDF的面积=△ABD的面积=△ABC的面积,△BDF的面积=△ABC的面积,∵EG∥BC,AE=CE,∴△AGE∽△ADC,=,∴=()2=,∴△AGE的面积=△ADC的面积△ABC的面积,∴△AGE与△BDF面积不相等,③不正确;∵BD=CD,AE=CE,∴△ABD的面积=△ADC的面积=△ABC的面积=△ABE的面积=△BCE的面积,∴△ABD的面积=△BCE的面积,∴△ABD的面积﹣△BDF的面积=△BCE的面积﹣△BDF的面积,即△ABF与四边形DCEF面积相等,④正确;故选:D.9.解:∵抛物线y=ax2+bx+4交y轴于点A,∴A(0,4),∵对称轴为直线x=,AB∥x轴,∴B(5,4).故A无误;如图,过点B作BE⊥x轴于点E,则BE=4,AB=5,∵AB∥x轴,∴∠BAC=∠ACO,∵点B关于直线AC的对称点恰好落在线段OC上,∴∠ACO=∠ACB,∴∠BAC=∠ACB,∴BC=AB=5,∴在Rt△BCE中,由勾股定理得:EC=3,∴C(8,0),∵对称轴为直线x=,∴D(﹣3,0)∵在Rt△ADO中,OA=4,OD=3,∴AD=5,∴AB=AD,故B无误;设y=ax2+bx+4=a(x+3)(x﹣8),将A(0,4)代入得:4=a(0+3)(0﹣8),∴a=﹣,故C无误;∵OC=8,OD=3,∴OC•OD=24,故D错误.综上,错误的只有D.故选:D.10.解:∵BF∥AD∴△BNF∽△DNA∴,而BF=BC=1,AF=,∴AN=,又∵AE=BF,∠EAD=∠FBA,AD=AB,∴△DAE≌△ABF(SAS),∴∠AED=∠BFA∴△AME∽△ABF∴,即:,∴AM=,∴MN=AN﹣AM=.故选:C.二.填空题(共6小题,满分18分,每小题3分)11.解:过点D作DE⊥AB于点E,则BE=CD=1.2m,∵他在某一时刻测得直立的标杆高1米时影长0.9米,∴=,即=,解得:AE=3m,∴AB=AE+BE=3+1.2=4.2(m).故答案为:4.2.12.解:根据以原点O为位似中心,图形的坐标特点得出,对应点的坐标应乘以﹣2,故点A的坐标是(1,2),则点A′的坐标是(﹣2,﹣4),故答案为:(﹣2,﹣4).13.解:根据图表可知,共有9种等可能的结果,两次摸出的球都是红球的有4种,则两次摸出的球都是红球的概率为;故答案为:.14.解:设人行通道的宽度为xm,则两块矩形绿地可合成长为(30﹣3x)m、宽为(24﹣2x)m的大矩形,根据题意得:(30﹣3x)(24﹣2x)=480.故答案为:(30﹣3x)(24﹣2x)=480.15.解:∵E、F分别是AB、AD的中点,∴EF=BD,∵EF=5,∴BD=10,∵四边形ABCD为菱形,∴AB=AD,∵∠A=60°,∴△ABD为等边三角形,∴AB=BD=10,∴菱形ABCD的周长=4×10=40,故答案为:40.16.解:作CF⊥BD于F,作AG⊥BC于G,如图所示:∵AB=AC=9,AG⊥BC,∴BG=CG,∵BE⊥AB,CD⊥BC,∴∠ABG+∠CBD=90°,∠CBD+∠BDC=90°,∴∠ABG=∠BDC,∴tan∠ABG==tan∠BDC==2,∴AG=2BG,BC=2CD,设BG=x,则AG=2x,在Rt△ABG中,由勾股定理得:x2+(2x)2=92,解得:x=,∴BC=2BG=,CD=BC=,∴BD===9,∵CF⊥BD,∴△BCD的面积=BD×CF=BC×CD,∴CF==,∴DF===,∵AB⊥BD,CF⊥BD,∴CF∥AB,∴△CFE∽△ABE,∴=,即=,解得:DE=3;故答案为:3.三.解答题(共3小题,满分22分)17.解:原式=2×﹣××+()2=﹣+=.18.解:(1)∵每个扇形上分别标上,1,﹣1三个数字,其中是“正数”的有2个数,∴小亮猜的结果是“正数”,那么小亮获胜的概率是;故答案为:;(2)根据题意画图如下:共有9种等情况数,其中两次的结果都是“正数”的有4种,∴小亮获胜的概率是.19.(1)证明:∵BE∥AC,CE∥BD,∴BE∥OC,CE∥OB,∴四边形OBEC为平行四边形,∵四边形ABCD为菱形,∴AC⊥BD,∴∠BOC=90°,∴四边形OBEC是矩形;(2)解:∵四边形ABCD为菱形,∴AD=AB,OB=OD,OA=OC,∵∠DAB=60°,∴△ABD为等边三角形,∴BD=AD=AB=2,∴OD=OB=,在Rt△AOD中,AO===3∴OC=OA=3,∵四边形OBEC是矩形,∴BE=OC=3.四.解答题(共1小题,满分8分,每小题8分)20.解:过点D作DE⊥AB于点E,过点C作CF⊥DE于点F.由题意得,AB=57,DE=30,∠A=37°,∠DCF=45°.在Rt△ADE中,∠AED=90°,∴tan37°=≈0.75.∴AE=40,∵AB=57,∴BE=17∵四边形BCFE是矩形,∴CF=BE=17.在Rt△DCF中,∠DFC=90°,∴∠CDF=∠DCF=45°.∴DF=CF=17,∴BC=EF=30﹣17=13.答:教学楼BC高约13米.五.解答题(共1小题,满分10分,每小题10分)21.解:(1)设y与x之间的函数关系式是y=kx+b(k≠0),,得,即y与x之间的函数关系式为y=﹣50x+1100;(2)由题意可得,w=(x﹣10)y=(x﹣10)(﹣50x+1100)=﹣50(x﹣16)2+1800,∵a=﹣50<0∴w有最大值∴当x<16时,w随x的增大而增大,∵12≤x≤15,x为整数,∴当x=15时,w有最大值,此时,w=﹣50(15﹣16)2+1800=1750,答:销售单价为15元时,每周获利最大,最大利润是1750元.六.解答题(共3小题,满分34分)22.解:(1)把点A(1,a)代入y=﹣x+3,得a=2,∴A(1,2)把A(1,2)代入反比例函数y=,∴k=1×2=2;∴反比例函数的表达式为y=,解得,,,∴B(2,1);(2)∵一次函数y=﹣x+3的图象与x轴交于点C,∴C(3,0),∵A(1,2),∴AC==2,过A作AD⊥x轴于D,∴OD=1,CD=AD=2,当AP=AC时,PD=CD=2,∴P(﹣1,0),当AC=CP=2时,△ACP是等腰三角形,∴OP=3﹣2或OP=3+2∴P(3﹣2,0)或(3+2,0),当AP=CP时,△ACP是等腰三角形,此时点P与D重合,∴P(1,0),综上所述,所有点P的坐标为(﹣1,0)或(3﹣2,0)或(3+2,0)或(1,0).23.解:(1)①平移线段FG至BH交AE于点K,如图1﹣1所示:由平移的性质得:FG∥BH,∵四边形ABCD是正方形,∴AB∥CD,AB=BC,∠ABE=∠C=90°,∴四边形BFGH是平行四边形,∴BH=FG,∵FG⊥AE,∴BH⊥AE,∴∠BKE=90°,∴∠KBE+∠BEK=90°,∵∠BEK+∠BAE=90°,∴∠BAE=∠CBH,在△ABE和△CBH中,,∴△ABE≌△CBH(ASA),∴AE=BH,∴AE=FG;②平移线段BC至FH交AE于点K,如图1﹣2所示:则四边形BCHF是矩形,∠AKF=∠AEB,∴FH=BC,∠FHG=90°,∵四边形ABCD是正方形,∴AB=BC,∠ABE=90°,∴AB=FH,∠ABE=∠FHG,∵FG⊥AE,∴∠HFG+∠AKF=90°,∵∠AEB+∠BAE=90°,∴∠BAE=∠HFG,在△ABE和△FHG中,,∴△ABE≌△FHG(ASA),∴AE=FG;(2)将线段AB向右平移至FD处,使得点B与点D重合,连接CF,如图2所示:∴∠AOC=∠FDC,设正方形网格的边长为单位1,则AC=2,AF=1,CE=2,DE=4,FG=3,DG=4,根据勾股定理可得:CF===,CD===2,DF===5,∵()2+(2)2=52,∴CF2+CD2=DF2,∴∠FCD=90°,∴tan∠AOC=tan∠FDC===;(3)①平移线段BC至DG处,连接GE,如图3﹣1所示:则∠DMC=∠GDE,四边形DGBC是平行四边形,∴DC=GB,∵四边形ADCP与四边形PBEF都是正方形,∴DC=AD=AP,BP=BE,∠DAG=∠GBE=90°∴DC=AD=AP=GB,∴AG=BP=BE,在△AGD和△BEG中,,∴△AGD≌△BEG(SAS),∴DG=EG,∠ADG=∠EGB,∴∠EGB+∠AGD=∠ADG+∠AGD=90°,∴∠EGD=90°,∴∠GDE=∠GED=45°,∴∠DMC=∠GDE=45°;②如图3﹣2所示:∵AC为正方形ADCP的对角线,∴∠DAC=∠PAC=∠DMC=45°,∴AC=AD,∵∠HCM=∠BCA,∴∠AHD=∠CHM=∠ABC,∴△ADH∽△ACB,∴===.24.解:(1)用交点式函数表达式得:y=(x﹣1)(x﹣3)=x2﹣4x+3;故二次函数表达式为:y=x2﹣4x+3;(2)①当AB为平行四边形一条边时,如图1,则AB=PF=2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);②当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为:,即:=2,解得:m=2,故点P(2,﹣1);故:点P(4,3)或(0,3)或(2,﹣1);(3)直线BC的表达式为:y=﹣x+3,设点E坐标为(x,x2﹣4x+3),则点D(x,﹣x+3),S=AB(y D﹣y E)=﹣x+3﹣x2+4x﹣3=﹣x2+3x,四边形AEBD∵﹣1<0,故四边形AEBD面积有最大值,当x=,其最大值为,此时点E(,﹣).。
专题07 正多边形和圆、弧长和扇形的面积(真题测试)-2020-2021学年九年级数学上学期章末

正多边形和圆、弧长和扇形的面积真题测试一、单选题⌢上的任意一点,则∠APB的大小是1.(2020·柯桥模拟)如图,正六边形ABCDEF内接于⊙O,点P是CD()A. 15°B. 30°C. 45°D. 60°2.(2020·新都模拟)如图,在圆内接四边形ABCD中,∠C=110°,则∠BOD的度数为()A. 140°B. 70°C. 80°D. 60°3.(2020·吉林模拟)如图,在⊙O中,点A、B、C在⊙O上,且∠ACB=100°,则∠α=()A. 80°B. 100°C. 120°D. 160°4.(2020·启东模拟)用一个圆心角为120°,半径为6的扇形作一个圆锥的侧面,则这个圆锥的底面半径为()A. 1B. 2C. 3D. 65.(2020九下·中卫月考)如图,一根5米长的绳子,一端拴在围墙墙角的柱子上,另一端拴着一只羊A(羊在草地上活动),那么羊在草地上的最大活动区域面积是()平方米.A. 1712π B. 176π C. 254π D. 7712π6.(2020·无锡模拟)已知扇形的半径为6cm,圆心角为120°,则这个扇形的面积是()A. 36πcm2B. 12πcm2C. 9πcm2D. 6πcm27.(2020·南充模拟)如图A,B,C是⊙O上顺次3点,若AC,AB,BC分别是⊙O内接正三角形、正方形、正n边形的一边,则n=()A. 9B. 10C. 12D. 158.(2020·开平模拟)如图,正五边形ABCDE绕点A旋转了α°,当α=36°时,则∠1=()A. 72°B. 108°C. 144°D. 120°9.(2020·石家庄模拟)如图,以正五边形ABCDE的对角线BE为边,作正方形BEFG,使点A落在正方形BEFG内,则∠ABG的度数为()A. 18∘B. 36∘C. 54∘D. 72∘10.(2020·台州模拟)如图,将边长为3的正六边形铁丝框ABCDEF(面积记为S1)变形为以点D为圆心,CD为半径的扇形(面积记为S2),则S1与S2的关系为()A. S1>S2B. S1=S2C. S1<S2D. S1=π3S211.(2020·湖州模拟)如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A. 74π B. π C. 72π D. 2π12.(2020·金牛模拟)如图,扇形纸扇完全打开后,外侧两竹条AB,AC夹角为150°,AB的长为32cm,BD的长为14cm,则DE⌢的长为()cm.A. 154π B. 12π C. 15π D. 36π13.(2020·河北模拟)已知正方形MNOK和正六边形ABCDEF边长均为1,把正方形放在正六边形中,使OK边与AB边重合,如图所示.按下列步骤操作:将正方形在正六边形中绕点B顺时针旋转,使KM边与BC 边重合,完成第一次旋转;再绕点C 顺时针旋转,使MN 边与CD 边重合,完成第二次旋转;……在这样连续6次旋转的过程中,点B , M 间的距离不可能是( )A. 0.5B. 0.6C. 0.7D. 0.814.(2019九上·温州期中)如图,△ABC 内接于⊙O ,BC=6,AC=2,∠A-∠B=90°,则⊙O 的面积为( )A. 9.6πB. 10πC. 10.8πD. 12π15.(2019·上海模拟)正六边形的半径与边心距之比为( )A. 1: √3B. √3 :1C. √3 :2D. 2: √316.(2020·宁波模拟)如图,⊙O 上有一个动点A 和一个定点B ,令线段AB 的中点是点P ,过点B 作⊙O的切线BQ ,且BQ=3,现测得 AB⌢ 的长度是 4π3 , AB⌢ 的度数是120°,若线段PQ 的最大值是m ,最小值是n ,则mn 的值是( )A. 3 √10B. 2 √13C. 9D. 1017.(2019九上·无锡月考)如图,AB 是⊙o 直径,M ,N 是 AB⌢ 上两点,C 是 MN ⌢ 上任一点,∠ACB 角平分线交⊙o 于点D ,∠BAC 的平分线交CD 于点E ,当点C 从M 运动到N 时,C 、E 两点的运动路径长之比为( )A. √2B. π2C. 32D. √5218.(2019九上·浙江期中)如图,半径为4的⊙O中,CD为直径,弦AB⊥CD且过半径OD的中点,点E 为⊙O上一动点,CF⊥AE于点F。
2022-2023学年人教版九年级上册数学期末必刷常考题-旋转

2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是°.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是对称图形;(3)写出所画图形围成的面积.(结果保留π)14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.2022-2023学年上学期初中数学人教版九年级期末必刷常考题之旋转参考答案与试题解析一.选择题(共5小题)1.(2021春•万山区期末)如图所示,将△AOB绕点O按逆时针方向旋转45°后得到△A'OB',若∠AOB=15°,那么∠AOB'的度数是()A.15°B.30°C.45°D.60°【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】根据旋转的性质旋转前后图形全等以及对应边的夹角等于旋转角,进而得出答案即可.【解答】解:∵将△AOB绕点O按逆时针方向旋转45°后得到△A′OB′,∴∠A′OA=45°,∠AOB=∠A′OB′=15°,∴∠AOB′=∠A′OA﹣∠A′OB′=45°﹣15°=30°,故选:B.【点评】此题主要考查了旋转的性质,根据旋转的性质得出∠A′OA=45°,∠AOB=∠A′OB′=15°是解题关键.2.(2021春•金台区期末)在平面直角坐标系中,点P(3,﹣1)关于坐标原点中心对称的点P′的坐标是()A.(3,1)B.(﹣3,﹣1)C.(﹣3,1)D.(﹣1,3)【考点】关于原点对称的点的坐标.【专题】平面直角坐标系;平移、旋转与对称;模型思想;应用意识.【分析】根据关于原点对称的两个点的坐标之间的关系,即纵横坐标均互为相反数,可得答案.【解答】解:点P(3,﹣1)关于坐标原点中心对称的点P′的坐标为(﹣3,1),故选:C.【点评】本题考查关于原点对称的点的坐标,掌握关于原点对称的两个点坐标之间的关系是得出正确答案的前提.3.(2021春•榆阳区期末)如图,AC、BD为四边形ABCD的对角线,将△ACD绕点A顺时针旋转60°,得到△AEB(点C、D的对应点分别为点E、B),若点C、B、E在一条直线上,则下列说法错误的是()A.∠ABC+∠ADC=180°B.∠BCD=120°C.AC=BC+CD D.AE=BD【考点】全等三角形的判定与性质;旋转的性质.【专题】平移、旋转与对称;运算能力;推理能力.【分析】由旋转的性质可得出∠ADC=∠ABE,AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,得出△CAE和△DAB都是等边三角形,可判断A,B,C选项正确,则可得出结论.【解答】解:∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴∠ADC=∠ABE,∵∠ABE+∠ABC=180°,∴∠ADC+∠ABC=180°,故选项正确,不符合题意,∵将△ACD绕点A顺时针旋转60°,得到△AEB,∴AC=AE,AD=AB,∠ACD=∠AEB,∠CAE=∠DAB=60°,∴△CAE和△DAB都是等边三角形,∴∠ACD=∠AEB=60°,∠ACE=60°,∴∠BCD=120°,故B选项正确,不符合题意;∵△ACE为等边三角形,∴AC=CE=BE+BC,又∵BE=CD,∴AC=CD+BC,故C选项正确,不符合题意,∵BD=AB,AB≠AE,∴AE≠BD,故D选项错误,符合题意.故选:D.【点评】本题主要考查旋转的性质,等边三角形的判定与性质,熟练掌握旋转的性质是解题的关键.4.(2021春•曹县期末)如图,在△ABC中,∠BAC=108°,将△ABC绕点A按逆时针方向旋转得到△A′B′C′,若点B′恰好落在BC边上,AB′=CB′,则∠C′的度数为()A.18°B.20°C.22°D.24°【考点】等腰三角形的性质;旋转的性质.【专题】图形的相似;应用意识.【分析】根据图形的旋转性质,得AB=AB′,已知AB′=CB′,结合等腰三角形的性质及三角形的外角性质,得∠B、∠C的关系为解决问题的关键.【解答】解:∵AB′=CB′,∴∠C=CAB′,∴∠AB′B=∠C+∠CAB′=2∠C,∵将△ABC绕点A按逆时针方向旋转得到△AB′C′,∴∠C=∠C′,AB=AB′,∴∠B=∠AB′B=2∠C,∵∠B+∠C+∠CAB=180°,∴3∠C=180°﹣108°,∴C=24°,∴∠C′=∠C=24°,故选:D.【点评】本题主要考查了等腰三角形的性质及图形的旋转性质.5.(2021春•西山区期末)如图所示,已知点A(﹣1,2),将长方形ABOC沿x轴正方向连续翻转2021次,点A依次落在点A1,A2,A3,…,A2021的位置,则A2021的坐标是()A.(3038,1)B.(3032,1)C.(2021,0)D.(2021,1)【考点】规律型:点的坐标;坐标与图形变化﹣旋转.【专题】规律型;平移、旋转与对称;几何直观;运算能力;推理能力.【分析】分析A1,A2,A3,A4,A5点坐标,找到规律求解.【解答】解:根据图形分析,从A开始旋转,当旋转到A4,时,A回到矩形的起始位置,所以为一个循环,故坐标变换规律为4次一循环.A1(2,1),A2(3,0),A3(3,0),A4(5,2),A5(8,1),A6(9,0),A7(9,0),A8(11,2),A9(14,1),A10(15,0),A11(15,0),A12(17,2),A4n+1(6n+2,1),A4n+2(6n+3,0),A4n+3(6n+3,0),A4n+4(6n+5,0),当A2021时,即4n+1=2021,解得n=505,∴横坐标为6n+2=6×505+2=3032,纵坐标为1,则A2021的坐标(3032,1),故选:B.【点评】本题主要考查图形的旋转变换,解题关键是找到图形在旋转的过程中,点坐标变化规律进而求解.二.填空题(共5小题)6.(2021春•锦州期末)如图,这个正六边形是由Rt△ABC绕点O经过多次旋转变换得到,则∠ABC=30°.【考点】多边形内角与外角;旋转对称图形.【专题】平移、旋转与对称;几何直观.【分析】依据多边形内角和公式求得正六边形每个角的度数,再根据角的和差关系进行计算即可.【解答】解:由旋转可得,该多边形是正六边形,∴该正六边形每个角为=120°,∴∠ABC=120°﹣90°=30°,故答案为:30°.【点评】本题主要考查了旋转对称图形,如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.7.(2020秋•綦江区期末)如图,正方形ABCD中,点E,F分别在BC和AB上,BE=2,AF=2,BF=4,将△BEF绕点E顺时针旋转,得到△GEH,当点H落在CD边上时,F,H两点之间的距离为2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】连接FH,由正方形的性质得出∠B=∠C=90°,AB=BC,由旋转的性质得出EF=EH,证明Rt△EBF≌Rt△HCE(HL),得出∠EFB=∠HEC,证出∠FEH=90°,由勾股定理可得出答案.【解答】解:连接FH,∵四边形ABCD是正方形,∴∠B=∠C=90°,AB=BC,∵AF=2,BF=4,∴AB=6,∵BE=2,∴CE=4,∴BF=CE,∵将△BEF绕点E顺时针旋转,得到△GEH,∴EF=EH,在Rt△EBF和Rt△HCE中,,∴Rt△EBF≌Rt△HCE(HL),∴∠EFB=∠HEC,∵∠EFB+∠BEF=90°,∴∠BEF+∠CEH=90°,∴∠FEH=90°,∵BF=4,BE=2,∴EF===2,∴FH=EF=2.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质,勾股定理.8.(2021春•靖边县期末)如图,将△ABC绕点A逆时针旋转得到△AB′C′,延长CB 交B′C′于点D,若∠BAB′=40°,则∠C′DC的度数是40°.【考点】旋转的性质.【专题】平移、旋转与对称;推理能力.【分析】由旋转的性质得到∠BAC=∠B′AC′,∠C=∠C′,进而推出∠CAC′=40°,根据三角形内角和定理证得∠C′DC=∠CAC′,即可求得∠C'DC的度数.【解答】解:∵将△ABC绕点A逆时针旋转得到△AB'C',∴△ABC≌△AB'C',∴∠BAC=∠B′AC′,∠C=∠C′,∵∠BAB'=40°,∴∠CAC′=40°,∵∠C'DC=180°﹣∠DEC′﹣∠C′,∠CAC′=180°﹣C﹣∠AEC,∠DEC′=∠AEC,∠C′DC=∠CAC′=40°,故答案为:40.【点评】本题主要考查了旋转的性质,三角形内角和定理,能灵活运用旋转的性质是解决问题的关键.9.(2021春•广陵区校级期末)如图,已知正方形ABCD的边长为4,点E是AB边上一动点,连接ED,将ED绕点E顺时针旋转90°到EF,连接DF,CF,则DF+CF的最小值是4.【考点】正方形的性质;轴对称﹣最短路线问题;旋转的性质.【专题】图形的全等;平移、旋转与对称;推理能力.【分析】连接BF,过点F作FG⊥AB交AB延长线于点G,通过证明∴△AED≌△GFE (AAS),确定F点在BF的射线上运动,作点C关于BF的对称点C',由三角形全等得到∠CBF=45°,从而确定C'点在AB的延长线上,当D,F,C'三点共线时,DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,求出DC'=4即可.【解答】解:连接BF,过点F作FG⊥AB交AB延长线于点G,∵将ED绕点E顺时针旋转90°到EF,∴EF⊥DE,且EF=DE,∴∠EDA=∠FEG,在△AED与△GFE中,,∴△AED≌△GFE(AAS),∴FG=AE,∴F点在BF的射线上运动,作点C关于BF的对称点C',∵EG=DA,FG=AE,∴AE=BG,∴BG=FG,∴∠FBG=45°,∴∠CBF=45°,∴BF是∠CBC'的角平分线,即F点在∠CBC'的角平分线上运动,∴C'点在AB的延长线上,当DF+CF=DC'最小,在Rt△ADC'中,AD=4,AC'=8,∴DC'===4,故答案为4.【点评】本题考查了旋转的性质,正方形的性质,轴对称求最短路径,能够将线段和通过轴对称转化为共线线段是解题的关键.10.(2020秋•兰陵县期末)如图,正方形ABCD中,E为DC边上一点,且DE=2,将AE绕点E逆时针旋转90°得到EF,连接AF、FC,则线段FC的长度是2.【考点】勾股定理;正方形的性质;旋转的性质.【专题】矩形菱形正方形;平移、旋转与对称;运算能力;推理能力.【分析】过点F作FH⊥CD于H,如图,利用正方形的性质得DA=CD,∠D=90°,再根据旋转的性质得EA=EF,∠AEF=90°,接着证明△ADE≌△EHF得到DE=FH=2,AD=EH,所以EH=DC,则DE=CH=2,然后利用勾股定理计算FC的长.【解答】解:过点F作FH⊥CD于H,如图,∵四边形ABCD为正方形,∴DA=CD,∠D=90°,∵AE绕点E顺时针旋转90°得到EF,∴EA=EF,∠AEF=90°,∵∠DAE+∠AED=90°,∠FEH+∠AED=90°,∴∠EAD=∠FEH,在△ADE和△EHF中,,∴△ADE≌△EHF(AAS),∴DE=FH=2,AD=EH,∴EH=DC,即DE+CE=CH+EC,∴DE=CH=2,在Rt△CFH中,FC===2,【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质.三.解答题(共5小题)11.(2021春•武陵区期末)如图,在Rt△ABC中,∠ABC=90°,∠ACB=30°,将△ABC 绕点C顺时针旋转60°得到△DEC,点A、B的对应点分别是D、E,点F是边AC中点,连接BE、DF、BF.(1)证明:△CFD≌△ABC;(2)证明:四边形BEDF是平行四边形.【考点】全等三角形的判定与性质;直角三角形斜边上的中线;平行四边形的判定;旋转的性质.【专题】图形的全等;多边形与平行四边形;推理能力.【分析】(1)由旋转的性质可得CB=CE,AB=DE=BF,由“SSS”可证△ABC≌△CFD;(2)延长BF交CE于点G,可证BF∥ED,由一组对边平行且相等可证四边形BEDF 是平行四边形.【解答】证明:(1)∵点F是边AC中点,∴CF=AC,∵∠BCA=30°,∴BA=AC,∠A=60°,∴AB=CF,∵将△ABC绕点C顺时针旋转60°得到△DEC,∴AC=CD,∠ACD=60°,∴∠ACB=∠DCE,在△ABC和△CFD中,,∴△ABC≌△CFD(SAS);(2)延长BF交CE于点G,由(1)得,FC=BF,∴∠BCF=∠FBC=30°,∵∠BCE=60°,∴∠BCE+∠CBG=∠BGE=90°,∵∠DEC=∠ABC=90°∴∠BGE=∠DEC,∴BF∥ED,∵,AB=DE,∴BF=DE,∴四边形BEDF是平行四边形.【点评】本题考查了旋转的性质,全等三角形的判定和性质,平行四边形的判定等知识,灵活运用这些知识进行推理是本题的关键.12.(2021春•曹县期末)如图,四边形ABCD是矩形,以点B为中心,顺时针旋转矩形ABCD得到矩形GBEF,点A,D,C的对应点分别为点G,F,E,点D恰好在FG的延长线上,BG与CD相交于点H,求证:DH=BH.【考点】全等三角形的判定与性质;矩形的性质;旋转的性质.【专题】图形的全等;矩形菱形正方形;平移、旋转与对称;推理能力.【分析】证明Rt△BDA≌Rt△BDG,得到∠ABD=∠GBD,再利用矩形性质求解.【解答】证明:∵旋转矩形ABCD得到矩形GBEF,∴AB=BG,∠A=∠DGB=90°,在Rt△BDA和Rt△BDG中,,∴Rt△BDA≌Rt△BDG(HL),∴∠ABD=∠GBD,∵四边形ABCD是矩形,∴∠ABD=∠BDH,∴∠BDH=∠HBD,∴DH=BH.【点评】本题主要考查了旋转的性质、矩形的性质、解题关键是证明Rt△BDA≌Rt△BGA,得到∠ABD=∠GBD,再利用矩形性质求解.13.(2020秋•铁西区期末)如图,是由边长为1的小正方形组成的8×4网格,每个小正方形的顶点叫做格点,点A、B、C、D均在格点上,在网格中将点D按下列步骤移动:第一步:点D绕点A顺时针旋转180°得到点D1;第二步:点D1绕点B顺时针旋转90°得到点D2;第三步:点D2绕点C顺时针旋转90°回到点D;(1)请用圆规画出点D→D1→D2→D经过的路径;(2)所画图形是轴对称图形;(3)写出所画图形围成的面积.(结果保留π)【考点】作图﹣旋转变换.【专题】平移、旋转与对称;几何直观;运算能力.【分析】(1)根据要求画出图形即可.(2)根据轴对称图形的定义判断即可.(3)根据所画图形的面积=S半圆+S+S﹣S矩形,利用扇形的面积公式计算可得.【解答】解:(1)点D→D1→D2→D经过的路径如图所示.(2)所画图形是轴对称图形;故答案为:轴.(3)所画图形的面积=S半圆+S+S﹣S矩形=•π•42+×2﹣4×8=8π+4π+4π﹣32=16π﹣32.【点评】本题考查作图﹣旋转变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.14.(2020秋•斗门区期末)如图1,在△ABC中,BA=BC,D、E是AC边上的两点,且满足∠DBE=∠ABC.以点B为旋转中心,将△CBE按逆时针方向旋转得到△ABF,连接DF.(1)求证:DF=DE;(2)如图2,若AB⊥BC,其他条件不变.求证:DE2=AD2+EC2.【考点】全等三角形的判定与性质;等腰三角形的性质;勾股定理;旋转的性质.【专题】图形的全等;等腰三角形与直角三角形;平移、旋转与对称;推理能力.【分析】(1)先根据∠DBE=∠ABC可知∠ABD+∠CBE=∠DBE=∠ABC,再由图形旋转的性质可知BE=BF,∠ABF=∠CBE,故可得出∠DBF=∠DBE,由全等三角形的性质即可得出△DBE≌△DBF,故可得出结论;(2)把△CBE逆时针旋转90°,由于△ABC是等腰直角三角形,故可知图形旋转后点C与点A重合,∠F AB=∠BCE=45°,所以∠DAF=90°,由(1)证DE=DF,再根据勾股定理即可得出结论.【解答】(1)证明:∵∠DBE=∠ABC,∴∠ABD+∠CBE=∠DBE=∠ABC,∵△ABF由△CBE旋转而成,∴BE=BF,∠ABF=∠CBE,∴∠DBF=∠DBE,在△DBE与△DBF中,,∴△DBE≌△DBF(SAS),∴DF=DE;(2)证明:∵将△CBE按逆时针方向旋转得到△ABF,∴BA=BC,∠ABC=90°,∴∠BAC=∠BCE=45°,∴图形旋转后点C与点A重合,CE与AF重合,∴AF=EC,∴∠F AB=∠BCE=45°,∴∠DAF=90°,在Rt△ADF中,DF2=AF2+AD2,∵AF=EC,∴DF2=EC2+AD2,同(1)可得DE=DF,∴DE2=AD2+EC2.【点评】本题考查的是图形的旋转及勾股定理,熟知旋转前、后的图形全等是解答此题的关键.15.(2020秋•铁西区期末)在平面直角坐标系中,已知点A(2,0),点B在y轴正半轴上,且∠BAO=60°,点O(0,0).△AOB绕着O顺时针旋转,得△A'OB',点A、B 旋转后的对应点为A',B',记旋转角为α.(1)如图1,A'B'恰好经过点A时,①求此时旋转角α的度数;②求出此时点B'的坐标;(2)如图2,若0°<α<90°,设直线AA'和直线BB'交于点P,猜测AA'与BB'的位置关系,并说明理由.【考点】含30度角的直角三角形;坐标与图形变化﹣旋转.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】(1)①根据旋转的性质得到OA=OA',∠A'=∠BAO=60°,推出△OAA'是等边三角形,于是得到α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,根据三角形的内角和定理得到∠OBA=30,根据勾股定理得到,求得,得到,于是得到答案;(2)如图2,等腰三角形的性质得到,推出∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,由垂直的定义得到结论.【解答】解:(1)①由旋转得:OA=OA',∠A'=∠BAO=60°,∴△OAA'是等边三角形,∴α=∠AOA'=60°;②如图1,过B'作B'C⊥x轴于C,∵∠BAO=60°,∴∠OBA=30°,在Rt△OAB中,∠OBA=30°,∴AB=2OA=4,∴,∴,又∵∠AOA'=60°,∴∠B'OC=90°﹣∠AOA'=30°,∵∠B'CO=90°,∴,∴,∴;(2)AA'⊥BB',理由:如图2,∵∠BOB'=∠AOA'=α,OB=OB',OA=OA',∴,∵∠BOA'=90°﹣α,四边形OBP A'的内角和为360°,∴∠BP A'=360°﹣(180°﹣α)﹣(90°+α)=90°,即AA'⊥BB'.【点评】主要考查了旋转的性质,含30°角的直角三角形的性质,四边形内角和定理,解决问题的关键是熟练掌握旋转的性质.考点卡片1.规律型:点的坐标规律型:点的坐标.2.全等三角形的判定与性质(1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.(2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.3.等腰三角形的性质(1)等腰三角形的概念有两条边相等的三角形叫做等腰三角形.(2)等腰三角形的性质①等腰三角形的两腰相等②等腰三角形的两个底角相等.【简称:等边对等角】③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】(3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.4.含30度角的直角三角形(1)含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半.(2)此结论是由等边三角形的性质推出,体现了直角三角形的性质,它在解直角三角形的相关问题中常用来求边的长度和角的度数.(3)注意:①该性质是直角三角形中含有特殊度数的角(30°)的特殊定理,非直角三角形或一般直角三角形不能应用;②应用时,要注意找准30°的角所对的直角边,点明斜边.5.直角三角形斜边上的中线(1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)(2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.该定理可以用来判定直角三角形.6.勾股定理(1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.(2)勾股定理应用的前提条件是在直角三角形中.(3)勾股定理公式a2+b2=c2的变形有:a=,b=及c=.(4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.7.多边形内角与外角(1)多边形内角和定理:(n﹣2)•180°(n≥3且n为整数)此公式推导的基本方法是从n边形的一个顶点出发引出(n﹣3)条对角线,将n边形分割为(n﹣2)个三角形,这(n﹣2)个三角形的所有内角之和正好是n边形的内角和.除此方法之和还有其他几种方法,但这些方法的基本思想是一样的.即将多边形转化为三角形,这也是研究多边形问题常用的方法.(2)多边形的外角和等于360°.①多边形的外角和指每个顶点处取一个外角,则n边形取n个外角,无论边数是几,其外角和永远为360°.②借助内角和和邻补角概念共同推出以下结论:外角和=180°n﹣(n﹣2)•180°=360°.8.平行四边形的判定(1)两组对边分别平行的四边形是平行四边形.符号语言:∵AB∥DC,AD∥BC∴四边行ABCD是平行四边形.(2)两组对边分别相等的四边形是平行四边形.符号语言:∵AB=DC,AD=BC∴四边行ABCD是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.符号语言:∵AB∥DC,AB=DC∴四边行ABCD是平行四边形.(4)两组对角分别相等的四边形是平行四边形.符号语言:∵∠ABC=∠ADC,∠DAB=∠DCB∴四边行ABCD是平行四边形.(5)对角线互相平分的四边形是平行四边形.符号语言:∵OA=OC,OB=OD∴四边行ABCD是平行四边形.9.矩形的性质(1)矩形的定义:有一个角是直角的平行四边形是矩形.(2)矩形的性质①平行四边形的性质矩形都具有;②角:矩形的四个角都是直角;③边:邻边垂直;④对角线:矩形的对角线相等;⑤矩形是轴对称图形,又是中心对称图形.它有2条对称轴,分别是每组对边中点连线所在的直线;对称中心是两条对角线的交点.(3)由矩形的性质,可以得到直角三角形的一个重要性质,直角三角形斜边上的中线等于斜边的一半.10.正方形的性质(1)正方形的定义:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.(2)正方形的性质①正方形的四条边都相等,四个角都是直角;②正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;③正方形具有四边形、平行四边形、矩形、菱形的一切性质.④两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.11.轴对称-最短路线问题1、最短路线问题在直线L上的同侧有两个点A、B,在直线L上有到A、B的距离之和最短的点存在,可以通过轴对称来确定,即作出其中一点关于直线L的对称点,对称点与另一点的连线与直线L 的交点就是所要找的点.2、凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合本节所学轴对称变换来解决,多数情况要作点关于某直线的对称点.12.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.13.旋转对称图形(1)旋转对称图形如果某一个图形围绕某一点旋转一定的角度(小于360°)后能与原图形重合,那么这个图形就叫做旋转对称图形.(2)常见的旋转对称图形有:线段,正多边形,平行四边形,圆等.14.关于原点对称的点的坐标关于原点对称的点的坐标特点(1)两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点O的对称点是P′(﹣x,﹣y).(2)关于原点对称的点或图形属于中心对称,它是中心对称在平面直角坐标系中的应用,它具有中心对称的所有性质.但它主要是用坐标变化确定图形.注意:运用时要熟练掌握,可以不用图画和结合坐标系,只根据符号变化直接写出对应点的坐标.15.坐标与图形变化-旋转(1)关于原点对称的点的坐标P(x,y)⇒P(﹣x,﹣y)(2)旋转图形的坐标图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.16.作图-旋转变换(1)旋转图形的作法:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.(2)旋转作图有自己独特的特点,决定图形位置的因素较多,旋转角度、旋转方向、旋转中心,任意不同,位置就不同,但得到的图形全等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浙江省湖州市长兴县2020-2021学年九年级上学期期末数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.已知23a b =,则代数式a b b +的值为( ) A .52 B .53 C .23 D .322.下列事件是必然事件的是( )A .打开电视机,正在播放动画片B .经过有交通信号灯的路口,遇到红灯C .过三点画一个圆D .任意画一个三角形,其内角和是180︒ 3.若扇形的圆心角为90°,半径为6,则该扇形的弧长为( )A .32πB .2πC .3πD .6π 4.在Rt △ABC 中,∠C=90°,AC=4,BC=3,则sin A 是A .35B .45C .34D .435.如图,已知正五边形 ABCDE 内接于O ,连结BD ,则ABD ∠的度数是( )A .60︒B .70︒C .72︒D .144︒ 6.将抛物线2y x =-向右平移3个单位后,得到的抛物线的解析式是( ) A .23()y x =-+ B .2(3)y x =-- C .23y x =-+ D .23=--y x 7.如图,在△ABC 中,DE ∥BC ,13AD AB =,BC =12,则DE 的长是( )A .3B .4C .5D .68.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB cmC .2.5cmD cm9.如图,四边形ABCD 内接于O ,AB 为直径,AD CD =,过点D 作DE AB ⊥于点E ,连接AC 交DE 于点F .若3sin 5CAB ∠=,5DF =,则BC 的长为( )A .8B .10C .12D .1610.如图,抛物线22y x x =+与直线112y x =+交于A ,B 两点,与直线2x =交于点D ,将抛物线沿着射线AB 方向平移D 经过的路程为( )A .12116B .738C .152D .6二、填空题11.二次函数22()1y x =-+图象的对称轴是______________.12.已知线段c 是线段a 、b 的比例中项,且4a =,9b =,则线段c 的长度为______.13.一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有9个黄球.每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后放回盒子,通过大量重复摸球试验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数是_______. 14.如图,AB 是O 的直径,点C 和点D 是O 上位于直径AB 两侧的点,连结AC ,AD ,BD ,CD ,若O 的半径是5,8BD =,则sin ACD ∠的值是_____________.15.如图,在Rt ABC ∆中,90C ∠=︒,8AC =,点D 在边BC 上,6CD =,10BD =.点P 是线段AD 上一动点,当半径为4的P 与ABC ∆的一边相切时,AP 的长为____________.16.如图,在平面直角坐标系中,抛物线232y x x =-+与x 轴交于A 、B 两点,与y 轴交于点C ,点D 是对称轴右侧抛物线上一点,且tan 3DCB ∠=,则点D 的坐标为___________.三、解答题174530︒︒18.如图,AC 、BD 交于点E ,BC CD =,且BD 平分ABC ∠.(1)求证:AEB CED ∆∆;(2)若6BC =,3EC =,2AE =,求AB 的长.19.在一个不透明的盒子中装有5张卡片,5张卡片的正面分别标有数字1,2,3,4,5,这些卡片除数字外,其余都相同.(1)从盒子中任意抽取一张卡片,恰好抽到标有偶数的卡片的概率是多少?(2)先从盒子中任意抽取一张卡片,再从余下的4张卡片中任意抽取一张卡片,求抽取的2张卡片上标有的数字之和大于5的概率(画树状图或列表求解).20.如果一条抛物线2y ax bx c =++(0)a ≠与坐标轴有三个交点.那么以这三个交点为顶点的三角形称为这条抛物线的“抛物线三角形”.(1)命题“任意抛物线都有抛物线三角形”是___________(填“真”或“假”)命题; (2)若抛物线解析式为243y x x =-+,求其“抛物线三角形”的面积.21.如图是某学校体育看台侧面的示意图,看台AC 的坡比i 为1:2,看台高度BC 为12米,从顶棚的D 处看E 处的仰角18α=︒,CD 距离为5米,E 处到观众区底端A 处的水平距离AF 为3米.(sin180.31︒≈,tan180.32︒≈,结果精确到0.1米)(1)求AB 的长;(2)求EF 的长.22.如图,某农场准备围建一个中间隔有一道篱笆的矩形花圃,现有长为18米的篱笆,一边靠墙,若墙长6a =米,设花圃的一边AB 为x 米;面积为S 平方米.(1)求S 与x 的函数关系式及x 值的取值范围;(2)若边BC 不小于3米,这个花圃的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.23.如图,四边形ABCE 内接于O ,AB 是O 的直径,点D 在AB 的延长线上,延长AE 交BC 的延长线于点F ,点C 是BF 的中点,BCD CAE ∠=∠.(1)求证:CD 是O 的切线;(2)求证:CEF ∆是等腰三角形;(3)若1BD =,2CD =,求cos CBA ∠的值及EF 的长.24.如图1,在平面直角坐标系中,抛物线212y x bx c =-++与x 轴交于A 、B 两点,与y 轴交于点C ,已知BC =1tan 2OBC ∠=.(1)求抛物线的解析式;(2)如图2,若点P 是直线BC 上方的抛物线上一动点,过点P 作y 轴的平行线交直线BC 于点D ,作PE BC ⊥于点E ,当点P 的横坐标为2时,求PDE ∆的面积;(3)若点M 为抛物线上的一个动点,以点M M ,当M 在运动过程中与直线BC 相切时,求点M 的坐标(请直接写出答案).参考答案1.B【解析】试题分析:根据题意令a=2k,b=3k ,235=33a b k k b k ++=. 故选B .考点:比例的性质.2.D【分析】必然事件是在一定条件下,必然会发生的事件.依据定义判断即可.【详解】A.打开电视机,可能正在播放新闻或其他节目,所以不是必然事件;B. 经过有交通信号灯的路口,遇到红灯,也可能遇到绿灯,所以不是必然事件;C. 过三点画一个圆,如果这三点在一条直线上,就不能画圆,所以不是必然事件;D. 任意画一个三角形,其内角和是180︒,是必然事件.故选:D【点睛】本题考查的是必然事件,必然事件是一定发生的事件.3.C【分析】根据弧长公式计算即可.【详解】 解:该扇形的弧长=9063180ππ⨯=. 故选C .【点睛】本题考查了弧长的计算:弧长公式:180n R l π=(弧长为l ,圆心角度数为n ,圆的半径为R ). 4.A【分析】根据题意画出图形,由勾股定理求出AB 的长,再根据三角函数的定义解答即可.【详解】如图,在Rt △ABC 中,∠C=90°,AC=4,BC=3,∴, ∴sinA=35BC AB =, 故选A.【点睛】本题考查锐角三角函数的定义.关键是熟练掌握在直角三角形中,锐角的正弦为对边比斜边,余弦为邻边比斜边,正切为对边比邻边.5.C【分析】根据多边形内角和定理、正五边形的性质求出∠ABC 、CD=CB ,根据等腰三角形的性质求出∠CBD ,计算即可.【详解】∵五边形ABCDE 为正五边形 ∴()1552180108ABC C ∠=∠=-⨯︒=︒ ∵CD CB = ∴181(8326)010CBD ∠=︒-︒=︒ ∴72ABD ABC CBD ∠=∠-∠=︒故选C .【点睛】本题考查的是正多边形和圆、多边形的内角和定理,掌握正多边形和圆的关系、多边形内角和等于(n-2)×180°是解题的关键.6.B【分析】原抛物线的顶点坐标(0,0),再把点(0,0)向右平移3个单位长度得点(0,3),然后根据顶点式写出平移后的抛物线解析式.【详解】解:将抛物线2y x =-向右平移3个单位后,得到的抛物线的解析式2(3)y x =--. 故选:B【点睛】本题考查的是抛物线的平移.抛物线的平移可根据平移规律来写,也可以移动顶点坐标,根据平移后的顶点坐标代入顶点式,即可求解.7.B【解析】试题解析:在△ABC 中,DE ∥BC , .ADE ABC ∴∽1.3DE AD BC AB ∴== 12.BC =4.DE ∴=故选B.8.D【解析】分析:根据垂径定理得出OE 的长,进而利用勾股定理得出BC 的长,再利用相似三角形的判定和性质解答即可.详解:连接OB ,∵AC 是⊙O 的直径,弦BD ⊥AO 于E ,BD=8cm ,AE=2cm .在Rt △OEB 中,OE 2+BE 2=OB 2,即OE 2+42=(OE+2)2解得:OE=3,∴OB=3+2=5,∴EC=5+3=8.在Rt △EBC 中,==∵OF ⊥BC ,∴∠OFC=∠CEB=90°. ∵∠C=∠C ,∴△OFC ∽△BEC , ∴OF OCBE BC =,即4OF ,解得:故选D .点睛:本题考查了垂径定理,关键是根据垂径定理得出OE 的长.9.C【解析】【分析】连接BD ,如图,先利用圆周角定理证明ADE DAC ∠=∠得到5FD FA ==,再根据正弦的定义计算出3EF =,则4AE =,8DE =,接着证明ADE DBE ∆∆,利用相似比得到16BE =,所以20AB =,然后在Rt ABC ∆中利用正弦定义计算出BC 的长.【详解】连接BD ,如图,∵AB 为直径,∴90ADB ACB ∠=∠=︒,∵AD CD =,∴DAC DCA ∠=∠,而DCA ABD ∠=∠,∴DAC ABD ∠=∠,∵DE AB ⊥,∴90ABD BDE ∠+∠=︒,而90ADE BDE ∠+∠=︒,∴ABD ADE ∠=∠,∴ADE DAC ∠=∠,∴5FD FA ==,在Rt AEF ∆中,∵3sin 5EF CAB AF ∠==, ∴3EF =,∴4AE ==,538DE =+=,∵ADE DBE ∠=∠,AED BED ∠=∠,∴ADE DBE ∆∆,∴::DE BE AE DE =,即8:4:8BE =,∴16BE =,∴41620AB =+=,在Rt ABC ∆中,∵3sin 5BC CAB AB ∠==, ∴320125BC =⨯=, 故选C .【点睛】本题考查了圆周角定理,解直角三角形,熟练掌握“在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径”是解题的关键.10.B【分析】根据题意抛物线沿着射线AB 方向平移A 向右平移4个单位,向上平移2个单位,可得平移后的顶点坐标.设向右平移a 个单位,则向上平移12a 个单位,抛物线的解析式为y=(x+1-a) ²-1+12a ,令x=2,y=(a-114)²+716,由0≤a≤4,推出y 的最大值和最小值,根据点D 的纵坐标的变化情形,即可解决问题.【详解】解:由题意,抛物线沿着射线AB 方向平移A 向右平移4个单位,向上平移2个单位,∵抛物线22y x x =+=(x+1) ²-1的顶点坐标为(-1,-1),设抛物线向右平移a 个单位,则向上平移12a 个单位, 抛物线的解析式为y=(x+1-a) ²-1+12a 令x=2,y=(3-a) ²-1+12a, ∴y=(a-114)²+716, ∵0≤a≤4 ∴y 的最大值为8,最小值为716, ∵a=4时,y=2,∴8-2+2(2-716)=738故选:B【点睛】本题考查的是抛物线上的点在抛物线平移时经过的路程问题,解决问题的关键是在平移过程中点D 的移动规律.11.直线2x =【分析】根据二次函数的顶点式直接得出对称轴.【详解】二次函数22()1y x =-+图象的对称轴是x=2.故答案为:直线x=2【点睛】本题考查的是根据二次函数的顶点式求对称轴.12.6【解析】根据比例中项的概念结合比例的基本性质,得:比例中项的平方等于两条线段的乘积.所以c2=4×9,解得c=±6(线段是正数,负值舍去),故答案为6.13.30【解析】【分析】根据利用频率估计概率得到摸到黄球的概率为30%,然后根据概率公式计算n的值.【详解】解:根据题意得9n=30%,解得n=30,所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.故答案为30.【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.14.3 5【分析】根据题意可知∠ADB=90°,∠ACD=∠ABD,求出∠ABD的正弦就是∠ACD的正弦值.【详解】解:∵AB是O的直径,∴∠ADB=90°∴∠ACD=∠ABD∵O的半径是5,8BD=,∴63 sin sin105 ACD ABD∠=∠==故答案为:35【点睛】 本题考查的是锐角三角函数值.15.5或203或【分析】根据勾股定理得到AB 、AD 的值,再分3种情况根据相似三角形性质来求AP 的值.【详解】解:∵在Rt ABC ∆中,90C ∠=︒,8AC =,6CD =,∴10=在Rt △ACB 中,90C ∠=︒,8AC =,6CD =,10BD =∴CB=6+10=16∵AB ²=AC ²+BC ²=①当⊙P 与BC 相切时,设切点为E,连结PE, 则PE=4,∠AEP=90°∵AD=BD=10∴∠EAP=∠CBA, ∠C=∠AEP=90°∴△APE ∽△ACB48AP PE AB AC PE AP AB AC ∴=∴=⋅=⨯= ②当⊙P 与AC 相切时,设切点为F ,连结PF,则PF=4,∠AFP=90°∵∠C=∠AFP=90°∠CAD=∠FAP∴△CAD ∽△FAP61044102063DC AD FP APAPAP ∴=∴=⨯∴== ③当⊙P 与BC 相切时,设切点为G ,连结PG,则PG=4,∠AGP=90°∵∠C=∠PGD=90°∠ADC=∠PDG∴△CAD ∽△GPD81045AC AD PG PDPDPD ∴=∴=∴=故答案为:203或5 【点睛】本题考查了利用相似三角形的性质对应边成比例来证明三角形边的长.注意分清对应边,不要错位.16.715,24⎛⎫ ⎪⎝⎭【分析】根据已知条件tan 3DCB ∠=,需要构造直角三角形,过D 做DH ⊥CR 于点H,用含字母的代数式表示出PH 、RH,即可求解.【详解】解:过点D 作DQ ⊥x 轴于Q,交CB 延长线于R,作DH ⊥CR 于H,过R 做RF ⊥y 轴于F,∵抛物线232y x x =-+与x 轴交于A 、B 两点,与y 轴交于点C , ∴A(1,0), B(2,0)C(0,2)∴直线BC 的解析式为y=-x+2设点D 坐标为(m,m ²-3m+2),R(m,-m+2),∴DR=m ²-3m+2-(-m+2)=m ²-2m∵OA=OB=2∴∠CAO=ACO=45°=∠QBR=∠RDH,∴,(2)DH RH m ==-(2)(4)CH CR HR m m ∴=-=--=- ∵tan 3DCB ∠=(2)3m DH CH -∴== 72m ∴= 经检验是方程的解.2277153232224m m ⎛⎫∴-+=-⨯+= ⎪⎝⎭ 715(,)24D ∴ 故答案为:715(,)24D 【点睛】本题考查了函数性质和勾股定理逆定理的应用还有锐角三角函数值的应用,本题比较复杂,先根据题意构造直角三角形.17.2【分析】根据特殊角的三角函数值进行计算即可.【详解】解:原式23=+ 11=+2=【点睛】本题考查了特殊角的三角函数值,要求熟记特殊角的三角函数值,记熟了就容易了. 18.(1)见解析;(2)4AB =【分析】⑴根据题意依据(AA)公理证明即可.⑵根据相似三角形性质对应边成比例求解即可.【详解】证明:(1)BC CD =,DBC D ∴∠=∠ BD 平分ABC ∠,DBC DBA ∴∠=∠D DBA ∴∠=∠又AEB CED ∠=∠AEB CED ∴∆∆(2)AEBCED ∆∆AB AE CD EC ∴= 又6BC CD ==,3EC =,2AE =,263AB ∴= 4AB ∴=【点睛】本题考查了相似三角形的判定和性质.19.(1)25;(2)0.6 【分析】(1)装有5张卡片,其中有2张偶数,直接用公式求概率即可.(2)根据抽取结果画树状图或列表都可以,再根据树状图来求符合条件的概率.【详解】解:(1)在一个不透明的盒子中装有5张卡片,5张卡片的正面分别标有数字1,2,3,4,5,5张卡片中偶数有2张,抽出偶数卡片的概率=25(2)画树状如图概率为120.620= 【点睛】本题考查了用概率的公式来求概率和树状统计图或列表统计图.20.(1)假;(2)3【分析】(1)判定是真假命题,要看抛物线与坐标轴交点的个数,当有3个交点时是真命题,有两个或一个交点时不能构成三角形.(2)先求抛物线与坐标轴的交点坐标,再求面积即可.【详解】解:(1)假命题.如果抛物线与x 坐标轴没有交点时,不能形成三角形.(2)抛物线解析式为243y x x =-+∴与y 轴交点坐标为()0,3,与x 轴交点坐标为()1,0,()3,0∴“抛物线三角形”的面积为3【点睛】本题考查了抛物线的性质,再求抛物线与坐标轴的交点组成的三角形的面积. 21.(1)24;(2)25.6【分析】(1)根据坡比=垂直高度比水平距离代入求值即可.(2)先过D 做EF 的垂线,形成直角三角形,再根据锐角三角函数来求.【详解】解:(1)AC 的坡比i 为1:2,224AB BC ∴==(2)过点D 作DH EF ⊥交EF 于点H ,在Rt EDH ∆中,27DH BF AB AF ==+=,18α=︒,27tan18270.328.64EH ∴=⋅︒=⨯=,EF EH HF EH DC BC ∴=+=++8.6451225.6425.6=++=≈【点睛】本题考查了坡比公式和锐角三角函数,锐角三角函数必须在直角三角形中求解. 22.(1)2318S x x =-+()46≤<x ;(2)当4x =时,S 有最大值,最大值是24,当5x =时,S 有最小值,最小值是15【分析】(1)根据题意可得S=x(18-3x)=-3x ²+18x(2)根据⑴和边BC 不小于3米,则4≤x ≤5,在此范围内是减函数,代入求值即可.【详解】解:(1)2(183)318S x x x x =-=-+1836318x x -≤⎧⎨<⎩, 46x ∴≤<(2)1833x -≥,5x ∴≤45x ∴≤≤223183(3)27S x x x =-+=--+∴当4x =时,S 有最大值,最大值是24,当5x =时,S 有最小值,最小值是15【点睛】本题考查的是二次函数中的面积问题,注意自变量的取值范围.23.(1)见解析;(2)见解析;(3)cos CBA ∠=,65=EF 【分析】(1)根据圆的切线的定义来证明,证∠OCD=90°即可;(2)根据全等三角形的性质和四边形的内接圆的外角性质来证;(3)根据已知条件先证△CDB ∽△ADC ,由相似三角形的对应边成比例,求CB 的值,然后求求cos CBA ∠的值;连结BE,在Rt △FEB 和Rt △AEB 中,利用勾股定理来求EF 即可.【详解】解:(1)如图1,连结OC , AB 是O 的直径,AC BF ∴⊥, 又点C 是BF 的中点,AC AC =ACB ACF ∴∆≅∆.CAB CAE ∴∠=∠OC OA =,CAB OCA ∴∠=∠又BCD CAE ∠=∠BCD OCA ∴∠=∠OCD OCB BCD OCB OCA ∴∠=∠+∠=∠+∠90ACB =∠=︒CD ∴是O 的切线图1(2)四边形ABCE 内接于O ,FEC CBA ∴∠=∠ACB ACF ∆≅∆.∴F FBA =∠∠F FEC ∴∠=∠,FC EC ∴=即CEF ∆是等腰三角形(3)如图2,连结BE ,设OC x =,EF y =,在Rt OCD ∆中,222OC CD OD +=2222(1)x x ∴+=+1.5x ∴=,3AB ∴=由(1)可知BCD CAB ∠=∠,又D D ∠=∠DCB DAC ∴∆∆,12BC BD AC CD ∴== 在Rt ACB ∆中,222AC CB AB +=BC EC FC ∴===cos 5BC CBA AB ∴∠==, AB 是O 的直径,BE AF ∴⊥,2222AB AE BF EF ∴-=-即22223(3)y y --=- 解得65EF y == 图2【点睛】本题考查了圆的切线、相似三角形的性质、勾股定理的应用,解本题关键是找对应的线段长. 24.(1)213222y x x =-++;(2)45;(3)点M 为()1,0-或()5,3- 【分析】⑴根据BC =1tan 2OBC ∠=求出B 、C 的坐标,再代入求出解析式; ⑵根据题意可证△PED ∽△BOC,再利用相似三角形的面积比等于相似比的平方求出△PED 的面积;⑶根据二次函数图象的性质及切线性质构造相似三角形来求出点M 的坐标.点M 在直线BC 的上方或在直线BC 的下方两种情况来讨论.【详解】解:(1)2BC =1tan 2OBC ∠= 4OB ∴=,2OC =,∴点B 为()4,0,点C 为()0,2代入212y x bx c =-++得: 2c =,32b =213222y x x ∴=-++ (2)当2x =时,3y =,∴点P 坐标为()2,3,点B 坐标为()4,0,点C 坐标为()0,2 ∴直线BC 解析式为122y x =-+, PD 平行于y 轴,∴点D 坐标为()2,12PD ∴=PD 平行于y 轴,PDE OCB ∴∠=∠PE BC ⊥,90PED COB ∴∠=∠=︒, PDE BCO ∴∆∆,PDE ∴∆与BCO ∆的面积之比是对应边PD 与BC 的平方,BCO ∆的面积为4,PDE ∴∆的面积是2445⨯= (3)过点M 作MG BC ⊥于点G ,过点M 作//MH AB 于点H ,MGH COB ∴∆∆,MH BC MG OC∴==M 与直线x 相切,MG ∴=5MH ∴=设点M 的坐标为213,222x x x ⎛⎫-++ ⎪⎝⎭如图1,点H 的坐标为2135,222x x x ⎛⎫+-++ ⎪⎝⎭代入直线122y x =-+得 2113(5)22222x x x -++=-++ 解得11x =-,25x =∴点M 的坐标为()1,0-或()5,3-图1如图2,点H 的坐标为235,22x x x ⎛⎫-++ ⎪⎝⎭代入直线122y x =-+得 2113(5)22222x x x --+=-++ 方程无解综上,点M 为()1,0-或()5,3-图2【点睛】本题考查了了二次函数图象的性质及二次函数的图形问题,(1)用图象上的点求系数;(2)用相似三角形的性质求三角形的面积;(3)构造相似三角形,利用相似三角形的性质来解决问题即可.。